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Abstract. It is well known that not every finite group arises as the full auto-

morphism group of some group. Here we show that the situation is dramati-

cally different when considering the category of partial groups, Part, as defined
by Chermak: given any group H there exists infinitely many non isomorphic

partial groups M such that AutPart(M) ∼= H. To prove this result, given any

simple undirected graph G we construct a partial group P(G), called the path
partial group associated to G, such that AutPart

(
P(G)

) ∼= AutGraphs(G).

1. Introduction

From the seminal work of Galois to the discovery of sporadic simple groups, de-
scribing abstract groups as the full automorphisms group of a mathematical object
can be considered the source of Group Theory, and it certainly sits in the core of
Representation Theory. Within this framework, it is then natural to ask whether
for a fixed category C, and given an abstract group H, there exists an object X in C
such that H ∼= AutC(X). If any group (resp. finite group) H can be so represented,
the category C is said to be universal (resp. finitely universal) [4, Section 4.1].

Identifying universal categories is a hard task. For example, while Graphs, the
category of simple undirected graphs, is known to be universal [17, 14, 20] and
this has been used to show that algebras over any field are finitely universal [10],
deciding whether Galois extensions over the field of rational numbers is finitely
universal, the Inverse Problem of Galois Theory [22], is still an open question. A
compilation of some relevant achievements in identifying universal categories can
be found in [19, Introduction].

Ironically, the category Groups is not even finitely universal; it is well known that
a nontrivial cyclic group of odd order cannot arise as the full automorphism group
of any group. So it is natural to ask whether it is possible to “sensibly enlarge” the
category Groups to a universal category C. More precisely

Question 1.1. Does there exist a universal category C such that Groups is fully
embedded in C?

We tackle this question by considering Part, the category of partial groups
(see Section 2 for definitions). Partial groups, defined by Chermak [7, Section 2],
generalise the concept of group and are introduced as a setting for the study of the
p-local structure of finite groups within the framework of fusions systems as defined
by Broto-Levi-Oliver [6] (see also the monographies [2] and [13]). Every group gives
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rise to a partial group in a natural way [7, Example 2.4.(1)] and so Groups is fully
embedded in Part. Therefore we answer Question 1.1 in the positive by proving

Theorem A (Theorem 5.3). The category Part is universal. Morever, given an
abstract group H there exist infinitely many non isomorphic partial groups M such
that AutPart(M) ∼= H.

The proof of Theorem A is built upon a functor, defined in Section 3, that maps
every pair (G,H), for G = (V,E) a simple undirected graph and H = {Hv}v∈V a
collection of non-trivial groups, to a partial group M(G,H) such that the group of
automorphisms of AutPart

(
M(G,H)

)
is closely related to the groups AutGraphs(G)

and
∏
v∈V AutGroups(Hv) (see Theorem 4.4). The algebraic structure of the partial

group M(G,H) is related to path concatenation within G. In fact, the special case
with H consisting of copies of Z2 is the central character in this work: path partial
groups.

Definition 1.2. Let G be a simple undirected graph. The path partial group
associated to the graph G, denoted by P(G), is the partial group M(G, {Z2}v∈V ).

The algebraic structure of P(G) can be easily described in terms of paths in G,
and it resembles the ideas underlying path algebras, i.e., the algebra associated to a
quiver [3, II.1.2]. The following result is the key ingredient in the proof of Theorem
A.

Theorem B (Theorem 5.2). Let G be a simple undirected graph. Then

AutPart
(
P(G)

) ∼= AutGraphs(G).

In general, the graph G can be recovered up to isomorphism from the partial
group M(G,H) whenever the collection H consists of locally finite groups (see The-
orem 6.7). In particular, the path partial group associated to a graph G determines
the isomorphism type of G, that is, the path partial group is a classifying invariant
for graphs. The situation for path algebras is similar: a quiver can be recovered up
to isomorphism from its path algebra [3, II.3.6] and, in addition, some invariants of
the quiver correspond to invariants of its associated path algebra [3, II]. Therefore,
it makes sense to propose the following problem.

Problem 1.3. Describe graph theoretical invariants of a simple undirected graph
in terms of algebraic invariants of its associated path partial group.

Besides the aforementioned setup of quivers and their associated path algebras,
the kind of study proposed in Problem 1.3 is well established in other fields as
directed graphs and their associated Leavitt path algebras, see [1] or the Simplicity
Theorem [1, 2.9.1] as a concrete instance of interaction between the graph side
and its algebraic counterpart. In other areas as finite simplicial graphs and their
associated right-angled Artin groups, studying this type of relations is also an active
line of work, see [16, Problem 1.1]. In that work, the authors add the graph
theoretical property of k-colorability to the list of properties of simplical graphs
that can read off from the algebraic properties of its associated right-angled Artin
group. This list includes, among other, the graph theoretical properties of being
a join or disconnected, and these properties correspond to the algebraic properties
of decomposing as a non-trivial direct product or decomposing as a non-trivial free
product respectively. See [16, p. 2] for more details.
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Outline of the paper: We start giving in Section 2 basic notions about partial
groups and some related constructions as colimit of partial groups. This preliminar-
ies are the necessary background to construct the partial group M(G,H) associated
to a decorated simple undirected graph (G,H) in Section 3. Then in Section 4 we
deepen into this construction and show how to embed the category of decorated
graphs into the category of partial groups. In Section 5, we restrict the study to
path partial groups and prove Theorems A and B. We also include in this section a
digress on rigidity in the categories of groups, partial groups and topological spaces.
Finally, in Section 6, we begin the study of Problem 1.3.

