Contrôle Continu n°2

Durée : 3h Documents, téléphones et appareils électroniques interdits

Exercice 1 (Questions de cours)

1) Donner la définition d'une suite de Cauchy dans un espace métrique (X, d).

Correction: voir cours

2) Donner la définition d'un espace de Banach et démontrer que, dans un espace de Banach, toute série normalement convergente est convergente.

Correction: voir cours

Exercice 2 (Topologie des semi-ouverts)

On considère la famille \mathcal{B} des intervalles semi-ouverts de la forme [a, b[avec a < b.

1) Montrer que \mathcal{B} est une base d'une topologie \mathcal{O} sur \mathbb{R} .

Correction: On considère \mathcal{O} comme l'ensemble des unions quelconques d'éléments de \mathcal{B} et on va vérifier que c'est une topologie. Par construction, \mathcal{O} contient l'ensemble vide et est stable par union quelconque. De plus $\mathbb{R} = \bigcup_{n\geq 0} [-n,n[$. Finalement, pour montrer la stabilité par intersections finis, il suffit de montrer que l'intersection de deux éléments de \mathcal{B} est dans \mathcal{O} . Soit donc $(a,b,c,d) \in \mathbb{R}^2$ tel que a < b et c < d. On a $[a,b] \cap [c,d] = [\max(a,c),\min(b,d)]$ ou \emptyset . En particulier, $[a,b] \cap [c,d] \in \mathcal{O}$.

2) Montrer que les ouverts usuels de \mathbb{R} sont des ouverts de \mathcal{O} .

Correction: Les ouvert usuels non vides de \mathbb{R} sont des réunions quelconques d'intervalles de la forme]a,b[avec a < b. Cependant pour tous $a,b \in \mathbb{R}$ avec a < b, on a $]a,b[=\bigcup_{n>2}[a+(b-a)/n,b[\in \mathcal{O}.$

Le singleton $\{x\}$ est-il un ouvert? fermé? un voisinage de x?

Correction: $\{x\}$ ne contient aucun élément de \mathcal{B} . Donc, comme \mathcal{B} est une base de \mathcal{O} , $\{x\}$ ne contient aucun ouvert non vide et n'est donc ni ouvert, ni un voisinage de x. Finalement, $\mathbb{R} \setminus \{x\}$ est un ouvert pour la topologie usuelle de \mathbb{R} , c'est donc un élément de \mathcal{O} par la question précédente. Ainsi $\{x\}$ est fermé.

- 3) Pour tout $x \in \mathbb{R}$, donner une base dénombrable de voisinages de x.
- Correction: Tout élément de \mathcal{B} contenant x contient un intervalle de la forme $[x, x+1/k[pour \ k \geq 1. \ Ainsi, comme \ \mathcal{B} \ est une base de <math>\mathcal{O}$, ces intervalles forment une base dénombrable de voisinages de x.
 - 4) Les suites $(1/n)_{n\geq 1}$ et $(-1/n)_{n\geq 1}$ sont-elles convergentes dans (\mathbb{R},\mathcal{O}) ?

Correction: Par la question précédente, l'ensemble des intervalles de la forme [0,1/k[forme une base de voisinages de 0. On a alors, comme pour tout $k \geq 1$, il existe $N \geq 0$ (N = k convient en fait) tel que pour tout $n \geq N$, $1/n \in [0,1/k[$. Ceci montre que la suite $(1/n)_{n\geq 1}$ converge vers 0. Supposons que la suite $(-1/n)_{n\geq 1}$ converge, et soit $l \in \mathbb{R}$ sa limite. Soit $N_1 \geq 0$ tel que pour tout $n \geq N_1$, $-1/n \in [l, l+1[$. Comme pour tout $n \geq N_1$, $-1/n - 1/N_1$, $-1/(N_1 + 1) > l$ (sinon

 $l=1/N_1=1/(N_1+1)$) et pour tout $n \geq N_1+1$, $-1/n \notin [l,-1/(N_1+1)[$. Ce qui est absurde car $[l,-1/(N_1+1)[$ est un voisinage de l. Ainsi la suite $(-1/n)_{n\geq 1}$ ne converge pas.

5) L'espace topologique $(\mathbb{R}, \mathcal{O})$ est-il séparé?

Correction: Soit $x, y \in \mathbb{R}$ deux éléments distincts. Supposons que x < y, l'autre cas se traitant de manière symétrique. Pour $\delta < y - x$, on a alors que $[x, x + \delta]$ et [y, y + 1] sont deux ouverts séparant x et y. Donc $(\mathbb{R}, \mathcal{O})$ est séparé.

