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COHOMOLOGY OF LINKING SYSTEMS WITH TWISTED
COEFFICIENTS BY A p-SOLVABLE ACTION

RÉMI MOLINIER

(communicated by Nathalie Wahl)

Abstract
In this paper, we study the cohomology of the geometric

realization of linking systems with twisted coefficients. More
precisely, given a prime p and a p-local finite group (S,F ,L),
we compare the cohomology of L with twisted coefficients with
the submodule of Fc-stable elements in the cohomology of S.
We start with the particular case of constrained fusion systems.
Then, we study the case of p-solvable actions on the coefficients.

1. Introduction

The notion of saturated fusion system was introduced by Puig in the 1990s in a con-
text of modular representation theory. Since their introduction, topologists use them
to study classifying spaces of finite groups or, more precisely, their p-completions.
A p-local finite group is a triple (S,F ,L) where S is a p-group, F a saturated fusion
system over S and L an associated linking system. For a p-local finite group (S,F ,L),
|L|∧p is called its classifying space. The theory of p-local finite groups have been stud-
ied in details by Broto, Levi, Oliver and others (see [BLO2, OV1, 5a1, 5a2]).
The linking system and its geometric realization, even without p-completion, play
here a fundamental and central role. In fact, for a given saturated fusion systems, the
existence and uniqueness of an associated linking system were shown more recently by
Chermak [Ch] (using the theory of partial groups). The proof of this important con-
jecture highlights that linking systems and their geometric realizations form a deep
link between fusion system theory and homotopy theory (we refer to Aschbacher,
Kessar and Oliver [AKO] for more details about fusion systems in general).

An old and well-known result due to Cartan and Eilenberg (see [CE, Theo-
rem XII.10.1]) expresses the cohomology of a finite group G in a Z(p)[G]-module
as the submodule of “stable” elements in the cohomology of a Sylow p-subgroup
of G. This submodule of stable elements corresponds to the inverse limit over the
“fusion” of the group cohomology functor. One important result in the theory of p-
local finite groups is an analog of this theorem for p-local finite groups which tells us
that the cohomology of the geometric realization of a linking system can be computed
by F-stable elements. More precisely, there is a natural inclusion of BS into |L| and

Received February 15, 2016, revised November 3, 2016; published on August 9, 2017.
2010 Mathematics Subject Classification: 55R40, 55N25, 55R35, 20J06, 20D20, 20J15.
Key words and phrases: fusion system, p-local finite group, cohomology with twisted coefficients,
group cohomology.
Article available at http://dx.doi.org/10.4310/HHA.2017.v19.n2.a4
Copyright c⃝ 2017, International Press. Permission to copy for private use granted.
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it induces the following isomorphism. Here, Fc is the full subcategory of F consisting
of F-centric subgroups of S and, for A a finite Z(p)-module, H∗(Fc, A) ⊆ H∗(S,A)
is the submodule of F-stable elements.

Theorem 1.1. Let (S,F ,L) be a p-local finite group and A be a finite Z(p)-module.
The inclusion of BS in |L| induces a natural isomorphism

H∗(|L|∧p , A) ∼= H∗(|L|, A)
∼= // H∗(Fc, A).

Proof. The case A = Fp is [BLO2, Theorem B] and the general case is proven in
[5a2, Lemma 6.12].

One question asked by Oliver in his book with Aschbacher and Kessar [AKO]
is the understanding of the cohomology of |L| with twisted coefficients. Indeed, this
cohomology appears for example in the study of extensions of p-local finite groups or,
more directly, can give more information about the link between the fusion system
and the spaces |L| or |L|∧p . Recall that, if a space X has a universal covering space

X̃, the cohomology of X with twisted coefficients in a Z[π1(X)]-module M is the
cohomology of the chain complex

C∗(X;M) = HomZ[π1(X)](S∗(X̃),M),

where S∗(X̃) is the usual singular chain complex of X̃.
Levi and Ragnarsson [LR] already give some tools along these lines. In an other

paper [Mo1], the author extends Theorem 1.1 to the case of nilpotent actions on the
coefficients. The main ingredient is to construct, as in the trivial coefficient case, an
idempotent of H∗(S,M) with image H∗(Fc,M).

In this paper, we also want to extend Theorem 1.1 to twisted coefficients but when
the action factors through a p-solvable group. The methods used here are completely
different from the ones used in [Mo1] and also more direct. We first have a look at
constrained fusion systems. In that case we are able to prove that, with any coefficient
module, the cohomology of |L| can be computed by stable elements.

Theorem A (see Corollary 3.5). Let (S,F ,L) be a p-local finite group. If F is con-
strained and M is a Z(p)[π1(|L|)]-module, then the inclusion of BS in |L| induces an
isomorphism,

H∗(|L|,M) ∼= H∗(Fc,M).

Next we focus on p-solvable actions. The main ingredients here are p-local finite
subgroups of index a power of p or prime to p and their homotopy properties. We
start by looking at p-local subgroups of index prime to p (see Definition 2.6(b)).

Theorem B (see Theorem 4.3). Let (S,F ,L) be a p-local finite group and denote
by (S,Op′

(F), Op′
(L)) its minimal p-local subgroup of index prime to p. If M is a

Z(p)[π1(|L|)]-module and if the inclusion of BS in |Op′
(L)| induces an isomorphism

H∗(|Op′
(L)|,M) ∼= H∗(Op′

(F)c,M),

then the inclusion of BS in |L| induces an isomorphism

H∗(|L|,M) ∼= H∗(Fc,M).
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This theorem allows us to prove that if the action on the coefficients factor through
a p′-group or, even better, a p-nilpotent group, then the cohomology of |L| can be
computed by stable elements.

It is much more complicated to work with p-local finite groups of index a power of p,
especially on the level of stable elements. Indeed, for (S0,F0,L0) a p-local subgroup of
(S,F ,L) of index a power of p and M a Z(p)[π1(|L|)]-module, it is difficult to compare
H∗(Fc,M) and H∗(Fc

0 ,M). The difficulty mostly comes from the fact that we are
working on different p-groups: S and S0. But when we work with a p-local finite group
realizable by a finite group G, and if G acts ”consistently” on the coefficients it is
possible to get some positive results (see Section 5).

Theorem C (see Corollary 5.5). Let G be a finite group, S a Sylow p-subgroup of
G and (S,F ,L) the associated p-local finite group. Let M be a Z(p)[π1(|L|)]-module
and assume that G acts consistently on M . If both actions factor through a given
p-solvable Γ and all the M -essential subgroups (see Definition 5.3) of S are p-centric,
then we have natural isomorphisms,

H∗(|L|,M) ∼= H∗(G,M) ∼= H∗(Fc,M).

All of these results lead us to the following conjecture.

Conjecture A (see Conjecture 5.6). Let (S,F ,L) be a p-local finite group and M a
Z(p)[π1(|L|)]-module. If the action of π1(|L|) on M is p-solvable, then the inclusion
of BS in |L| induces a natural isomorphism

H∗(|L|,M)
∼= // H∗(Fc,M).

We finish this paper with an example for Conjecture 5.6 which does not follow
from the other results.

Organization
In Section 2, we give some background on p-local finite groups and stable elements.