Acknowledgements: The authors are thankful to Prof. Ellen Henke for showing
interest in these results and pointing out reference [21].

2. Basics on partial groups

The notion of partial group is due to Chermak. Here we introduce the basic
definitions and some useful properties that are needed in the following sections.
More details on the subject can be found in [7, Section 2] or in the preprint [8,
Section 1].

For X a set, W(X) will denote the free monoid on X and for two words u, v ∈
W(X), u ◦ v will denote the concatenation of u and v. We also identify X as the
subset of words of length 1 in W(X). Finally, given two sets X and Y and a map
ϕ : X → Y , we will denote by ϕ : W(X)→W(Y ) the map induced by ϕ defined as
follows: for u = (x1, x2, . . . , xn) ∈W(X), ϕ(u) = (ϕ(x1), ϕ(x2), . . . , ϕ(xn)).

Definition 2.1. Let M be a set and D ⊆W(M) be a subset such that,

(D1) M⊆ D; and
(D2) u ◦ v ∈ D⇒ u, v ∈ D (in particular, ∅ ∈ D).

A mapping Π : D→M is a product if

(P1) Π restricts to the identity on M; and
(P2) if u ◦ v ◦ w ∈ D then u ◦Π(v) ◦ w ∈ D and

Π(u ◦ v ◦ w) = Π (u ◦Π(v) ◦ w) .

The unit of Π is then defined as Π(∅) that we will denote 1M or 1 when there is no
ambiguities. A partial monoid is a triple (M,D,Π) where Π is a product defined
on D and D is called the domain of (M,D,Π).

An inversion on M is an involutory bijection x 7→ x−1 on M together with the
induced mapping u 7→ u−1 on W(M) defined by,

u = (x1, x2, . . . , xn) 7→ (x−1
n , x−1

n−1, . . . , x
−1
1 ).

A partial group is a tuple M =
(
M,D,Π, (−)−1

)
where (M,D,Π) is a partial

monoid and (−)−1 is an inversion on M satisfying

(P3) if u ∈ D then (u−1, u) ∈ D and Π(u−1 ◦ u) = 1.

A word w ∈ D will be called non-degenerate if there is no 1 in w. Then, D is
totally determined by its non-degenerated word.

Remark 2.2. The notion of locality [7, Definition 2.9], a particular type of partial
group, plays a central role in Chermak’s work and the study of p-local structure
of finite groups. One can check that the partial groups considered in this work
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(Definitions 3.4 and 3.6) are not localities in general as they already fail to be
objective partial groups ([7, Definition 2.6]).

Example 2.3. Let M =
(
M,D,Π, (−)−1

)
be a partial group. If D = W(M) then

M is a group via the binary operation (x, y) ∈M2 7→ Π(x, y) ∈M. Moreover, if H
is a group and Π: W(H) → H is the multivariate product induced by the binary
product on H, (H,W(H),Π, (−)−1) is a partial group.

Example 2.4. Let F(a) = {1, a, a−1} and set the non-degenerated words of Da
to be all possible words alternating a’s and a−1’s. In other words, the non-
degenerated words of Da are all the different finite sub-words of the infinite word
(a, a−1, a, a−1, a, a−1, . . . ). The inversion is understood and, for any word u ∈
D (F(a)),

Π(u) =


1 if the number of a’s equal the number of a−1’s,

a if the number of a’s exceed the number of a−1’s (necessarily by 1),

a−1 if the number of a−1’s exceed the number of a’s (necessarily by 1).

One can then check that
(
F(a),Da,Πa, (−)−1

)
defines a partial group.

This last example is actually the free partial group on the set {a} as it is detailed
in [8, Lemma 1.12].

Definition 2.5. Let M =
(
M,D,Π, (−)−1

)
be a partial group. A partial subgroup

of M is a subset N ofM closed by inversion and such that Π (D ∩W(N )) ⊆ N . Its
partial group structure is given by

(
N ,D ∩W(N ),Π, (−)−1

)
. If D∩W(N ) = W(N )

then we say that N is a subgroup of M.

Definition 2.6. Let M1 =
(
M1,D1,Π1, (−)−1

)
and M2 =

(
M2,D2,Π2, (−)−1

)
be

partial groups. A map of sets ϕ : M1 →M2 is a homomorphism of partial groups
from M1 to M2 if

(H1) ϕ (D1) ⊆ D2;
(H2) for any u ∈ D1, Π2 (ϕ(u)) = ϕ (Π1(u)).

The kernel of ϕ is the partial subgroup of M1 given by

ker(ϕ) = {x ∈M1 | ϕ(x) = 1M2
}.

An homomorphism ϕ : M1 →M2 is an isomorphism of partial groups if the map ϕ
is bijective and ϕ−1 is also a morphism of partial groups. Finally, an automorphism
of the partial group M1 is an isomorphism ϕ : M1 →M1.

Lemma 2.7 ([8, Lemma 1.15]). Consider partial groups M1 =
(
M1,D1,Π1, (−)−1

)
and M2 =

(
M2,D2,Π2, (−)−1

)
and a homomorphism of partial groups between

them, ϕ : M1 →M2. Then, if N is a subgroup of M1, ϕ(N ) is a subgroup of M2.

The category with objects the partial groups and equipped with the notion of
homomorphism above and the usual composition of maps is denoted Part. In
particular, given a partial group M, the set of all its automorphisms is a group
that we will denote AutPart(M). Notice that Part contains the category Groups
of groups as a full subcategory as illustrated in Example 2.3. We are here interested
in the following question.