6) L'espace topologique $(\mathbb{R}, \mathcal{O})$ est-il séparable?

Correction: Pour tout élément de $I \in \mathcal{B}$, on a $\mathbb{Q} \cap I \neq \emptyset$ par densité de \mathbb{Q} dans \mathbb{R} pour la topologie usuelle. Ainsi, comme \mathcal{B} est une base de \mathcal{O} , pour tout $O \in \mathcal{O}$, $O \cap \mathbb{Q} \neq \emptyset$ et \mathbb{Q} est dense dans $(\mathbb{R}, \mathcal{O})$. Comme \mathbb{Q} est dénombrable, $(\mathbb{R}, \mathcal{O})$ est séparable.

7) (*) Montrer que $(\mathbb{R}, \mathcal{O})$ n'admet pas de base dénombrable d'ouverts.

Correction: Soit \mathcal{B}' une base de \mathcal{O} . En particulier, pour tout $x \in \mathbb{R}$, [x, x+1[est une réunion d'éléments de \mathcal{B}' . Fixons alors, pour $x \in \mathbb{R}$ un élément $B_x \in \mathcal{B}'$ tel que $x \in \mathcal{B}'$ et $\mathcal{B}' \subset [x, x+1[$. Par construction, si $x < y, x \notin B_y$ et donc $B_x \neq B_y$. Ainsi, l'ensemble $\{B_x \mid x \in \mathbb{R}\}$ forme une famille non dénombrable d'éléments de \mathcal{B}' . En particulier \mathcal{B}' n'est pas dénombrable.

L'espace topologique $(\mathbb{R}, \mathcal{O})$ est-il métrisable?

Correction: $(\mathbb{R}, \mathcal{O})$ est séparable mais n'est pas à base dénombrable d'ouverts. Or, si un espace métrique est séparable, il est à base dénombrable d'ouverts. Donc $(\mathbb{R}, \mathcal{O})$ n'est pas métrisable.

Exercice 3 (Espace métrique produit)

Soit (E_1, d_1) et (E_2, d_2) deux espaces métriques et (E, d) l'espace métrique produit où, pour $x = (x_1, x_2), y = (y_1, y_2) \in E, d(x, y) = \sup(d_1(x_1, y_1), d_2(x_2, y_2).$

1) Soit $(z_n) = (x_n, y_n)$ une suite de E. Soient A_z , A_x , A_y l'ensemble des valeurs d'adhérence de (z_n) , (x_n) , (y_n) . Démontrer une inclusion relative aux ensembles A_z , A_x , A_y et montrer qu'il n'y a pas toujours égalité.

Correction: Soit $a_z = (a_x, a_y)$ une valeur d'adhérence de (z_n) . Il existe donc une sous-suite $(z_{\varphi(n)})$ de z_n qui converge vers a_z . En particulier, on a $(x_{\varphi(n)})$ converge vers a_x et $(y_{\varphi(n)})$ converge vers a_y . Ceci montre que $A_z \subseteq A_x \times A_y$. On n'a pas toujours égalité en prenant l'exemple de la suite $(z_n) = ((-1)^n, (-1)^n)$ dans \mathbb{R}^2 avec la métrique produit où on a $A_z = \{(1,1), (-1,-1)\} \neq \{-1,1\} \times \{-1,1\}$.

2) Soient $A_1 \subset E_1$ et $A_2 \subset E_2$, non vides. À quelle condition $A_1 \times A_2$ est-elle ouverte dans (E, d)?

Correction: $A_1 \times A_2$ est ouverte dans (E, d) si et seulement si A_1 et A_2 sont ouvertes dans (E_1, d_1) et (E_2, d_2) respectivement. Cela découle du fait que les boules pour la métrique d sont les produits de boules de E_1 et E_2 de même rayons.

À quelle condition $A_1 \times A_2$ est-elle fermée dans (E, d)?

Correction: $A_1 \times A_2$ est fermé dans (E,d) si et seulement si A_1 et A_2 sont fermé dans (E_1,d_1) et (E_2,d_2) respectivement. Cela découle du fait qu'une suite $(z_n) = ((x_n,y_n)) \in (E_1 \times E_2)^{\mathbb{N}}$ converge vers (l_1,l_2) dans (E,d) si et seulement si, (x_n) converge vers l_1 dans (E_1,d_1) et l_2 converge vers l_2 dans (E_2,d_2) .