Section 3 is dedicated to the case of constrained fusion systems, Section 4 to coprime
actions and Section 5 to p-solvable actions for a realizable p-local finite group. Finally,
we give in Section 6 an example for Conjecture 5.6.
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2. Background

We give here a very short introduction to p-local finite groups. The notion of fusion
system was first introduced by Puig for modular representation theory purpose. Later,
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Broto, Levi and Oliver developed the notion of linking systems and p-local finite
groups to study p-completed classifying spaces of finite groups and spaces which
have similar homotopy properties. We refer the reader interested in more details to
Aschbacher, Kessar and Oliver [AKO].

2.1. Fusion systems and linking systems

A fusion system over a p-group S is a way to abstract the action of a finite group
G with S ∈ Sylp(G) on the subgroups of S by conjugation. For G a finite group and
g ∈ G, we will denote by cg the homomorphism x ∈ G 7→ gxg−1 ∈ G and for H,K
two subgroups of G, HomG(H,K) will denote the set of all group homomorphism cg
for g ∈ G such that cg(H) ⩽ K.

Definition 2.1. Let S be a finite p-group. A fusion system over S is a small category
F , where Ob(F) is the set of all subgroups of S and which satisfies the following two
properties for all P,Q ⩽ S:

(a) HomS(P,Q) ⊆ MorF (P,Q) ⊆ Inj(P,Q);

(b) each φ ∈ MorF (P,Q) is the composite of an F-isomorphism followed by an inclu-
sion.

A fusion system is saturated if it satisfy two more technical axioms called the satura-
tion axioms (we refer the reader to [AKO, Definition I.2.1] for a proper definition).

The composition in a fusion system is given by composition of homomorphisms.
We usually write HomF (P,Q) = MorF (P,Q) to emphasize that the morphisms in F
are homomorphisms. For P,Q ⩽ S, we say that P is F-conjugate to Q if there is an
F-isomorphism between P and Q. We denote by PF the set of all subgroups of S
which are F conjugate to P .

The typical example of a saturated fusion system is the fusion system FS(G) of a
finite group G over S ∈ Sylp(G).

For the purpose of this paper, we need to distinguish some collections of subgroups
of S.

Definition 2.2. Let F be a saturated fusion system over a finite p-group S.

(a) A subgroup P ⩽ S is F-centric if for every Q ∈ PF , CS(Q) = Z(Q).

(b) A subgroup P ⩽ S is F-radical if Op(AutF (P )) = Inn(P ).

(c) A subgroup P ⩽ S is F-quasicentric if for each Q ⩽ PCS(P ) containing P , and
each α ∈ AutF (Q) such that α|P = Id, α has a p-power order.

We let Fcr ⊆ Fc ⊆ Fq ⊆ F denote the full subcategories of F with objects the F-
centric and F-radical subgroups, the F-centric subgroups and the F-quasicentric
subgroups, respectively.

If F = FS(G), a subgroup P ⩽ S is

(a) F-centric if and only if it is p-centric (i.e. Z(P ) ∈ Sylp(CG(P ))),

(b) F-radical if P/Z(P ) = Op(NG(P )/CG(P )).

(c) F-quasicentric if and only if Op(CG(P )) has order prime to p.
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The notion of linking system has been introduced by Broto, Levi and Oliver
[BLO2] and generalized by Broto, Castellana, Grodal and Oliver in [5a1]. We refer
the reader to theses papers, or [AKO, Part III], for a proper definition. We recall
here some basic facts about linking systems which will be needed here.

For G a finite group, S ∈ Sylp(G) and H a collection of subgroups of S, the trans-

porter category of G over S with set of objects H is the category T HH (G) with objects
H and for P,Q ∈ H, MorL(P,Q) = TG(P,Q) = {g ∈ G | P g ⩽ Q}. For F a saturated
fusion system over a p-group S, a linking system associated to F is a certain finite
category with objects a collection H of subgroups of S together with two functors

T HS (S)
δ // L π // F .

δ is the identity on objects and injective on morphisms and π is injective on objects
and surjective on morphisms. The collection H has to be stable by overgroups and
F-conjugation and the following proposition tell you which collection you can have.

Proposition 2.3. Let F be a saturated fusion system over a p-group S. Let L be a
linking system associated to F .

(a) Ob(Fcr) ⊆ Ob(L) ⊆ Ob(Fq), and there exists a linking system Lq associated to
F such that Ob(Lq) = Ob(Fq), and L is a full subcategory of Lq.

(b) For every subset Ob(Fcr) ⊆ H ⊆ Ob(Fq) stable by F-conjugacy and overgroups,
the full subcategory LH of Lq with set of objects H is also a linking system asso-
ciated to F .

Proof. The first point of (a) can be found for example in [O4, Proposition 4(g)].
For the second statement of (a), you can find a proof in [AKO, Proposition III.4.8].
Finally, (b) is a consequence of the definition of linking systems.

If H = Ob(Fq), L is called a quasicentric linking system and if H = Ob(Fc), L is
called a centric linking system.

Definition 2.4. A p-local finite group is a triple (S,F ,L) where F is a saturated
fusion system over S and L is an associated linking system. If (S0,F0,L0) is an other
p-local finite group, we will say that (S0,F0,L0) is a p-local subgroup of (S,F ,L) if
S0 ⩽ S and F0 ⊆ F is a subsystem of F . Notice that we do not require that L0 is a
subcategory of L.

The typical example you should have in mind is the following. For G a finite
group and S ∈ Sylp(G) let Lq

S(G) be the category with objects the FS(G)-quasicentric
subgroups of G and, for P,Q ∈ Ob(L),

MorL(P,Q) = TG(P,Q)/Op(CG(P )).

Then (S,FS(G),Lq
S(G)) defines a p-local finite group where Lq

S(G) is a quasicentric
linking system. We also denote by Lc

S(G) the full subcategory of Lq
S(G) with objects

the p-centric subgroups of S and it is a centric linking system.
We finish with some basic homotopy properties about linking systems which will

be needed in this paper. We refer the reader interested in more details to [AKO,
Part III]. For (S,F ,L) a p-local finite group, we write |L| for the geometric realization
of L and πL = π1(|L|) for its fundamental group. The following theorem will allow us
to change the set of objects of L without changing the homotopy type of |L|.
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Theorem 2.5 ([5a1, Theorem 3.5]). Let F be a saturated fusion system over a p-
group S. Let L0 ⊆ L be two linking systems associated to F with a different set of
objects. Then the inclusion induces a homotopy equivalence of space |L0| ≃ |L|.

2.2. p-local finite subgroups of index a power of p or prime to p
The notions p-local subgroups of index a power of p or prime to p have been

introduced and studied by Broto, Castellana, Grodal, Levi and Oliver [5a2]. Here we
just give the definitions what we need about these p-local subgroups and we refer the
reader to [5a2] for more details.

Definition 2.6. Let (S,F ,L) be a p-local finite group and (S0,F0,L0) a p-local
subgroup of (S,F ,L). Set hyp(F) = ⟨g−1α(g) | g ∈ P ⩽ S, α ∈ Op (AutF (P ))⟩ ⊴ S.