Question 2.8. Is the category Part universal? That is, given an arbitrary group
H, does there exist a partial group M such that AutPart(M) = H?
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The category Part has all limits and all colimits, and here we only discuss
colimits as we will employ them later. See [8, Theorem 1.17], and [21] for a correct
version of the construction of limits and colimits. So let C be a small category and
let M : C → Part be a functor, C 7→ M(C) = (M(C),D(C),Π(C), (−)−1

C ). Then
the colimit in the category Part,

colim
C∈C

M(C) = (M,D,Π, (−)−1),

has alphabet M equal to the quotient set,

M = ∪C∈CM(C)/ ∼

where ∼ is the smallest equivalence relation that contains the following relation,

(C1) f ∈ MorC(C1, C2), x ∈M(C1)⇒ x ∼M(f)(x),

and such that there is a map Π closing the following diagram, where D is defined
as the subset of words u in the free monoid W(M) for which there exists an object
C ∈ Ob(C) and a word v in D(C) such that u is the image of v under the component-
wise application of ∼, the rightmost vertical arrow is induced by ∼, and the leftmost
vertical arrow by its component-wise application,

(C2)
∪C∈CD(C)

��

∪C∈CΠ(C)
// ∪C∈CM(C)

��

D Π
//M.

We denote the equivalence classes corresponding to ∼ with brackets, [−]. Inversion
on M is the only map making commutative the following diagram, where again
vertical arrows are induced by ∼,

∪C∈CM(C)

��

∪C∈C(−)−1
C
// ∪C∈CM(C)

��

M
(−)−1

//M.

3. Partial groups out of simple graphs

Our goal in this section is to construct a partial group out of a graph decorated
with a group on each vertex. Given a collection of groups H1, . . . ,Hn, we start
considering a free product H = ∗ni=1Hi. If we set H∗i = Hi r {1}, then the group
H itself may be identified with the subset of words in W(H∗1 ∪H∗2 ∪· · ·∪H∗n) which
are reduced.

Definition 3.1. A word u = (g1, g2, . . . , gr) ∈W(H∗1 ∪H∗2 ∪ · · · ∪H∗n) is reduced if
it is the empty word or if gj ∈ Hij then ij 6= ij+1, j = 1, . . . , r−1. Given a reduced
word u = (g1, g2, . . . , gr) ∈W(H∗1 ∪H∗2 ∪ · · · ∪H∗n), its length is defined as |u| = r.

By [9, Theorem 21], there is a map

(Π) Π: W(H∗1 ∪H∗2 ∪ · · · ∪H∗n)→W(H∗1 ∪H∗2 ∪ · · · ∪H∗n)

that takes any word w to its unique reduced form Π(w). We will employ this nota-
tion throughout this section. The product in H corresponds then to concatenation
◦ followed by Π.
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Definition 3.2. A word u = (g1, g2, . . . , gr) ∈W(H∗1 ∪H∗2 ∪ · · · ∪H∗n) is cyclically
reduced if all of its cyclic permutations (g2, g3, . . . , gr, g1), . . . , (gr, g1, . . . , gr−1) are
reduced [9, p. 34].

The inverse of a reduced or cyclically reduced word is also a reduced or cyclically
reduced word respectively. One may also notice that if u is a reduced word, then
|Π(u ◦ u)| ≤ 2|u| and equality holds if and only if u is cyclically reduced.

Definition 3.3. The category Graphs is the category with objects the simple
undirected graphs and morphisms the graphs homomorphisms.

In what follows, G = (V,E) is an object in Graphs and H = {Hv}v∈V is a
collection of groups. Our aim is to define a partial group depending on G and H.
Now, for a clique C ⊂ V in G, we consider the free product HC = ∗

v∈C
Hv and the

following construction.

Definition 3.4. For a clique C in G, consider the 4-tuple,

M(C) = (CR(C),D(C),Π(C), (−)−1
C ),

where,

(1) CR(C) is the set of cyclically reduced words in W(H∗1 ∪H∗2 ∪ · · · ∪H∗n),
(2) D(C) is the set of words w = (u1, u2, . . . , un) ∈W(CR(C)) such that,

(H) for all 1 ≤ i ≤ j ≤ n, Π(ui ◦ ui+1 ◦ · · · ◦ uj) ∈ CR(C),

(3) Π(C) : D(C)→ CR(C) is given by reduced form,

(u1, u2, . . . , un) ∈ D(CR(C)) 7→ Π(u1 ◦ u2 ◦ · · · ◦ un) ∈ CR(C), and

(4) inversion (−)−1
C : CR(C) → CR(C) is given by inversion in the group HC

restricted to CR(C).

Eventhough the graph G may have infinite order, the words we are considering
here are always of finite length, and thus involve only a finite number of vertices.
Therefore everything here is well defined.

Theorem 3.5. Let G = (V,E) be a simple undirected graph, H = {Hv}v∈V a
collection of groups, and C a clique in G. Then M(C) is a partial group.

Proof. By construction, (D1), (D2) are both satisfied. Since elements in M(C)
are cyclically reduced words, they are equal to their reduced forms and (P1) is
satisfied. The axiom (P2) is satisfied thanks to (H). Finally, to check (P3), let
w = (u1, u2, . . . , un) ∈ D(C) and set

(v1, v2, . . . , v2n) := (w,w−1) = (u1, u2, . . . , un, u
−1
n , u−1

n−1, . . . , u1).