À quelle condition $A_1 \times A_2$ est-elle dense dans (E, d)?

Correction: $A_1 \times A_2$ est dense dans (E, d) si et seulement si A_1 et A_2 sont dense dans (E_1, d_1) et (E_2, d_2) respectivement. Ceci découle du même argument sur les suites que précédement.

3) On note p_1 et p_2 les projections canoniques de $E_1 \times E_2$ sur E_1 et E_2 . L'image par p_1 d'une partie ouverte dans (E, d) est-elle ouverte dans (E_1, d_1) ?

Correction: Oui! Soit U un ouvert de E et soit $x_1 \in p(U)$. Il existe $x_2 \in E_2$ tel que $x = (x_1, x_2) \in U$ et, comme U est ouvert, il existe r > 0 tel que $B_d(x, r) \subseteq U$. Ainsi, $B_{d_1}(x_1, r) = p(B_d(x, r)) \subseteq p(U)$.

Mêmes questions avec une partie fermée de (E, d)

Correction: Non! Par exemple dans $E = \mathbb{R}^2$ muni de la métrique produit, la première projection de l'ensemble $F = \{(x,y) \in \mathbb{R}^2 \mid x \geq 0 \text{ et } xy \geq 1\}$ est $]0,+\infty[$ qui n'est pas fermée dans \mathbb{R} bien que F soit fermée (comme image réciproque d'un fermé par une application continue).

et avec une partie dense de (E, d).

Correction: Oui! Soit Q une partie dense de E et x_1/inE_1 . Fixons $x_2 \in E_2$. Il existe alors $(q_n)_{n\in\mathbb{N}} \in Q^{\mathbb{N}}$ qui converge vers (x_1,x_2) . On a alors, pour tout $n\in\mathbb{N}$, $d_1(p_1(q_n),x_1) \leq d(q_n,(x_1,x_2))$ et donc la suite $(p_1(q_n))_{n\in\mathbb{N}}$ converge vers x_1 . Ainsi $p_1(Q)$ est dense dans E_1 .

Exercice 4 (Intersection finie d'ouverts denses)

Soit (X, d) un espace métrique.

1) Montrer qu'un intersection finie d'ouverts denses est aussi dense.

Correction: Si l'intersection de deux ouverts dense est un ouvert dense, on montre alors par récurrence que n'importe quelle intersection finie d'ouverts denses et dense. Ainsi soient U_1 et U_2 deux ouverts denses de (X,d). Déjà, Comme U_1 et U_2 sont ouverts, il en est de même pour $U_1 \cap U_2$. Soit maintenant $x \in X$ et r > 0. Comme U_1 est dense dans (X,d), il existe $u_1 \in U_1$ tel que $d(u_1,x) < r/2$. Comme U_1 est ouvert, il existe $r_1 > 0$ tel que $B_d(u_1,r) \in U_1$ et ainsi $B_d(x,\min(r_1,r/2)) \subseteq B_d(x,r)$. De même, en utilisant la densité de U_2 , il existe u_2 tel que $d(u_2,u_1) \le \min(r_1,r/2)$. Ainsi $u_2 \in B_d(u_1,\min(r_1,r/2)) \subseteq U_1$. Finalement, $u_2 \in U_1 \cap U_2$ et par inégalité triangulaire, $d(u_2,x) \le r$. Ceci montre que $U_1 \cap U_2$ est dense dans (E,d).

2) Est-ce encore vrai si on ne suppose pas les parties ouvertes? (i.e., est-ce qu'une intersection finie de parties denses est dense?). On pourra chercher des exemples dans \mathbb{R} muni de la métrique usuelle.

Correction: Non! Par exemple \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont deux parties denses de \mathbb{R} avec sa métrique usuelle mais l'intersection est l'ensemble vide qui lui n'est pas dense.

3) Est-ce qu'une intersection dénombrable d'ouverts denses est dense? On pourra chercher des exemples dans \mathbb{Q} muni de la restriction de la métrique usuelle sur \mathbb{R} .

Correction: Non! Dans (\mathbb{Q}, d) avec d la métrique usuelle de \mathbb{R} , si l'on prend pour $q \in \mathbb{Q}$ l'ensemble $U_q = \mathbb{Q} \setminus \{q\}$, on voit que U_q est un ouvert dense dans (\mathbb{Q}, d) pour tout $q \in \mathbb{Q}$, mais l'intersection de ceux-ci est l'ensemble vide qui n'est pas dense.

