Ag.int.22/11/06.GC.

Exercice 1. Analyse et géométrie :

Préliminaire : rappels de résultats simples.

1,2 et 3 sont indépendantes.

Soit E un espace normé de dimension finie. On note d(x, y) = ||x - y||. Soit A un compact de E. On note $D(x, A) = \sup_{x \in A} d(x, a)$.

- 1.a. Montrer que D(x,A) existe et qu'il existe $\alpha \in A$ tel que $D(x,A) = d(x,\alpha)$.
- 1.b. Montrer que $\forall x, y \in E^2$, $|D(x, A) D(y, A)| \leq d(x, y)$. Que dire de $x \to D(x, A)$?
- 2. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ telle que i) f continue et ii) $f(x) \to +\infty$ quand $||x|| \to +\infty$.

Montrer que f admet un minimum atteint. (solution dans cours de jmm fonctions de plusieurs variables).

3. On rappelle que toute suite d'un compact admet une sous suite convergente..

Partie I : cercle entourant un compact.

Soit K un compact de \mathbb{R}^2 non réduit à un point, \mathbb{R}^2 étant muni de la norme euclidienne. On note $\Gamma(X,r)$ (resp. $\Delta(X,r)$) le cercle (resp. le disque fermé) de centre X et de rayon r.

- 1. Soit $X \in \mathbb{R}^2$ fixé; montrer qu'il existe un cercle $\Gamma(X, \rho(X))$ de rayon $\rho(X)$ minimum entourant K, c'est à dire K $\subset \Delta(X, \rho(X))$. Vérifier que $\rho(X) = D(X, K)$.
- 2. Montrer qu'il existe un cercle Γ au moins entourant K et de rayon minimum. (ici, le centre n'est plus imposé).
- 3. Montrer l'unicité de Γ en raisonnant par l'absurde.

* * *

On appellera ce cercle Γ , de rayon R le cercle circonscrit à K. Constater que par un changement de repère, son équation peut s'écrire $x^2 + y^2 = \mathbb{R}^2$.

* * *

4.a. Soit (a_n) une suite réels < 0 telle que $(a_n) \to 0$.

En considérant les cercles $\Gamma_n(a_n, \mathbf{R})$, montrer que $\forall n \in \mathbb{N}$, il existe au moins un point $P_n(x_n, y_n)$ tel que $x_n^2 + y_n^2 \leq \mathbf{R}^2$ et $(x_n - a_n)^2 + y_n^2 > \mathbf{R}^2$. Vérifier alors que $2x_n - a_n \geq 0$.

- 4.b. En déduire qu'il existe au moins un point $P(x,y) \in K$ tel que $x^2 + y^2 = R^2$ et $x \ge 0$.
- 4.c. Montrer que tout demi cercle de Γ rencontre K.
- 4.d. Montrer que $\Gamma \cap K$ contient au moins 2 points et en général 3. A quelle condition peut t'on n'avoir que 2 points?
- 4.e. Donner un exemple où Γ∩K est réduit à 2 points et un exemple où il est infini.
- 5. K est ici un triangle plein ABC. Le cercle Γ est il le cercle circonscrit, au sens habituel, à ABC. Faire des dessins.

Partie II : sous groupe d'isométries affines.

Soit K un compact, Γ le cercle de centre Ω circonscrit à K.

- 1.a. Soit f une isométrie affine telle que $f(K) \subset K$ et on fait l'hypothèse que $f(K) \neq K$. Soit $b \in K f(K)$. Montrer que d(b, f(K)) > 0. (Ici, $d(b, f(K)) = \inf_{y \in f(K)} d(b, y)$).
- 1.b. En utilisant la suite $b_n = f \circ f \circ \dots \circ f(b)$, (n fois f), montrer que d(b, f(K)) > 0 est absurde. Conclure.