Choose 1 ≤ i ≤ j ≤ 2n and let ω = (vi, vi+1, . . . , vj). Then, four distinct situations
may happen,

(a) i ≤ j ≤ n and then ω is a subword of w;
(b) n+ 1 ≤ i ≤ j and then ω is a subword of w−1;
(c) i ≤ n < j and n− i+ 1 ≥ j − n and then Π(ω) = Π(ui, ui+1, . . . , u2n−j);

(d) i ≤ n < j and n− i+ 1 ≤ j − n and then Π(ω) = Π(u−1
i−1, . . . , u

−1
2n+1−j).

Therefore, in all cases Π(ω) = Π(α) where α is a subword of either w or w−1, and
since both w,w−1 ∈ D(C), (P3) is satisfied by condition (H). �



PATH PARTIAL GROUPS 7

Let ∆ be the poset of cliques C ⊂ V in G. An inclusion C1 ⊂ C2 between
cliques gives rise to an inclusion map CR(C1) ⊂ CR(C2) and to its associated map
of partial groups M(C1)→M(C2). This way, we have a functor M(−) : ∆→ Part.

Definition 3.6. Let G = (V,E) be a simple undirected graph and H = {Hv}v∈V
a collection of groups. We define the partial group associated to the pair (G,H) by

M(G,H) = (M(G,H),D(G,H),Π(G,H), (−)−1
G,H) := colim

C∈∆
M(C).

Because of the simple shape of the category ∆ and the functor M(−), it is
straightforward that, in Definition 3.6, Equation (C1) suffices to define the equiva-
lence relation ∼ for the colim. In fact, we defineM(G,H) using only that condition.
Then the map

(S)
M(G,H) // { cyclically reduced words in W(∪v∈VH∗v ) }

[(g1, g2, . . . , gr)]
� // (g1, g2, . . . , gr)

is well defined and injective, where (g1, g2, . . . , gr) ∈ CR(C) for some clique C.
Moreover, this map together with uniqueness of the reduced form (Π), ensure that
condition (C2) is satisfied too. From now on, we will make the identification given
by (S) and the corresponding one for D(G,H) without further notice.

Lemma 3.7. Let G = (V,E) be a simple undirected graph and H = {Hv}v∈V be a
collection of groups.

(a) For all v ∈ V , Hv is a subgroup of M(G,H).
(b) If K ⊆ M(G,H) is a non-trivial finite subgroup of M(G,H), then there

exists a unique v ∈ V such that K ≤ Hv.
(c) For all v, v′ ∈ V v 6= v′, and all (hv, hv′) ∈ H∗v × H∗v′ , ((hv), (hv′)) ∈

D(G,H) if and only if {v, v′} ∈ E.

Proof. Property (a) is a consequence of Equation (S). For point (b), consider a
cyclically reduced word u ∈ K r {1}. If length |u| > 1, then the length of the
cyclically reduced word

Π(

n times︷ ︸︸ ︷
u ◦ u . . . ◦ u)

is n|u|. Therefore, if u ∈ M(G,H) is an element of finite order, u is a word of
length 1 and it is an element of one of the groups Hv for v ∈ V . Now, assume
there exist k, k′ ∈ K r {1} and v, v′ ∈ V such that k ∈ H∗v , k′ ∈ H∗v′ but v 6= v′.
Then (k, k′) is a cyclically reduced word of length 2 in W(∪v∈VH∗v ) and, as K is a
subgroup of M(G,H), it belongs to K and M(G,H). In particular, it cannot be
an element of finite order in M(G,H).

For part (c), assume first that ((hv), (hv′)) ∈ D(G,H). Then, by the definition
of colimit of partial groups, there exists a clique C of G and a word (u1, u2) ∈ D(C)
such that ((hv), (hv′)) = (u1, u2) with ui ∈ CR(C). Thus, we must have u1 = (hv)
and v ∈ C, and u2 = (hv′) and v′ ∈ C. In particular, {v, v′} ∈ E. The reversed
implication is straightforward. �

Now we define the category of decorated graphs, which is built on top of the
category Graphs.
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Definition 3.8. The category DecGraphs is the category with object set the pairs
(G,H), where G = (V,E) ∈ Ob(Graphs) and H = {Hv}v∈V is a collection of groups
indexed by the vertices of G, and with morphisms the pairs

(fG, fH) : (G,H)→ (G′,H′),

where fG ∈ MorGraphs(G,G
′) and fH = {fv}v∈V is a collection of injective group

homomorphisms fv : Hv → H ′fG(v) for all vertices v of G.

A morphism (fG, fH) in DecGraphs takes the clique C = {v1, . . . , vn} in G to
the clique C ′ = {fG(v1), . . . , fG(vn)} in G′, and note that the restriction fG|C is
injective. In turn, it takes the cyclically reduced word

u = (g1, g2, . . . , gr) ∈ CR(C) with gj ∈ Hvij
,

to the cyclically reduced word

u′ = (fvi1 (g1), fvi2 (g2), . . . , fvir (gr)) ∈ CR(C ′) with fvij (gj) ∈ H ′fG(vij ).