4) Est-ce que le résultat de la question 1 est vrai dans un espace topologique quelconque?

Correction: Oui! Si O_1 et O_2 sont deux ouverts denses d'un espace topologique X. Alors $O_1 \cap O_2$ est ouvert comme intersection finie d'ouverts. Maintenant si O est un ouvert de X, comme O_1 est dense dans X, $O \cap O_1$ est un ouvert non vide de X, puis, par densité de O_2 , $O \cap (O_1 \cap O_2) = (O \cap O_1) \cap O_2$ est aussi non vide. Ce qui montre que $O_1 \cap O_2$ est un ouvert dense de X. On conclut alors par récurrence.

Exercice 5 (Une étude de normes)

On considère l'espace noté $\ell^{\infty}(\mathbb{N})$ des suites $x = (x_n)$ de nombres réels qui sont bornées, muni de la norme $||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$.

Étant donné une suite $a=(a_n)$ de réels ≥ 0 , on pose $N_a(x)=\sup_{n\in\mathbb{N}}a_n|x_n|$.

1) À quelle condition N_a est-elle une norme sur $\ell^{\infty}(\mathbb{N})$?

On supposera désormais cette condition réalisée.

Correction: Il faut d'abord s'assurer que $N_a(x) < +\infty$ pour tout $x \in \ell^{\infty}(\mathbb{N})$. Comme

$$N_a(x) \le \sup_{n \in \mathbb{N}} a_n \cdot \sup_{n \in \mathbb{N}} |x_n| = \left(\sup_{n \in \mathbb{N}} a_n\right) ||x||_{\infty}$$

il suffit que $\sup_{n\in\mathbb{N}} a_n < +\infty$, c'est-à-dire que la suite (a_n) soit bornée. Cette condition est également nécessaire comme on le voit en prenant $x=(1,1,1,\ldots)\in\ell^\infty(\mathbb{N})$. Lorsque celle-ci est réalisée, on voit que $N_a(x)=0$ équivaut à x=0 si et seulement $a_n>0$ pour tout $n\in\mathbb{N}$, et alors la relation d'homogénéité $N(\lambda x)=|\lambda|\,N_a(x)$ et l'inégalité $N_a(x+y)\leq N_a(x)+N_a(y)$ sont satisfaites pour tous $\lambda\in\mathbb{R}$ et tous $x,y\in\ell^\infty(\mathbb{N})$. En conclusion, N_a est une norme si et seulement si la suite $(a_n)_{n\in\mathbb{N}}$ est bornée et à termes $a_n>0$ pour tout $n\in\mathbb{N}$.

2) On suppose que $\inf_{n\in\mathbb{N}} a_n = 0$ et on choisit une sous suite $n_k \in \mathbb{N}$ strictement croissante telle que $a_{n_k} \leq 4^{-k}$. On introduit de plus, pour $p \in \mathbb{N}$, la suite $y_p = (y_{p,n})_{n\in\mathbb{N}} \in \ell^{\infty}(\mathbb{N})$ telle que $y_{p,n} = 2^k$ si $n = n_k$ avec $k \in [0,p]$ et $y_{p,n} = 0$ sinon. Montrer que $(y_p)_{p\in\mathbb{N}}$ est de Cauchy dans $(\ell^{\infty}(\mathbb{N}), N_a)$.

Correction: Supposons $q \ge p \ge N$ avec $N \in \mathbb{N}$. Alors $z = y_q - y_p$ a des composantes données par $z_n = 2^k$ si $n = n_k$ avec $k \in [p+1,q]$ et $z_n = 0$ sinon. Par conséquent

$$N_a(y_q - y_p) = N_a(z) = \sup_{k \in [p+1,q]} a_{n_k} |z_{n_k}| \le \sup_{k \in [p+1,q]} 4^{-k} 2^k \le 2^{-p-1} \le 2^{-N-1}.$$

Si l'on prend $q \geq p \geq N_{\varepsilon} := \lfloor \log_2 \varepsilon^{-1} \rfloor$ il vient $N_a(y_q - y_p) < \varepsilon$, donc $(y_p)_{p \in \mathbb{N}}$ est bien une suite de Cauchy dans $(\ell^{\infty}(\mathbb{N}), N_a)$.

3) Trouver une condition nécessaire et suffisante sur $a = (a_n)$ pour que l'espace $(\ell^{\infty}(\mathbb{N}), N_a)$ soit complet.