(a) We say that (S0,F0,L0) is a p-local subgroup of index a power of p if S0 ⩾ hyp(F)
and, for every P ⩽ S0, O

p(AutF (P )) ⩽ AutF0(P ).

(b) We say that (S0,F0,L0) is a p-local subgroup of index prime to p if S0 = S and,
for every P ⩽ S, Op′

(AutF (P )) ⩽ AutF0(P ).

Notice that hyp(F) is denoted Op
F (S) in [5a2, Definition 2.1]. These particular

p-local subgroups satisfy the following properties.

Proposition 2.7 ([5a2, Proposition 3.8]). Let (S,F ,L) be a p-local finite group and
(S0,F0,L0) a p-local subgroup of (S,F ,L).
(a) If (S0,F0,L0) is of index a power of p, then P ⩽ S0 is F0-quasicentric if, and

only if, P is F-quasicentric.

(b) If (S0,F0,L0) is of index prime to p, then P ⩽ S is F0-centric if, and only if, P
is F-centric.

For an infinite group G, we denote by Op′
(G) the intersection of all normal sub-

groups in G of finite index prime to p. For F a fusion system over a p-group S, let

Op′

∗ (F) be the fusion system generated by Op′
(AutF (P )) for all P ⩽ S and define

Out0F (S) = ⟨α ∈ OutF (S) | α|P ∈ Hom
Op′

∗ (F)
(P, S), for some P ⩽ S⟩.

Since AutF (S) normalizes Op′

∗ (F), Out0F (S) ⊴ OutF (S).

Proposition 2.8. Let (S,F ,L) be a p-local finite group.

(a) F = ⟨AutF (S), Op′

∗ (F)⟩.
(b) π and the inclusion of BAutF (S) in |Fc| induce isomorphisms,

θ : πL/O
p′
(πL)

∼= // π1(|Fc|)
∼= // OutF (S)/Out0F (S).

Proof. The point (a) is proved in [5a2, Lemma 3.4]. For (b), the second isomorphism
is given in [5a2, Proposition 5.2] and the first one in [5a2, Theorem 5.5] and the
comment which follows.

According to Proposition 2.7, when dealing with p-local subgroups of index prime
to p, we will work with centric linking systems.
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Theorem 2.9 ([5a2, Theorem 5.5]). Let (S,F ,L) be a p-local finite group with L a
centric linking system. For each subgroup H ⩽ OutF (S) containing Out0F (S), there is
a unique p-local finite subgroup (S,FH ,LH) of index prime to p such that OutFH (S) =
H and LH = π−1(Fc

H).

Moreover, |LH | is homotopy equivalent, via its inclusion in |L|, to the cover-

ing space of |L| with fundamental group H̃ ⩾ Op′
(πL) such that θ(H̃/Op′

(πL)) =
H/Out0F (S) (where θ is the isomorphism given in Proposition 2.8(b)).

Thus, for a p-local finite group (S,F ,L), with L a centric linking system, we can
define the minimal p-local subgroup of index prime to p, (S,Op′

(F), Op′
(L)) corre-

sponding to (S,FH ,LH) with H = Out0F (S) in Theorem 2.9.

2.3. Cohomology and stable elements

The first result about stable elements is due to Cartan and Eilenberg [CE,
Chap. XII, Theorem 10.1]. It also served as a guideline in the establishment of Theo-
rem 1.1 by Broto, Levi and Oliver. Here we recall the definition of Fc-stable elements
in a context of twisted coefficients. We refer the reader to [Mo1] for more details.
As in [Mo1], we will denote by ω : L → πL = π1(|L|, S) the functor which maps each
object to the unique object in the target and sends each morphism φ ∈ MorL(P,Q) to
the class of the loop ιQ.φ.ιP where ιP = δ(1) ∈ MorL(P, S), ιQ = δ(1) ∈ MorL(Q,S)
and ιP is the edge ιP followed in the opposite direction.

Let (S,F ,L) be a p-local finite group. Recall first that δ : T Ob(L)
S (S) → L induces

an inclusion δS : BS → |L|. In particular, it induces a natural map S → πL and thus,
for every Z(p)[πL]-module M , we have a natural action of S, or any subgroup of S,
on M . Now, let M be a Z(p)[πL]-module, the group cohomology bifunctor H∗(−,−)
induces a functor

H∗(−,M) : Fc // Z(p)-Mod

(a priori, H∗(g,M) is defined for g ∈ Mor(L) but [Mo1, Proposition 2.2] proves that
H∗(−,M) is well defined on Fc).

Definition 2.10. Let (S,F ,L) be a p-local finite group. An element x ∈ H∗(S,M)
is called F-centric stable, or Fc-stable, if for all P ∈ Ob(Fc) and all φ ∈ HomF (P, S),

φ∗(x) = ResSP (x).

We denote by H∗(Fc,M) ⊆ H∗(S,M) the submodule of all Fc-stable elements.

Notice that

H∗(Fc,M) = lim←−
Fc

H∗(−,M) = lim←−
L

H∗(−,M),

where the last equality holds if L is a centric linking system.

3. Constrained fusion systems

Let (S,F ,L) be a p-local finite group. Here, we assume that F is a constrained
fusion system.
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Definition 3.1. Let F be a fusion system over a p-group S. A subgroup Q ⩽ S is
normal in F if

(i) Q ⊴ S, and

(ii) for all P,R ⩽ S and every φ ∈ HomF (P,R), φ extends to a morphism φ ∈
HomF (PQ,RQ) such that φ(Q) = Q.

We write Op(F) for the maximal subgroup of S which is normal in F . We say that
F is constrained if Op(F) is F-centric.

An important and classical result about constrained fusion systems is the following.

Proposition 3.2 ([5a1, Proposition 4.3]). Let (S,F ,L) be a p-local finite group with
L a centric linking system. If F is constrained, there exists a finite group G such that

(a) S is a Sylow p-subgroup of G,

(b) CG(Op(G)) ⩽ Op(G),

(c) FS(G) = F .

Moreover, G ∼= AutL(Op(F)) and L ∼= Lc
S(G).

This group G is called a model of F and it is unique in a precise way (see [AKO,
Theorem III.5.10]). This model can also be recovered from the homotopy type of the
geometric realization of a linking system associated to F .

Lemma 3.3. Let (S,F ,L) be a p-local finite group with L a centric linking system.
If F is constrained, then |L| is a classifying space of a model G of F .

Proof. By Proposition 3.2, we can assume that L = Lc
S(G). Set

H = {P ∈ Ob(L) | P ⩾ Op(G)}

and let LH be the full subcategory of L with set of objects H. By [5a1, Proposi-
tion 1.6], H contains all F-centric and F-radical subgroups. Thus, by Proposition 2.3,
LH is a linking system associated to F and, by Theorem 2.5, |LH| ∼= |L|.

It remains to prove that |LH| ∼= BG. For that purpose, consider the following
functor:

F : LH −→ L{Op(G)},
P ∈ LH 7−→ Op(G),

g ∈ TG(P,Q) 7−→ g ∈ NG(Op(G)) = G.

It gives us a retraction by deformation of |LH| on the geometric realization of the full
subcategory of L with unique object Op(G) ⩽ S. As AutL(Op(G)) = NG(Op(G)) =
G, this last category is B(G). In particular, its geometric realization is a classifying
space of G.