To ensure that u′ is a cyclically reduced word we do need that the morphisms
fvi1 , fvi2 , . . . , fvir are injective group homomorphisms. It is easy to check that the
map defined above,

(V) ϕ(fG,fH) : CR(C)→ CR(C ′),

induces a homomorphism of partial groups from M(C) to M(C ′). Moreover, we
have a natural transformation between the functors

M(−) : ∆→ Part and M(−)′ : ∆′ → Part

associated to (G,H) and (G′,H′) respectively. Upon taking colimits, we obtain a
map of partial groups from M(G,H) to M(G′,H′), see Definition 3.6. This way we
obtain a functor,

(M) M(−,−) : DecGraphs→ Part,

that we will investigate below.

4. Graph morphisms from partial groups homomorphisms

To further study the functor (M), we consider the following categories.

Definition 4.1. The category FinDecGraphs is the full subcategory of the cate-
gory DecGraphs with objects the pairs (G,H), where H := {Hv}v∈V is a collection
of non-trivial finite groups.

Definition 4.2. The category InjPart is the wide subcategory of the category
Part with morphisms the partial group homomorphisms whose kernel has no tor-
sion.

We show below that the functor (M) takes values in InjPart and that the
category FinDecGraphs embeds in the category InjPart.

Theorem 4.3. The functor

M(−,−) : FinDecGraphs→ InjPart,

is full and faithful.
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Proof. First we check that for a morphism in DecGraphs,

(fG, fH) : (G,H)→ (G′,H′),

the morphism M(fG, fH) belongs to InjPart. In fact, let x ∈ ker(M(fG, fH)) have
finite order. Then, by Lemma 3.7(b), there exists v ∈ V such that x ∈ Hv. If
x 6= 1, then (x) ∈ CR({v}) is cyclically reduced and M(fG, fH)(x) = 1 = fv(x). As
fv is injective, we get that x = 1, a contradiction.

Now, for (G,H) and (G′,H′) in FinDecGraphs and a morphism

f ∈ MorInjPart(M(G,H),M(G′,H′))

induced by the map of sets

f : M(G,H)→M(G′,H′),

we will construct a morphism of decorated graphs

(fG, fH) : (G,H)→ (G′,H′)

such that M(fG, fH) = f . Fix a vertex v ∈ V . Then, by Lemma 3.7(a), Hv is a
non-trivial finite subgroup of M(G,H) and, as ker(f) has no torsion, the restriction
f|Hv

is injective. Thus, by Lemma 2.7, f(Hv) is a non-trivial finite subgroup of
M(G′,H′). By Lemma 3.7(b), there exists a unique v′ ∈ V ′ such that f(Hv) ⊆ H ′v′
and the group homomorphism

f|Hv
: Hv → H ′v′

is injective. The correspondence v 7→ fG(v) := v′ defines a map fG : V → V ′

from the vertices of G to those of G′. In fact, this map is a graph homomorphism:
for every {v, w} ∈ E and every element (hv, hw) ∈ Hv × Hw with hv 6= 1 6=
hw, ((hv), (hw)) ∈ D(G,H) by Lemma 3.7(c). Thus, if we apply f , we get that
((f(hv)), (f(hw))) ∈ D(G′,H′) and, by Lemma 3.7(c) again, {fV (v), fV (w)} ∈ E.

So me may define the morphism (fG, fH) : (G,H)→ (G′,H′) in FinDecGraphs,
where fG is the graph homomorphism constructed above and fH = {fv}v∈V with

(1) fv = f|Hv

for each vertex v of G. Let u = (g1, . . . , gr) ∈ CR(C) for a clique C = {v1, . . . , vn} of
G and with with gj ∈ Hvij

, see Equation (S). Note that (gi) ∈ CR(C) for all i and

that, as Π(G,H) is given by reduced form, Π(G,H)((g1), . . . , (gr)) = (g1, . . . , gr).
Then we also have that,

f(g1, . . . , gr) = f(Π(G,H)((g1), . . . , (gr)))

(H2)
= Π(G′,H′)(f((g1), . . . , (gr)))

= Π(G′,H′)((f(g1)), . . . , (f(gr)))

= Π(G′,H′)((f|Hvi1
(g1)), . . . , (f|Hvir

(gr)))

(1)
= Π(G′,H′)((fvi1 (g1)), . . . , (fvir (gr)))

(V)
= Π(G′,H′)(ϕ(fG,fH)((g1), . . . , (gr)))

(H2)
= ϕ(fG,fH)(Π(G,H)((g1), . . . , (gr)))

= ϕ(fG,fH)(g1, . . . , gr).
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Thus ϕ(fG,fH) = f , M(fG, fH) = f , and the functor M(−,−) is full. It remains
to prove that this functor is faithful but this is straightforward: if we start with a
morphism

(fG, fH) ∈ MorFinDecGraphs((G,H), (G,H′))
and apply the earlier construction to

f = M(fG, fH) ∈ MorInjPart(M(G,H),M(G′,H′)),

it is immediate that we recover the morphism (fG, fH). �

If we particularise the last result to automorphisms, we get the following exact
sequence.

Theorem 4.4. Let (G,H) ∈ FinDecGraphs. Then there exists an exact sequence

(2) 1→
∏
v∈V

AutGroups(Hv)→ AutPart
(
M(G,H)

)
→ AutGraphs(G).

Proof. Because automorphisms have trivial kernel, we have that

AutPart
(
M(G,H)

)
= AutInjPart

(
M(G,H)

)
.

Then, by Theorem 4.3, we have a bijection

AutFinDecGraphs(G,H) // AutInjPart
(
M(G,H)

)
(fG, fH) � // M(fG, fH).