Correction: Sous les hypothèses de la question 2), la suite $(y_p) \in \mathbb{N}$ n'est pas convergente pour la norme N_a . En effet, s'il existait une limite $w = \lim_{p \to +\infty} y_p \in \ell^{\infty}(\mathbb{N})$, l'inégalité $|y_{p,n} - w_n| \leq a_n^{-1} N_a(y_p - w)$ impliquerait $w_n = \lim_{p \to +\infty} y_{p,n}$ pour tout $n \in \mathbb{N}$, et donc $w_{n_k} = 2^k$. Mais alors on voit que $w \notin \ell^{\infty}(\mathbb{N})$ et ce serait une contradiction. L'hypothèse $\inf_{n \in \mathbb{N}} a_n = 0$ de la question 2) entraîne donc que $(\ell^{\infty}(\mathbb{N}), N_a)$ n'est pas complet. En revanche, si $m = \inf_{n \in \mathbb{N}} a_n > 0$ et si on pose $M = \sup_{n \in \mathbb{N}} a_n < +\infty$, on voit que pour tout $x \in \ell^{\infty}(\mathbb{N})$ on a $m||x||_{\infty} \leq N_a(x) \leq M||x||_{\infty}$. Dans ce cas les

normes N_a et $\| \|_{\infty}$ sont équivalentes, et il est facile de voir que $(\ell^{\infty}(\mathbb{N}), \| \|_{\infty})$ est complet (cf. TD). Par conséquent, la norme N_a est complète si et seulement si $m = \inf_{n \in \mathbb{N}} a_n > 0$.

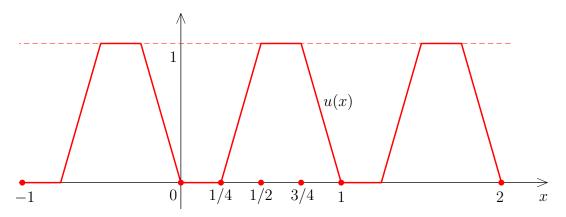
Exercice 6 (Une courbe de Peano)

On considère l'application $u: \mathbb{R} \to [0,1]$, périodique de période 1, définie sur [0,1] par

$$u(x) = \begin{cases} 0 & \text{si } x \in [0, 1/4] \\ 4x - 1 & \text{si } x \in [1/4, 1/2] \\ 1 & \text{si } x \in [1/2, 3/4] \\ 4 - 4x & \text{si } x \in [3/4, 1]. \end{cases}$$

1) Dessiner le graphe de u.

 $Voici\ le\ graphe\ de\ la\ fonction\ u\ :$



Soit $f \colon [0,1] \to \mathbb{R}^2$ la fonction définie pour $x \in [0,1]$ par

$$f(x) = \left(\sum_{n=1}^{+\infty} u(10^{2n-2}x) \, 2^{-n} \, , \, \sum_{n=1}^{+\infty} u(10^{2n-1}x) \, 2^{-n}\right).$$

2) Montrer que f est bien définie, qu'elle est continue et à valeurs dans $[0,1]^2$. On pourra montrer que les composantes de f(x) définissent des séries de fonctions qui convergent uniformément.

Correction: La fonction u est continue est à valeurs dans [0,1]. Le terme d'indice n de chaque série est ainsi majoré par 2^{-n} , de sorte que la norme $\| \|_{\infty}$ de ce terme est majorée par 2^{-n} . Nous avons donc des séries normalement convergentes de fonctions continues. Elles sont en particulier uniformément convergentes sur \mathbb{R} , et leurs sommes sont continues. Comme $\sum_{n=1}^{+\infty} 2^{-n} = 1$, ces sommes sont à valeurs dans [0,1], et ceci entraîne que f est continue à valeurs dans $[0,1]^2$.

Soit $x \in [0,1]$ sous la forme $x = \sum_{i=1}^{+\infty} a_i 10^{-i}$ en base 10, avec $a_i \in \{0,1,\ldots,9\}$ et on suppose que pour tout $i \ge 1$, $a_i = 0$ ou $a_i = 5$.

3) Montrer que la partie fractionnaire $10^{n-1}x - \lfloor 10^{n-1}x \rfloor$ de $10^{n-1}x$ appartient à $[0, \delta] \cup [1/2, 1/2 + \delta]$ avec $\delta < 1/4$, en fonction de la valeur de a_n .