Proposition 3.4. Let G be a finite group and S a Sylow p-subgroup of G. If we
have CG(Op(G)) ⩽ Op(G), then, for every Z(p)[G]-module M , the inclusion of S in
G induces a natural isomorphism

H∗(G,M) ∼= H∗(Fc
S(G),M).
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Proof. Let (S,F ,L) = (S,FS(G),Lc
S(G)). By assumption, FS(G) is constrained and

G is a model of FS(G). From Cartan-Eilenberg Theorem, we know that

ResGS : H∗(G,M) // H∗(S,M)

is injective and that Im (ResGS ) = lim←−
TS(G)

H∗(−,M). Moreover,

H∗(Fc,M) = lim←−
Fc

H∗(−,M) = lim←−
L

H∗(−,M) = lim←−
T c
S (G)

H∗(−,M) ⩾ lim←−
TS(G)

H∗(−,M).

Thus, it remains to prove that lim←−
T c
S (G)

H∗(−,M) ⩽ lim←−
TS(G)

H∗(−,M).

Let then x ∈ H∗(Fc,M) = lim←−
T c
S (G)

H∗(−,M). For P ⩽ S and g ∈ NG(P, S) we have,

in TS(G), the following commutative diagram:

POp(G)
g // gPg−1Op(G)

P

e

OO

g // gPg−1,

e

OO

where e is the trivial element of G. Hence, as the top part of the diagram is in T c
S(G)

and x ∈ lim←−
T c
S (G)

H∗(−,M),

c∗g ◦ Res
S
gPg−1(x) = Res

POp(G)
P ◦ c∗g ◦ Res

S
gPg−1Op(G)(x)

= Res
POp(G)
P ◦ ResSPOp(G)(x)

= ResSP (x).

Thus x ∈ lim←−
TS(G)

H∗(−,M) and this complete the proof.

Corollary 3.5. Let (S,F ,L) be a p-local finite group. If F is constrained and M is
a Z(p)[πL]-module, then δS induces a natural isomorphism,

H∗(|L|,M) ∼= H∗(Fc,M).

4. Actions factoring through a p′-group

In this section, for each p-local finite group (S,F ,L) we will assume that L is a
centric linking system.

Lemma 4.1. Let (S,F ,L) be a p-local finite group and (S,Op′
(F), Op′

(L)) its mini-
mal p-local subgroup of index prime to p. If M is a Z(p)[πL]-module, then the inclusion

Op′
(L) ⊆ L induces the following isomorphism,

H∗(|L|,M) ∼= H∗(|Op′
(L)|,M)πL/Op′ (πL).
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Proof. By Theorem 2.9, |Op′
(L)| is, up to homotopy, a covering space of |L| with

fundamental group Op′
(πL) ⊴ πL. It gives us a fibration sequence

|Op′
(L)| → |L| → B

(
πL/O

p′
(πL)

)
.

Consider then the Serre spectral sequence associated

Hs+t(|L|,M) ⇐ Hs
(
πL/O

p′
(πL),H

t(|Op′
(L)|,M)

)
.

M is a Z(p)-module, thus Hq(|Op′
(L)|,M) is also a Z(p)-module. As πL/O

p′
(πL) is a

p′-group, the E2-page is concentrated in the first column with terms

Ht(|Op′
(L)|,M)πL/Op′ (πL).

Thus the spectral sequence collapses on the E2-page and the lemma follows.

Lemma 4.2. Let (S,F ,L) be a p-local finite group and (S,Op′
(F), Op′

(L)) its min-
imal p-local subgroup of index prime to p. If M is a Z(p)[πL]-module, then

H∗(Fc,M) = H∗(Op′
(F)c,M)

AutF (S)/Aut
Op′ (F)

(S)
.

Proof. Notice first that, by Proposition 2.7, Ob(Op′
(F)c) = Ob(Fc). Hence, we are

working with the same underlying set of objects. Thus, by definition, H∗(Fc,M) ⊆
H∗(Op′

(F)c,M)
AutF (S)/Aut

Op′ (F)
(S)

. On the other hand, by Proposition 2.8, we have
F = ⟨Op′

(F),AutF (S)⟩ which gives the converse inclusion.

Theorem 4.3. Let (S,F ,L) be a p-local finite group and (S,Op′
(F), Op′

(L)) its min-
imal p-local subgroup of index prime to p. If M is a Z(p)[πL]-module and if the inclu-
sion δS induces an isomorphism

H∗(|Op′
(L)|,M) ∼= H∗(Op′

(F)c,M),

then δS induces an isomorphism

H∗(|L|,M) ∼= H∗(Fc,M).

Proof. Recall that, by Theorem 2.9, π1(|Op′
(L)|) = Op′

(πL). Then we have the fol-
lowing commutative diagram:

B(S) δS //

δS ""

L ω // BπL // B(Aut(M)).

Op′
(L) ω //

OO

B
(
Op′

(πL)
)

OO 77

Moreover, by Proposition 2.8 and Theorem 2.9, the projection π : L // F induces
an isomorphism

πL/O
p′
(πL) ∼= π1(|Fc|) ∼= AutF (S)/AutOp′ (F)(S).
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Then, by the two previous lemmas, we obtain

H∗(|L|,M) ∼= H∗(|Op′
(L)|,M)πL/Op′ (πL)

∼=

 lim←−
Op′ (F)c

H∗(−,M)

AutF (S)/Aut
Op′ (F)

(S)

∼= H∗(Fc,M).

For the second isomorphism, we have to be careful with respect to the action of πL
on the left side of the isomorphism and AutF (S) on the right side. In fact, here,
by Definition 2.10 of Fc-stable elements, we can see it on the chain level. The map

δ∗S : H
∗(|Op′

(L)|,M) // H∗(S,M) , induced by δS : BS // |Op′
(L)| , gives on

the chain level,

HomZ(p)[S]

(
C∗

(
˜|Op′(L)|

)
,M

)
// HomZ(p)[πOp′ (L)

](C∗(|E(S)|),M)

f
� // f |C∗(|E(S)|),

where E(S) is defined as the category with set of object S and for each (s, s′) ∈ S,
MorE(S)(s, s

′) = {φs,s′} (in particular, |E(S)| is a universal covering space of BS).
Then, for φ ∈ AutS(F), if we choose a lift φ̃ ∈ AutL(S), φ acts on the left side by

f � // ω(φ̃−1)fω(φ̃) ,

and on the right side by,

f � // ω(φ̃)−1f ◦ φ∗ .

Finally, the action of φ on E(S) corresponds to the action of ω(φ̃) on |E(S)| (indeed,
a lift of ω(φ̃) in ˜|Op′(L)| joins every vertex s ∈ S of |E(S)| to the vertex φ(s) and
similarly for higher simplices). Hence, the two actions coincide.

Corollary 4.4. Let (S,F ,L) be a p-local finite group and M be a Z(p)[πL]-module.
If the action of πL on M factors through a p′-group then δS induces an isomorphism,

H∗(|L|,M) ∼= H∗(Fc,M).