We define the map AutPart
(
M(G,H)

)
→ AutGraphs(G) in the statement by send-

ing an automorphism of the partial group M(G,H) to its corresponding graph
automorphism fG. If fG = idG then, for all v ∈ V , f |Hv is an automorphism of Hv.
Finally, any collection (fv)v∈V ∈

∏
v∈V Aut(Hv) induces via the bijection above

the partial group automorphism,

M(idG, {fv}v∈V ) : M(G,H)→M(G,H),

and the corresponding map
∏
v∈V Aut(Hv)→ AutPart

(
M(G,H)

)
is injective. �

Remark 4.5. Observe that although the sequence (2) above is exact, it may not be
short exact. For example, let K2 be the complete graph on two vertices, labeled a
and b, and let H be the collection of finite groups given by Ha = Z2 and Hb = Z3.
Then AutGroups(Ha) = {1}, AutGroups(Hb) = Z2 and AutGraphs(K2) = Z2. The
cliques in K2 are ∆ = {{a}, {b}, {a, b}} and we have

CR({a}) ={(a)}, CR({b}) = {(b), (b2)}, and

CR({a, b}) ={(a), (b), (b2)} ∪ {(a, bε1 , . . . , a, bεn), n ≥ 0, εi ∈ {1, 2}}∪
{(bε1 , a, . . . , bεn , a), n ≥ 0, εi ∈ {1, 2}}.

where we have identified the vertices with the element of order 2 or 3 in the as-
sociated decorating group. From here, an easy calculation shows that the only
non-trivial automorphism of M(G,H) is given by a 7→ a, b 7→ b2, b2 7→ b. Hence
AutPart

(
M(G,H)

)
= Z2 and the sequence (2) becomes

1→ Z2 → Z2 → Z2,

which cannot be exact.



PATH PARTIAL GROUPS 11

Remark 4.6. A particular case for which the sequence (2) is short exact is given by
the condition

Hv = Hv′ for all v, v′ ∈ V .

Under this condition, assuming the hypotheses in Theorem 4.4, and writing A for
the common group Hv for any v ∈ V , the map

AutGraphs(G) // AutPart
(
M(G,H)

) ∼=→ AutFinDecGraphs(G,H)

fG
� // (fG, {idA : Av → AfG(v)}v∈V )

is a section of the map AutPart
(
M(G,H)

)
→ AutGraphs(G) in (2). Hence the

sequence is short exact. In addition, we have the wreath product decomposition

AutPart
(
M(G,H)

) ∼= |V | times︷ ︸︸ ︷
Aut(A)× . . .×Aut(A)oAutGraphs(G)

∼= Aut(A) oAutGraphs(G),

where we have used that every injective endomorphism of a finite group is an
automorphism.

5. Path partial groups

In this section, we discuss how the algebraic structure of the partial group associ-
ated to a decorated undirected graph (Definition 3.6) is related to path concatena-
tion within G in a way that resembles the path algebra corresponding to a directed
graph. The main difference is that in the path algebra two non-composable paths
multiply to 0, while in our construction such a product does not exist. We first
consider the following functor,

Graphs // FinDecGraphs

G = (V,E)
� // (G, {Z2}v∈V ).

So a graph is sent to itself decorated with the group Z2 on each vertex. On mor-
phisms, the graph homomorphism fG : G→ G′ is sent to the morphism

(fG, {idZ2
: (Z2)v → (Z2)fG(v)}v∈V ).

Below we prove that the category Graphs embeds into the category InjPart.

Lemma 5.1. The composition functor

Graphs // FinDecGraphs
M(−,−)

// InjPart,

is full and faithful.

Proof. Because of Theorem 4.3, it is enough to prove that for any two graphs G
and G′ in Graphs, the map

MorGraphs(G,G
′) // MorFinDecGraphs((G, {Z2}v∈V ), (G′, {Z2}v∈V ))

fG
� // (fG, {idZ2

: (Z2)v → (Z2)fG(v)}v∈V )

is a bijection, and this is straightforward as the only injective group homomorphism
Z2 → Z2 is the identity. �
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In the next three paragraphs, we provide an informal explanation of how the
construction of path algebras inspired the construction of the path partial group

P(G) = M(G, {Z2}v∈V )

for an undirected graph G. To justify this notation recall that, by Equation (S),
the elements in the alphabetM =M(G, {Z2}v∈V ) are the cyclically reduced words
u = (g1, g2, . . . , gr) ∈ CR(C) for some clique C = {v1, . . . , vn} of G, with gi ∈
vij for i = 1, . . . , r. As the elements gi must be non-trivial elements of Z2, the
cyclically reduced word u is completely determined by the sequence of vertices
(vi1 , vi2 , . . . , vir ). As all these vertices belong to the clique C, this sequence can be
thought of as the path ({vi1 , vi2}, . . . , {vir−1 , vir}) in G. For r = 1, we have the
path consisting of a single vertex, (vi1). Thus elements in M can be seen as paths
in the graph G with 1 or more vertices.

By Definition 2.1(P3), there are inverses on every partial group. In particular,
the inverse of a vertex should be itself, and this explains the choice of Z2 in the
embedding Graphs → FinDecGraphs. Moreover, the inverse of a path should be
the reversed path and thus, if G were directed, it should contain the reversed arrow
of each arrow. This is why we ask G to be an undirected graph. As described above,
we only consider paths in G that are contained in some clique of G. The reason for
this is that the existence of inverses imply cancellations. For instance, assume that
we have two paths in G given by (a, b) and (b, c), where a, b, c are vertices of G. If
we multiply them, we would obtain

Π((a, b) ◦ (b, c)) = Π(a, b, b, c) = (a, c),

where the two consecutive elements b cancel each other as they correspond to the
same element in Z2. Then (a, c) should be a path in G and the edge {a, c} should be
contained in G. Hence, paths that may be multiplied should have vertices contained
in some clique of G.