- 2. Montrer que l'ensemble G des isométries affines telles que $f(K) \subset K$ a une structure de groupe pour la loi \circ .
- 3. Soit $f \in G$. Montrer que $f(\Gamma) = \Gamma$, puis que $f(\Omega) = \Omega$. En déduire que les éléments de G ont un point fixe commun.
- 4. Trouver un exemple simple où un tel point n'est pas unique.

Exercice 2. Intégrales, suites de fonctions et polynômes trigonométriques :

Soit \mathcal{C} l'espace des fonctions continues de \mathbb{R} dans \mathbb{C} , $\mathcal{C}_{2\pi}$ l'espace des fonctions continues 2π périodiques et E_n les fonctions polynômes de degré $\leq n$.

Partie A. (propriétés algébriques. simple!). On définit pour a > 0, $f \in \mathcal{C}$, $m_a(f)(x) = \frac{1}{2a} \int_{x-a}^{x+a} f(t) dt$

- 1. Constater que m_a est un endomorphisme de \mathcal{C} . Caractériser le noyau. Est il surjectif?
- 2.a. Dans la suite de A, on restreint m_a à E_n . Montrer que $m_a \in \mathcal{L}(E_n)$.
- 2.b. En examinant la matrice de m_a dans la base canonique de E_n , trouver le spectre de m_a .
- 3.a. Montrer que si degré(f)=2, f n'est pas vecteur propre de m_a .
- 3.b. Montrer que si f est vecteur propre , alors f' aussi. Préciser le sev de E_n propre de m_a .

Partie B. (simple!) On suppose que $f \in \mathcal{C}$ est à support borné : $\exists A > 0$ tel que $|x| \geq A \Longrightarrow f(x) = 0$. Montrer que $m_a(f)$ est aussi à support borné et que $\int_{-A-a}^{A+a} (m_a(f))(t) dt = \int_{-A}^{A} f(t) dt$.

Partie C. (on pose
$$a = \frac{1}{n}$$
). On définit pour $n \in \mathbb{N}^*$, $f \in \mathcal{C}$, $\mu_n(f)(x) = \frac{n}{2} \int_{x-\frac{1}{n}}^{x+\frac{1}{n}} f(t) dt$

- 1. Montrer que $\mu_n(f)$ tend vers f simplement sur \mathbb{R} .
- 2. On suppose que f est uniformément continue sur \mathbb{R} . Montrer que $\mu_n(f) \to f$ uniformément sur \mathbb{R} .
- 3. Calculer $\mu_n(f)$ quand $f(x) = x^2$ et $f(x) = e^x$ et étudier la convergence uniforme dans chaque cas.
- 4. Dans la suite, $f \in \mathcal{C}_{2\pi}$. Montrer que $\mu_n(f) \in \mathcal{C}_{2\pi}$. Quel est le type de convergence de $\mu_n(f)$?
- 5. On note pour $p \in \mathbb{Z}$, $c_p(f)$ et $c_p(\mu_n(f))$ les coefficients de Fourier exponentiels de f.
- 5.a. Montrer que pour $p \in \mathbb{Z}^*$, $c_p(\mu_n(f)) = \frac{n}{p} \sin(\frac{p}{n}) c_p(f)$. (-Utiliser le lien entre $c_p(\mu_n(f))$ et $c_p(((\mu_n(f))')$ -)
- 5.b. Montrer que $c_0(\mu_n(f)) = c_0(f)$. (On pourra utiliser Fubini).
- 6. Soient $k, n \in \mathbb{N}^*$. On définit $P_{n,k}(x) = c_0(f) + \sum_{p=-k, p\neq 0}^k \frac{n}{p} \sin(\frac{p}{n}) c_p(f) e^{ipx}$.
- 6.a. Que dire de la convergence de la suite $(P_{n,k})_k$?
- 6.b. Montrer $\forall \varepsilon > 0$, $\exists (N,K) \in \mathbb{N}^{*2}$ tels que $\forall k \geq K, \forall x \in \mathbb{R}, |f(x) P_{N,k}(x)| < \varepsilon$. Que retrouve t-on?

Commentaire : ce travail me semble plus facile que le devoir du 18/10! gecassayre@orange.fr