Proof. By Theorem 4.3, it is enough to prove that δS induces an isomorphism

H∗(|Op′
(L)|,M) ∼= H∗(Op′

(F)c,M).

But, as the action on M factor through a p′-group, π1(|Op′
(L)|) = Op′

(πL) acts triv-
ially on M and Theorem 1.1 gives the wanted isomorphism.

We already know, from a previous article [Mo1, Theorem 4.3] that, if M is a finite
Z(p)[πL]-module and the action of πL on M factor through a p-group, then δS induces
an isomorphism

H∗(|L|,M) ∼= H∗(Fc,M)

(it is a direct corollary of [Mo1, Theorem 4.3] because, any action of a p-group on
an abelian p-group is nilpotent). Hence, with the same arguments, we get another
corollary of Theorem 4.3.
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Corollary 4.5. Let (S,F ,L) be a p-local finite group and M be a finite Z(p)[πL]-
module. If the action of πL on M factors through an extension of a normal p-group
by a p′-group then δS induces an isomorphism,

H∗(|L|,M) ∼= H∗(Fc,M).

5. Realizable fusion systems and actions factoring through
a p-solvable group

Consider here a finite group G, S a Sylow p-subgroup of G and let (S,F ,L) be
the associated p-local finite group with L = Lc

S(G). Set T = T c
S (G) be the centric

transporter category of G, Lq = Lq
S(G) be the quasicentric linking system associated

to G and T q = T q
S (G) be the associated quasicentric transporter category. We also

write πT = π1(|T |).
We have a functor

ρ : TS(G) // B(G),

which sends each object in the source to the unique object oG in the target and
sends, for every P,Q ⩽ S, g ∈ TG(P,Q) to g ∈ G = MorB(G)(oG). As |B(G)| = BG,
this induces a homomorphism

ρ∗ : πT // G.

Here for M a Z(p)[πL]-module, with action φ : πL → Aut(M) we will suppose
that we have the following commutative diagram for some homomorphism φ : G →
Aut(M):

πL
φ

$$
πT

δ∗

==

ρ∗
  

Aut(M).

G

φ

::

Then, we can compare the cohomology of |L| and the cohomology of G when the
action factors through a p-solvable group. The main ingredients that we will use are
p-local subgroups of index a power of p or prime to p.

The following lemma allows us to compare H∗(|L|,M) and H∗(|T |,M).

Lemma 5.1. Let G be a finite group and (S,F ,L) be an associated p-local finite

group. Let T = T Ob(L)
S (G) ⊆ T q be the transporter category associated to G with set

of objects Ob(L). If M is a Z(p)[πL]-module, then the canonical functor δ : T → L
induces a natural isomorphism H∗(|T |,M) ∼= H∗(|L|,M).

Proof. This is a consequence of [BLO1, Lemma 1.3] with C = T , C′ = L and the
functor T : Lop → Z(p)-Mod which sends each object to M , and each morphism to its
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action on M . Then δ induces a natural isomorphism lim←−
T

∗(M) ∼= lim←−
L

∗(M). Then

H∗(|T |,M) = lim←−
T

∗(M) ∼= lim←−
L

∗(M) = H∗(|L|,M),

where the first and last equality is just an interpretation in terms of functor coho-
mology and can be found in [LR, Proposition 3.9].

Theorem 5.2. Let G be a finite group, S a Sylow p-subgroup of G, L = Lc
S(G) and

T = T c
S (G). Let M be a Z(p)[πL]-module and assume that we have the following com-

mutative diagram:

πL
φ

$$
πT

δ∗

==

ρ∗
  

Aut(M).

G

φ

::

If ρ∗ is surjective and Γ = Im (φ) = Im (φ) is p-solvable, then δ and ρ induce natural
isomorphisms

H∗(|L|,M) ∼= H∗(|T |,M) ∼= H∗(G,M).

Proof. By Lemma 5.1, we just have to show that ρ induces a natural isomorphism
H∗(|T |,M) ∼= H∗(G,M). We prove this by induction on the minimal number n of
extensions by p-groups or p′-groups we need to obtain Γ.

If n = 0, Γ = 1 and the action of πT on M is trivial, then it follows from [OV1,
Proposition 4.5]. Assume that, if Γ is obtained by n extensions, the result is true and
suppose that Γ is obtained with n+ 1 extensions. Consider then the last one

0 → Γn → Γ → Q → 0.

Denote H = φ−1∗ (Γn). Thus (T,FH ,LH) = (S ∩H,FS∩H(H),Lc
S∩H(H)) is a p-local

subgroup of (S,F ,L) of index a power of p or prime to p.

If Q is a p′-group. In that case, (T,FH ,LH) is a p-local finite subgroup of index
prime to p (defined in Definition 2.6). Then Ob(Fc) = Ob(Fc

H), TH = T c
S∩H(H) ⊂ T

and, by [OV1, Proposition 4.1(d)], this inclusion of categories induces, up to homo-
topy, a covering space of |T | with covering group G/H = Q. We then have the fol-
lowing commutative diagram with exact rows (here, // // means onto):

0 // πTH //

����

!!

πT //

����

��

Q // 0

0 // Γn
// Γ // Q // 0

0 // H //

== ==

G //

?? ??

Q // 0
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and the following fibration sequences

|TH | // |T | // BQ

BH // BG // BQ .

Moreover, ρ induces a morphism of fibration sequences between these two.
If Q is a p-group. In that case, we have to be more careful on the collection of

subgroups of S we are working with. As in the case when Q is a p′-group we want to
apply [OV1, Proposition 4.1(d)]. This forces us to use the following collection. Let

H = {P ∈ Ob(Fq) | P ∩ T ∈ Ob(Fq
H)} .

Since H �G, no element of T = S ∩H is G-conjugate to any element of S ∖ T .
Thus, by [5a2, Lemma 3.5], for every P ∈ Ob(Fcr), P ∩ T ∈ Ob(Fc

H) ⊆ Ob(Fq
H). In

particular, Ob(Fcr) ⊆ H ⊆ Ob(Fq). Hence if LH ⊆ Lq is the full subcategory of Lq

with set of objects H, by Proposition 2.3(b), LH defines a linking system associated
to F . On the level of transporter systems, the inclusions T ⊆ T q ⊇ T H induce nat-
ural isomorphisms H∗(|T H|,M) ≃ H∗(|T q|,M) ≃ H∗(|T |,M). Indeed, we have the
following commutative diagram:

T

δ

��

// T q

δ

��

T H

δ
��

oo

L // Lq LH.oo

The vertical arrows induce isomorphisms in cohomology by Lemma 5.1 and the lower
horizontal one induces an isomorphism since, by Theorem 2.5, the inclusions of cat-
egories L ⊆ Lq ⊇ LH induces |L| ≃ |Lq| ≃ |LH|. Hence the upper arrows induce iso-
morphisms H∗(|T H|,M) ≃ H∗(|T q|,M) ≃ H∗(|T |,M). Finally, by Proposition 2.7,
P ∈ Ob(Fq

H) if and only if P ⩽ T and P ∈ H. In particular, T q
H ⊆ T H. Thus we can

assume for this part that T = T H and TH = T q
H .