Finally, we wanted P(G) to have partial group automorphisms “close” to the
graphs automorphisms of G. In particular, the inner automorphism given by con-
jugation by any vertex should not produce an automorphism of P(G), since inner
automorphisms are what prevents the category Groups to be universal [15]. This
explains why we only consider paths in G which are not closed or, equivalently,
words in M that are cyclically reduced.

That the constraints we have imposed are correct is supported by the following
results.

Theorem 5.2. Let G ∈ Ob(Graphs). Then

AutPart
(
P(G)) ∼= AutGraphs(G).

Proof. Since Aut(Z2) is trivial, the exact sequence (2) in Theorem 4.4 gives rise to
an injective homomorphism Ψ: AutPart(P(G)) → AutGraphs(G). In addition, the
composition functor in Lemma 5.1 induces a group homomorphism

Φ: AutGraphs(G)→ AutPart(P(G)),

which is nothing but the section of (2) constructed in Remark 4.6, hence Ψ ◦ Φ =
idAutGraphs(G). Therefore, they are both isomorphisms inverse to each other. �

Theorem 5.3. The category Part is universal. Morever, given an abstract group H
there exist infinitely many non isomorphic partial groups M such that AutPart(M) ∼=
H.
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Proof. Let H be an abstract group. According to [17, 14, 20], there exists infinitely
many non isomorphic simple graphs G = (V,E), such that AutGraphs(G) ∼= H.
Then, these non isomorphic graphs G give rise to partial groups P(G) which are
not isomorphic by Lemma 5.1, and such that AutPart(P(G)) ∼= H by Theorem
5.2. �

A rigid object in a category C is an object C such that AutC(C) = {1}. Observe
that, while there exists just one non-trivial rigid object in Groups, i.e., Z2 is the
only non-trivial group K such that AutGroups(K) = {1}, the situation in Part
is drastically different: Theorem 5.3 ensures that there exist infinitely many non-
trivial rigid partial groups. In the category of topological spaces, there exist also
many non-trivial topological spaces whose group of self-homotopy equivalences is
{1}. For instance, for the Eilenberg-MacLane spaces K(Z2, n), n ≥ 0, we have

[K(Z2, n),K(Z2, n)] = Hn(K(Z2, n);Z2) = Hom(Z2,Z2) = Z2,

and so the identity is the unique self-homotopy equivalence of K(Z2, n). Other
rigid non-trivial topological spaces not having the homotopy type of an Eilenberg-
MacLane space can be found in [12, 11]. Thus, regarding rigidity, the category of
partial groups behaves much more like topological spaces and not like groups. This
is not surprising as every partial group can be seen as a simplicial set by declaring
as n-simplices the words of length n and defining the face and degeneracy operators
via the product and insertion of 1 respectively, see [18, Theorem 4.8]. Moreover,
the group of self-homotopy equivalences of the associated simplical complex can
be recovered from the automorphisms of the given partial group, see [18, Theorem
5.10], [5, Section 3].

6. The graph of maximal locally finite subgroups of a partial group

A groupH is called locally finite if every finitely generated subgroup ofH is finite.
In this section we construct a graph out of the maximal locally finite subgroups
of a given partial group. Recall that a subgroup of a partial group is a partial
subgroup which is itself a group, see Definition 2.5. This will allow us to show that,
given a simple undirected graph G = (V,E) and a collection of non-trivial locally
finite groups H := {Hv}v∈V , G can be fully recovered (up to isomorphism) from
the algebraic structure of M(G,H).

We first prove that in a partial group there is at least a maximal locally finite
subgroup.

Lemma 6.1. Let M =
(
M,D,Π, (−)−1

)
be a partial group. Then the poset of the

locally finite subgroups of M ordered by inclusion has a maximal element.

Proof. Let X be the set of locally finite subgroups of G. Notice that X is not
empty since {1} is a locally finite subgroup of M. If H1 ≤ H2 ≤ · · · is an increasing
chain of locally finite subgroups of M, consider the subgroup H∞ =

⋃
i∈NHi ≤ H.

By construction, every finitely generated subgroup of H∞ lies in some Hi for i big
enough. Therefore, H∞ is a locally finite subgroup of H and thus an upper bound
for the given chain of elements of X . Applying Zorn’s Lemma, we obtain that X
has a maximal element. �

Definition 6.2. Let M =
(
M,D,Π, (−)−1

)
. The maximal locally finite subgroup

graph of M is the graph MaxSubloc(M) with vertices the set of non-trivial maximal
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locally finite subgroups of M and declaring two distinct vertices H1 and H2 to be
adjacent if and only if there exist h1 ∈ H∗1 and h2 ∈ H∗2 such that (h1, h2) ∈ D.

Remark 6.3. Notice that MaxSubloc(M) is a well-defined simple undirected graph.
Indeed, given two different non-trivial maximal locally finite subgroups H1 and H2

of M and two elements h1 ∈ H∗1 and h2 ∈ H∗2 , we have

(h1, h2) ∈ D if and only if (h−1
2 , h−1

1 ) ∈ D.

Thus, the adjacency relation considered is symmetric.

Notice that the graph MaxSubloc(M) may be empty if M has no non-trivial
subgroups, and Example 2.4 provides an example of such situation. In Definition
6.2, we look at locally finite subgroups instead of at subgroups because in a path
partial group every edge give rise to a copy of Z. This is demonstrated in Example
6.4 below.

