Additif (et correctif) à la correction du pb du 19-10-05 concernant l'équirépartition.

1. Question II.2). Il est facile de construire les fonctions continues f_1 et f_2 vérifiant:

$$f_1(0) = f_1(1), f_2(0) = f_2(1).$$

$$f_1 \leq h_J \leq f_2.$$

$$\int_0^1 f_2 - \varepsilon \leq \int_0^1 h_J \leq \int_0^1 f_1 + \varepsilon.$$
et ceci même si c et/ou d sont des extrêmités!

Notons $C_1[0,1]$ les fonctions f continues sur [0,1] et f(0) = f(1).

Donc, si $C_1[0,1] \subset F_A$, alors l'ensemble des $\{h_J\} \subset F_A$ et (A) est équirépartie d'après II.1).

2. Question III.2). Il a été établi que $\forall k>0, C(R,k,N)\to 0$ quand $N\to +\infty$ et que ce résultat est vrai pour tout $k \in \mathbb{Z}$. Donc F_R contient toutes les combinaisons linéaires des e_k , c.a.d les polynômes trigo. de période

Notons \mathcal{P}_1 l'ens. des polynômes trigo de période 1. On sait que \mathcal{P}_1 est dense dans $\mathcal{C}_1[0,1]$ (th de Weierstrass trigo). Si $g \in \mathcal{C}_1[0,1]$ et à valeurs réelles, g est limite uniforme de polynomes trigo. réels et on peut construire p_1 et p_2 polynômes trigo. vérifiant I.2). Donc $g \in F_R$. cqfd.