We have TH ⊆ T is a transporter system associated to FH and, by definition of
H, the hypotheses of [OV1, Proposition 4.1(d)], are satisfied. Thus this inclusion
induces a covering space of |T | with covering group G/H = Q. Therefore, we have
the following diagram with exact rows

0 // πTH //

����

!!

πT //

����

��

Q // 0

0 // Γn
// Γ // Q // 0

0 // H //

== ==

G //

?? ??

Q // 0

and the following fibration sequences

|TH | // |T | // BQ ,

BH // BG // BQ .

Moreover, ρ induces a morphism of fibration sequences between these two.
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Hence, in both cases, we have the following Serre spectral sequences

Hs+t(|T |,M) ⇐ Hs(Q,Ht(|TH |,M)),

Hs+t(G,M) ⇐ Hs(Q,Ht(H,M)),

and ρ induces a morphism ρ∗ of spectral sequences between these two. By induction,
ρ∗ gives an isomorphism on the E2 page and then induces an isomorphism of spectral
sequences. In particular, ρ induces a natural isomorphism

H∗(|T |,M) ∼= H∗(G,M).

The result follows by induction.

Assume the hypotheses of Theorem 5.2. It remains to compare H∗(G,M) with the
Fc-stable elements. This is also not obvious and they are not isomorphic in all cases.
On one hand, by Cartan-Eilenberg Theorem, we have H∗(G,M) ∼= lim←−

TS(G)

H∗(−,M).

On the other hand, we haveH∗(Fc,M) = lim←−
Lc

S(G)

H∗(−,M) = lim←−
T c
S (G)

H∗(−,M). Hence,

it remains to compare lim←−
TS(G)

H∗(−,M) and lim←−
T c
S (G)

H∗(−,M). For that we can use a

result of Grodal [Gr].

Definition 5.3. let G be a finite group, S ∈ Sylp(G) and M be a Z(p)[G]-module.
Let K be the kernel of G → Aut(M). A subgroup P ⩽ S is called M -essential if

(i) the poset of non-trivial p-subgroup of NG(P )/P is empty or disconnected,

(ii) Z(P ) ∩K ∈ Sylp(CG(P ) ∩K),

(iii) Op(NG(P )/(P (CG(P ) ∩K))) = 1.

The property (ii) looks like the definition of p-centric and (iii) looks like the defi-
nition of F-radical. For the property (i), if P is F-centric and fully normalized in F ,
it is equivalent to P = S or P is F-essential [AKO, Definition I.3.2].

Theorem 5.4 ([Gr, Corollary 10.4]). Let G be a finite group, S a Sylow p-subgroup
of G and M a Z(p)[G]-module.

Let H be a family of subgroup of S containing S and all the subgroups which are
M -essential.

Then, the inclusion of S in G induce a natural isomorphism,

H∗(G,M) ∼= lim←−
T H
S (G)

H∗(−,M).

From this theorem and Theorem 5.2, we get the following corollary.

Corollary 5.5. Let G be a finite group, S a Sylow p-subgroup of G and (S,F ,L) the
associated p-local finite group. Let M be a Z(p)[πL]-module and assume that we have
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the following commutative diagram:

πL
φ

$$
πT

δ∗

==

ρ∗
  

Aut(M)

G

φ

;;

that ρ∗ is surjective and that Γ := Im (φ) = Im (φ). If Γ is p-solvable and all the
M -essential subgroups of S are p-centric, then δ and ρ induce natural isomorphisms,

H∗(|L|,M) ∼= H∗(G,M) ∼= H∗(Fc,M).

We also conjecture that it can be generalized to any abstract p-local finite group
and any Z(p)[πL]-module with a p-solvable action.

Conjecture 5.6. Let (S,F ,L) be a p-local finite group and let M be a Z(p)[π1(|L|)]-
module. If the action of π1(|L|) on M is p-solvable, then the inclusion of BS in |L|
induces a natural isomorphism

H∗(|L|,M)
∼= // H∗(Fc,M).

Corollary 4.5 and Corollary 5.5 give good evidence for Conjecture 5.6 to be true.
The next section, which is a bit technical, is dedicated to give an example of

Conjecture 5.6 where Corollary 5.5 doesn’t apply (see Remark 6.7).

6. The p-local structure of wreath products by Cp: an example
for Conjecture 5.6

Let G0 be a finite group, S0 a Sylow p-subgroup of G0 and (S0,F0,L0) be the
associated p-local finite group. We are interested in the wreath product G = G0 ≀ Cp,
S = S0 ≀ Cp and the associated p-local finite group (S,F ,L). By [CL, Theorem 5.2
and Remark 5.3], we have that |L| ≃ |L0| ≀BCp := |L0|p ×Cp ECp and an extension
(πL0

)p → πL → Cp. In addition, we have a section Cp → πL coming from ∗ ≀BCp →
|L0| ≀BCp and thus πL = πL0 ≀ Cp.

We first give a lemma on strongly p-embedded subgroups. For a finite group G, a
subgroupH < G is strongly p-embedded, if p | |H| and for each x ∈ G \H,H ∩ xHx−1

has order prime to p.

Lemma 6.1. Let G be a finite group, G0 ⩽ G a subgroup of index a power of p. If
G contains a strongly p-embedded subgroup and p | |G0|, then G0 contains a strongly
p-embedded subgroup.

Proof. Let H be a strongly p-embedded subgroup of G. By [AKO, Proposition A.7],
H contains a Sylow p-subgroup of G so, up to conjugacy, we can choose H such that
H contains a Sylow p-subgroup of G0. Hence G0 ∩H contains a Sylow p-subgroup of
G0 and p | |G0 ∩H|. We will show that G0 ∩H is a strongly p-embedded subgroup
of G0.
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As [G : H] is prime to p and [G : G0] is a power of p, G0 ∩H is a proper subgroup
of G0.

It remains to show that, for each x ∈ G0 \G0 ∩H, (G0 ∩H) ∩ x(G0 ∩H)x−1

has order prime to p. But (G0 ∩H) ∩ x(G0 ∩H)x−1 ⩽ H ∩ xHx−1, thus, as H is
a strongly p-embedded subgroup of G, this last subgroup has order prime to p for
every x ∈ G \H. In particular, for each x ∈ G0 \G0 ∩H, (G0 ∩H) ∩ x(G0 ∩H)x−1

has order prime to p and G0 ∩H is a strongly p-embedded subgroup of G0.

We give also a lemma on F1-essential subgroups for F1 ⊆ F a subsystem of index
a power of p. A proper subgroup P < S is F-essential if P is F-centric and fully
normalized in F , and if OutF (P ) contains a strongly p-embedded subgroup.

Lemma 6.2. Let (S,F ,L) be a p-local finite group and (S1,F1,L1) a p-local subgroup
of index a power of p. If P < S1 is F-essential, then P is F1-conjugate to an F1-
essential subgroup and P is F1-essential if and only if P is fully normalized in F1.

Proof. Let P < S1 be an F-essential subgroup. Since F1 is saturated, P is F1-
conjugate to a subgroup of S1 fully normalized in F1. If P is F1-essential, it is,
in particular, fully normalized in F1. Thus, it remains to prove that if P is fully nor-
malized in F1, then P is F1-essential. For the remaining, we assume that P is fully
normalized in F1 and F-essential.