Example 6.4. Let K2 be the complete graph on two vertices, labeled a and b. Then
the Hasse diagram of the poset of cliques ∆ of K2 is the following,

{a, b}

{a} {b}.

Recall that P(K2) =
(
M,D,Π, (−)−1

)
is the colimit in the category Part of the

partial groups

M(C) = (CR(C),D(C),Π(C), (−)−1
C )

for C ∈ ∆. Notice that

CR({a}) = {(a)}, CR({b}) = {(b)}, and

CR({a, b}) = {(a), (b)} ∪ {(a, b, . . . , a, b)︸ ︷︷ ︸
2n

, n ≥ 0} ∪ {(b, a, . . . , b, a)︸ ︷︷ ︸
2n

, n ≥ 0},

where we have identified the vertices with the element of order 2 in the associated
decorating group. The maximal subgroups in P(K2) are 〈(a)〉 ∼= Z2, 〈(b)〉 ∼= Z2,
and 〈(a, b)〉 ∼= Z. Only two of these three subgroups are locally finite and it is
straightforward that MaxSubloc(P(K2)) is the complete graph on two vertices.

There are alternative definitions for the maximal locally finite subgroup graph
associated to a partial group that make sense but that we do not employ here. For
instance, one could consider the same set of vertices as that in Definition 6.2 but
endowed with the “stronger” notion of adjacency described as follows: H1 and H2

are adjacent if and only if for all h1 ∈ H∗1 and for all h2 ∈ H∗2 , (h1, h2) ∈ D.
In the particular case of path partial groups both definitions agree, but in general
non-isomorphic graphs are obtained as the next example shows.

Example 6.5. Consider the dihedral group of size 8,

D8 = 〈x, t | x4 = 1, t2 = 1, txt = x〉,

its center, and its two Klein four-groups,

Z = Z(D8) = 〈x2〉, V = 〈x2, t〉 and V ′ = 〈x2, tx〉.
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Define the partial group M =
(
M,D,Π, (−)−1

)
as the colimit in the category Part

(see Section 2) of the diagram given by inclusions among these three subgroups,

M = colim
Part

(V ← Z → V ′).

Then the set of maximal locally finite subgroups of M is exactly {V, V ′}. Moreover,
the word (x2, x2) belongs to D and hence the graph MaxSubloc(M) is connected.
Nevertheless, the word (t, tx) does not belong to D and hence the graph defined
using the “stronger” condition in the paragraph above is not connected. In par-
ticular, the partial group M cannot be isomorphic to a partial group of the form
M(G,H) for any pair (G,H) ∈ DecGraphs.

Lemma 6.6. Let G = (V,E) be a simple undirected graph and H := {Hv}v∈V be
a collection of non-trivial locally finite groups. Then, for every non-trivial locally
finite subgroup H of M(G,H), there exist a unique v ∈ V such that H ≤ Hv. In
particular, the set of maximal locally finite subgroups of M(G,H) is H.

Proof. Let H ≤M(G,H) be a non-trivial locally finite subgroup. Then H contains
at least a non-trivial finite group K and, by Lemma 3.7(b), there exists a vertex
v ∈ V such that K ≤ Hv. Hence 1 6= K ≤ Hv ∩ H. Now assume that there are
vertices v1 and v2 in V such that Hv1 ∩H and Hv2 ∩H are non-trivial. Then we
may choose h1 ∈ (Hv1 ∩H)∗ and h2 ∈ (Hv2 ∩H)∗ and consider the finite subgroup
〈h1, h2〉 ≤ H of M(G,H). Then, by Lemma 3.7(b) again, there exists a unique
vertex v ∈ V such that 〈h1, h2〉 ≤ Hv. Since 〈h1〉 ≤ Hv1 is a non-trivial finite
subgroup which is contained in both Hv1 and Hv, the uniqueness in Lemma 3.7(b)
gives that v1 = v. The analogous argument applied to h2 shows that v2 = v and
hence v1 = v2. This proves the first part of the lemma.

For the second part, notice that for every v ∈ V , Hv is a non-trivial locally finite
subgroup of M(G,H) by Lemma 3.7(a). Therefore, by what we just proved in the
paragraph above, the Hv’s are maximal locally finite subgroups of M(G,H) and
every maximal locally finite subgroup of M(G,H) is of this form �

Theorem 6.7. Let G = (V,E) be a simple undirected graph and H := {Hv}v∈V be
a collection of non-trivial locally finite groups. Then MaxSubloc

(
M(G,H)

) ∼= G.

Proof. By Lemma 6.6, the maximal locally finite subgroups of M(G,H) are exactly
the elements of H. Moreover, thanks to Lemma 3.7(c), Hv and Hv′ are adjacent in
MaxSubloc

(
M(G,H)

)
if and only {v, v′} ∈ E. Hence the application which sends

a vertex v ∈ V to Hv defines an isomorphism of graphs between the graph G and
the graph MaxSubloc

(
M(G,H)

)
. �

Notice that by also considering the maximal locally finite subgroups themselves,
one recovers all the data, i.e., the graph and the decorating groups. Theorem 6.7
lays the foundations to start the study of Problem 1.3: as the isomorphism type
of M(G,H) in Part determines the isomorphism type of G in Graphs, the graph
theoretical properties of G should be reflected on the algebraic properties of the
partial group M(G,H) and vice versa.
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