Correction: La partie fractionnaire $\alpha_n(x)$ de $10^{n-1}x$ vaut

$$\alpha_n(x) = 10^{n-1}x - \lfloor 10^{n-1}x \rfloor = 0, a_n a_{n+1} a_{n+2} \dots = \sum_{i=n}^{+\infty} a_i 10^{-(i-n+1)}.$$

Si $a_n = 0$, on a $\alpha_n(x) \in [0, \delta]$ avec $\delta = 0, 055555... = \frac{5}{90} < \frac{1}{4}$, tandis que si $a_n = 5$ il vient $\alpha_n(x) \in [1/2, 1/2 + \delta]$ avec la même valeur de δ .

4) En posant $a_i = 5\varepsilon_i$ avec $\varepsilon_i = 0, 1$, exprimer f(x) à l'aide de la suite $(\varepsilon_i) \in \{0, 1\}^{\mathbb{N}^*}$.

Correction: D'après la question 3) et le graphe de la fonction u, qui est périodique de période 1, le réel $x = \sum_{n=1}^{+\infty} a_n 10^{-n}$ avec $a_n = 5\varepsilon_n$ donne pour $u(10^{n-1}x)$ la valeur

$$u(10^{n-1}x) = u(10^{n-1}x - \lfloor 10^{n-1}x \rfloor) = u(\alpha_n(x)) = \varepsilon_n \quad \text{si } \varepsilon_n = 0, 1.$$

En remplaçant n respectivement par n' = 2n - 1 et n' = 2n on trouve ainsi

$$f(x) = \left(\sum_{n=1}^{+\infty} \varepsilon_{2n-1} \, 2^{-n} \, , \, \sum_{n=1}^{+\infty} \varepsilon_{2n} \, 2^{-n}\right).$$

5) Montrer que f est surjective $f:[0,1]\to [0,1]^2$ (une telle application est appelée courbe de Peano).

Correction: Tout nombre réel de l'intervalle [0,1] admet une développement binaire $\sum_{n=1}^{+\infty} \gamma_n 2^{-n}$ avec $\gamma_n \in \{0,1\}$. La formule ci-dessus exprimant f(x) montre que les deux composantes de f(x) peuvent prendre indépendamment toute valeur réelle, avec respectivement $\gamma_n = \varepsilon_{2n-1}$, $\gamma_n = \varepsilon_{2n}$.

6) Déduire de la question précédente, à l'aide du théorème de Cantor-Bernstein, qu'il existe une bijection $\varphi: [0,1] \to [0,1]^2$.

Correction: Soit $y = (y_1, y_2) \in [0, 1]^2$. En choisissant dans chaque pré image $f^{-1}(y)$ un élément $\theta(y) \in f^{-1}(y) \subset [0, 1]$, ce qui est possible d'après l'axiome du choix, on obtient une injection $\theta : [0, 1]^2 \to [0, 1]$. Il existe d'autre part de façon évidente une injection $\psi : [0, 1] \to [0, 1]^2$, par exemple $\psi(x) = (x, 0)$. Le théorème de Cantor-Bernstein assure alors l'existence d'une bijection $\varphi : [0, 1] \to [0, 1]^2$.

On suppose qu'il existe un homéomorphisme $g:[0,1]\to [0,1]^2$ (i.e. g est une bijection continue dont l'inverse est aussi continue).

7) Montrer que l'application $h:[0,1]\to [0,1]$, définie pour $t\in [0,1]$ par $h(t)=g^{-1}\left((1-t)g(0)+tg(1)\right)$ serait alors une surjection continue de [0,1] sur [0,1], et que ceci conduit à une contradiction.

Correction: L'application $h:[0,1] \to [0,1]$ serait continue comme composée d'applications continues $[0,1] \to [0,1]^2$, $t \mapsto (1-t)g(0) + tg(1)$ et $g^{-1}:[0,1]^2 \to [0,1]$, et vérifierait

$$h(0) = g^{-1}(g(0)) = 0 \quad et \quad h(1) = g^{-1}(g(1)) = 1.$$

D'après le théorème des valeurs intermédiaires h serait une surjection de [0,1] sur [0,1]. Mais dans ce cas, comme $g:[0,1] \to [0,1]^2$ est bijective, la composée $g \circ h:[0,1] \to [0,1]^2$ serait également une surjection. Or $g \circ h(t) = (1-t)g(0) + tg(1)$ a pour image un segment de droite et n'est pas surjective, contradiction. On en déduit qu'il ne peut pas exister d'homéomorphisme $g:[0,1] \to [0,1]^2$.