P is F1-centric: As P is F-centric, CS(Q) = Z(Q) for all Q ∈ PF . In particular,
for all Q ∈ PF1 ⊆ PF , CS1(Q) = Z(Q) and P is F1-centric.

OutF1(P ) contains a strongly p-embedded subgroup: Since P is F-essential, the
group OutF (P ) contains a strongly p-embedded subgroup. As F1 is a subsystem
of F of index a power of p, OutF1(P ) is a subgroup of OutF (P ) of index a power
of p. Moreover, as P is a proper subgroup of S1, P < NS1

(P ) and, as P is F1-
centric, every element of NS1(P )∖ Z(P ) induces a non-trivial element in OutF1(P ).
Hence p | |OutF1

(P )| and, by Lemma 6.1, OutF1
(P ) contains a strongly p-embedded

subgroup.

We can easily describe the essential subgroups of a product of fusion systems.

Lemma 6.3. Let (S1,F1,L1) and (S2,F2,L2) be p-local finite groups and set S =
S1 × S2 and F = F1 ×F2. The F-essential subgroups of S are of the form Q1 × S2

with Q1 < S1 F1-essential or S1 ×Q2 with Q2 > S2 F2-essential.

Proof. Let P ⩽ S be an F-essential subgroup. By [AKO, Proposition I.3.3], P is
F-centric and F-radical. Thus, by [AOV, Lemma 3.1], P = P1 × P2 with Pi ⩽ Si

and Pi Fi-centric.
Remark also that, if we have two groups G1 and G2 such that p divide |G1| and

|G2| then G1 ×G2 cannot contain a strongly p-embedded subgroup. To see that let Si

be a Sylow p-subgroup of Gi and set H = ⟨x ∈ G | x(S1 × S2)x
−1 ∩ S1 × S2 ̸= 1⟩.

H contains G1 × {0} and {0} ×G2 so thatH = G. Thus, by [AKO, Proposition A.7],
this implies that G has no strongly p-embedded subgroups.

We also have that OutF (P ) = OutF1(P1)×OutF2(P2). Hence, the only possibility
for P to be F-essential is that P1 = S1 and P2 is F2-essential or the contrary.

Let G0 be a finite group, S0 a Sylow p-subgroup of G0 and (S0,F0,L0) be the asso-
ciated p-local finite group. We consider the wreath product G = G0 ≀ Cp, S = S0 ≀ Cp
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and the associated p-local finite group (S,F ,L). Here, for the direct computation, we
will take the notation of Alperin and Fong [AF]: an element of G will be represented
by permutation matrix corresponding to the powers of (1, 2, . . . , p) with entries in
G0 and the composition will follow the matrix product with the composition in G0.
Denote by c ∈ G the element

e⊗ P(1,2,...,p) =



0 0 · · · 0 e
e 0 · · · 0 0
...

. . .
...

...
...

. . . 0 0
0 · · · · · · e 0

 ,

where e is the trivial element of G0. Here, we are interested in the F-essential sub-
groups.

Lemma 6.4. Let P ⩽ S be an F-essential subgroup.

(E1) If P ⩽ Sp
0 , then either P = Sp

0 and NG(P ) = NG0(S0) ≀ Cp or P is Fp
0 -essential

and NG(P ) = NGp
0
(P ).

(E2) If P ≰ Sp
0 , then P ∼=F Q ≀ Cp where Q is F0-essential and we have NG(P )/P ∼=

NG0(Q)/Q through the diagonal map G0 ↪→ Gp
0.

Proof. Let P ⩽ S be an F-essential subgroup.
Assume first that P ⩽ Sp

0 . If P = Sp
0 a direct calculation gives NG(P ) = NG0(S0) ≀

Cp. Else, by Lemma 6.2, we know that P is Fp
0 -conjugate to an Fp

0 -essential subgroup
Q ⩽ Sp

0 . By Lemma 6.3 we have NG(Q) ⩽ Gp
0 and, in particular, NG(Q) = NGp

0
(Q).

Thus, since P is Fp
0 -conjugate to Q, we also have NG(P ) = NGp

0
(P ) and, since P

is fully normalized in F , it is fully normalized in Fp
0 . Hence, by Lemma 6.2, P is

F0-essential.
Secondly, assume that P ≰ Sp

0 . As all choices of a splitting Cp → G are conjugate in
G, we can assume that P = ⟨P0, x⟩ where P0 = P ∩ Sp

0 and x = ((x1, x2, . . . , xp), c)
is such that xp ∈ P0. Up to conjugation in S0 ≀ Cp we can assume that x is of the
form ((a, 1, 1, . . . , 1), c) where a ∈ NS0(Q) where Q is the projection of P0 on the first

factor. If we write P
(i)
0 the projection of P0 on its ith factor, as x normalizes P0, we

have that P
(i)
0 = P

(j)
0 for all i, j and then P0 ⩽ (P

(1)
0 )p = Qp.

Notice also that NG(P ) = ⟨NGp
0
(P ), x⟩. If g = (g1, . . . , gp) ∈ NGp

0
(P ), as g nor-

malizes P ∩Gp
0 = P0, we have, for all i, gi ∈ NG0(Q). Moreover, if we denote h =

(h1, . . . , hp) = gxg−1x−1 ∈ P0, we have, for all i, gihi = gi−1 (with g0 = gp). There-
fore, there is h′ ∈ Qp such that g = (g1, g1, . . . , g1).h

′ ∈ ⟨NG0(Q)⊗ Id, Qp⟩ ⩽ NG(Q
p).

Hence, every automorphism cg ∈ AutF (P ) can be extended to an automorphism of
⟨Qp, x⟩. As P is F essential, by [AKO, Proposition I.3.3], P = ⟨Qp, x⟩. Now, xp ∈ Qp

implies that a ∈ Q so P = ⟨Qp, x⟩ = ⟨Qp, c⟩ = Q ≀ Cp.
Finally, direct computations give that

CG(P ) ∼= CG0(Q)⊗ Id =




g 0 · · · 0

0 g
. . .

...
...

. . .
. . . 0

0 · · · 0 g

 ; g ∈ CG0(Q)


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and

NG(P )/P ∼= NG0(Q)/Q⊗ Id ∼= NG0(Q)/Q.

In particular, as P is p-centric, Q is G0-centric. Moreover, as NG(P )/P = OutF (P )
contains a strongly p-embedded subgroup, OutF0(Q) = NG0(Q)/Q does as well. Up
to conjugacy, we can also assume that Q is fully normalized in F0 and thus Q is
F0-essential.

Let us now look at some cohomological results. Recall that for a group G, a sub-
group H ⩽ G, and M an Fp[H]-module, we define the induced and coinduced Fp[G]-
module by,

IndGH(M) = Fp[G]⊗Fp[H] M, coIndGH(M) = HomFp[H](Fp[G],M).

Recall also that, when the index of H in G is finite, these two Fp[G]-modules are
isomorphic (by [We, Lemma 6.3.4]).

Lemma 6.5. Let X be a CW complex and denote by G its fundamental group. If X0

is a covering space of X with fundamental group G0 ⊴ G of finite index, then, for
every Fp[G0]-module M , we have a natural isomorphism of Fp[G/G0]-modules,

H∗(X0, Ind
G
G0

(M)) ∼= H∗(X0,M)⊗Fp Fp[G/G0],

where, on the right side, G/G0 is only acting by translation on Fp[G/G0].

Proof. This can be easily seen on the chain level. Let X̃ be the universal covering
space of X. As Fp[G/G0]-modules, we have the following

HomFp[G0](C∗(X̃), IndGG0
(M)) =

⊕
g∈[G/G0]

HomFp[G0](C∗(X̃), g.M),

where the action of G/G0 is permuting the terms in the sum. But, each terms in the
sum is isomorphic, as (trivial) Fp[G/G0]-modules, to HomFp[G0](C∗(X̃),M). Thus

HomFp[G0](C∗(X̃), IndGG0
(M)) ∼= HomFp[G0](C∗(X̃),M)⊗Fp Fp[G/G0].

This induces the wanted isomorphism in cohomology.

Proposition 6.6. Let G0 be a finite group and (S0,F0,L0) be the associated p-local
finite group. Consider G = G0 ≀ Cp, S = S0 ≀ Cp a Sylow p-subgroup of G and (S,F ,L)
the associated p-local finite group. Let M be an Fp[πL0 ]-module.

If δS0 induce natural isomorphisms

H∗(|L0|,M) ∼= H∗((F0)
c,M),

and

H∗(|L0|p, coIndπL
πp
L0

(M⊗p)) ∼= H∗((Fp
0 )

c, coIndπL
πp
L0

(M⊗p)),

then δS induces a natural isomorphism

H∗(|L|, coIndπL
πp
L0

(M⊗p)) ∼= H∗(Fc, coIndπL
πp
L0

(M⊗p)).



80 RÉMI MOLINIER

Proof. Write N = coIndπL
πp
L0

(M⊗p) and, for i ∈ {1, 2}, denote by H∗(FEi , N) the sta-

ble elements of H∗(S,N) under the full subcategory of F with objects S and all the
subgroups of S of type (Ei) defined in Lemma 6.4.

By the Mackey Formula,

ResπL
Q≀Cp

IndπL
πp
L0

= Ind
Q≀Cp

Qp Res
πp
L0

Qp .

Thus by Shapiro’s Lemma (see for example [Ev, Proposition 4.1.3]) and the Kunneth
Formula, for every P = Q ≀ Cp of type (E2), we have a natural isomorphism H∗(Q ≀
Cp, N) ∼= H∗(Qp,M⊗p) ∼= H∗(Q,M)⊗p and, by the computation of normalizers in
Lemma 6.4,

H∗(Q ≀ Cp, N)AutF (Q≀Cp) ∼= (H∗(Q,M)AutF0 (Q))⊗p.

Hence, applying this to all the subgroups of type (E2) and, by naturality of the
Shapiro isomorphisms, we have that,

H∗(FE2 , N) ∼= H∗(Fc
0 ,M)⊗p.

On the other hand, by [CL, Theorem 5.2 and Remark 5.3], |L0|p has the homotopy
type of a covering space of |L| with covering group Cp. Then, if we denote by X the
universal covering space of |L| (which is also the universal covering space of |L0|p),
we have the following isomorphism on the chain level (because Res and coInd are
adjoint functors)

HomZ(p)[π
p
L0

](C∗(X),M⊗p) ∼= HomZ(p)[πL](C∗(X), N),

which is analogue to the Shapiro isomorphism (see [Ev, Proposition 4.1.3]). By the
Kunneth Formula, it gives us the following isomorphism on cohomology

H∗(|L0|,M)⊗p ∼= H∗(|L|, N)

and give the following commutative diagram:

H∗(S0,M)⊗p
∼= //

(δS0)
∗

��

H∗(S,N)

δ∗S
��

H∗(|L0|,M)⊗p ∼=
// H∗(|L|, N).

Thus δS induces an isomorphism

H∗(FE2 , N) ∼= H∗(Fc
0 ,M)⊗p ∼= H∗(|L0|,M)⊗p ∼= H∗(|L|, N).

Secondly, by factoring the Shapiro isomorphism (see [Ev, Proposition 4.1.3]), the
inclusion of Sp

0 in S induces an injection H∗(S,N) ↪→ H∗(Sp
0 , N). Hence

H∗(FE1 , N) ∼= H∗((Fp
0 )

c, N)Cp ⩽ H∗(Sp
0 , N).

By assumption, δSp
0
induces an isomorphism

H∗((Fp
0 )

c, N) ∼= H∗(|L0|p, N).

Moreover, by Lemma 6.5, this last term is isomorphic to H∗(|L0|p,M⊗p)⊗ Fp[Cp]
and, in particular, it is a projective Fp[Cp]-module.
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Consider now the Serre spectral sequence associated to the fibration sequence

|L0|p // |L| // BCp,

with coefficients in N . The E2 page is the following,

Es,t
2 = Hs(Cp,H

t(|L0|p, N))

and, by projectivity of Ht(|L0|p, N), the E2 page is concentrated in the 0th column.
Hence, we have that, H∗(|L0|p, N)Cp = E0,∗

2
∼= H∗(|L|, N).

In conclusion,

H∗(Fc, N) = H∗(FE1 , N) ∩H∗(FE2 , N) ∼= H∗(|L|, N)

and the theorem follows.

This proposition is a bit technical but we will use it in a specific case. Consider
p = 5, the group G0 = GL20(F2), the wreath product G = G0 ≀ C5 and (S0,F0,L0)
and (S,F ,L) the associated 5-local finite groups. By [Ru, Theorem 6.3], we know
that (S0,F0,L0) admits a 5-local subgroup of index 4 which is exotic (Se,Fe,Le) and
that we have a fibration sequence

|Le| // |L0| // BC4.

In particular, we have πL/π
5
Le

= C4 ≀ C5 and we can be interested in comparing
H∗(|L|, N) and H∗(Fc, N) for

N = F5[C4 ≀ C5] = IndπL
π5
L0

(M⊗5) ∼= coIndπL
π5
L0

(M⊗5)

(the action factors through a finite group) with M = F5[C4].
By Corollary 4.4, we have that δS0 and δSp

0
induce natural isomorphisms

H∗(|L0|,M) ∼= H∗((F0)
c,M) and

H∗(|L0|5, coIndπL
π5
L0

(M⊗5)) ∼= H∗((F5
0 )

c, coIndπL
π5
L0

(M⊗5)),

(for the second isomorphism, notice that |L0|5 has the homotopy type of a linking
system associated to F5

0 by [CL, Proposition 2.17]). Hence, all the hypothesis of
Proposition 6.6 are satisfied and

H∗(|L|, N) ∼= H∗(Fc, N).

Remark 6.7. This gives us an example of isomorphism between the cohomology of
|L| and the stable elements when the action factors through a p-solvable group which
cannot be recovered by a previous result. Notice that, even if the fusion system F
is realizable, as Fe is exotic, we cannot find a group G with S ∈ Sylp(G) such that
G acts on M in the same way as asked in Section 5. This example gives us some
additional evidence for Conjecture 5.6.
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