Contrôle Continu n°3

Durée : 1h45 Documents, téléphones et appareils électroniques interdits

Exercice 1 (Question de cours)

Soient X et Y deux espaces topologiques séparés.

- 1. À quelle condition X est-il compact?
- 2. Soit $f: X \to Y$ une application continue. Montrer que si X est compact alors f(X) est compact.

Exercice 2 (Compactifié d'Alexandrov de \mathbb{R}^n)

Soit \mathcal{T} la topologie standard sur \mathbb{R}^n , et définissons l'ensemble $X = \mathbb{R}^n \sqcup \{\infty\}$. Le but de cet exercice est d'introduire une topologie \mathcal{T}_{∞} sur X qui étend la topologie \mathcal{T} et telle que $(X, \mathcal{T}_{\infty})$ soit compact. Pour définir \mathcal{T}_{∞} , on déclare que $U \subset X$ est ouvert si et seulement si :

- soit $\infty \notin U$ et $U \subset \mathbb{R}^n$ est ouvert pour \mathcal{T} ;
- soit $\infty \in U$ et $\mathbb{R}^n \setminus U$ est compact pour \mathcal{T} .
- 1. Montrer que cette définition donne une topologie sur X.
- 2. Montrer que la topologie induite sur \mathbb{R}^n coïncide avec \mathcal{T} .
- 3. Montrer que $(X, \mathcal{T}_{\infty})$ est séparé.
- 4. Soit $\{U_i : i \in I\}$ une famille d'ouverts pour \mathcal{T}_{∞} qui recouvre X et supposons $\infty \in U_{i_0}$. Montrer que $\{U_i \cap \mathbb{R}^n : i \in I, i \neq i_0\}$ est une famille d'ouverts pour \mathcal{T} qui recouvre $\mathbb{R}^n \setminus U_{i_0}$.
- 5. En déduire que $(X, \mathcal{T}_{\infty})$ est compacte.

Nous allons maintenant montrer que la topologie \mathcal{T}_{∞} est unique avec ces propriétés. Considérons donc une topologie \mathcal{T}' sur X telle que (X, \mathcal{T}') soit compacte et telle que la topologie induite par \mathcal{T}' sur \mathbb{R}^n coïncide avec \mathcal{T} .

- 6. Montrer que $U \subset \mathbb{R}^n$ est ouvert pour \mathcal{T}' si et seulement si U est ouvert pour \mathcal{T} .
- 7. Soit maintenant U un ouvert pour \mathcal{T}' qui contient ∞ , et soient $U_i \subset \mathbb{R}^n$ ouverts, pour $i \in I$. Observer que la famille $\{U\} \cup \{U_i : i \in I\}$ recouvre X si et seulement si la famille $\{U_i : i \in I\}$ recouvre $\mathbb{R}^n \setminus U$.
- 8. En deduire qu'une partie U de X contenant ∞ est ouverte si et seulement si $\mathbb{R}^n \setminus U$ est compact.
- 9. Conclure que \mathcal{T}' et \mathcal{T}_{∞} coïncident.

En utilisant les points précédents, répondre aux questions suivantes :

- 10. Montrer que si n=1, le compactifié X de \mathbb{R} est homéomorphe à S^1 .
- 11. Pour n général, à quel espace topologique est homéomorphe le compactifié de \mathbb{R}^n ?

Exercice 3 (Compact de Banach-Mazur)

Soit $n \in \mathbb{N}$. Le but de cet exercice est de construire une distance sur

 $\{(X, \|\cdot\|_X) \text{ espace vectoriel norm\'e de dimension } n\}/\sim$

où $(X, \|\cdot\|_X) \sim (Y, \|\cdot\|_Y)$ s'il existe un isomorphisme isométrique $f: (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$. Soit

$$\mathcal{L}(X,Y) = \{L : X \to Y \text{ linéaire}\}\$$
,

et rappelons que

$$|||L||| = \sup_{x \neq 0} \frac{||L(x)||_Y}{||x||_X}$$

définit une norme sur $\mathcal{L}(X,Y)$.

1. Montrer que pour $L: X \to Y$ et $M: Y \to Z$, $||M \circ L|| \le ||M|| \cdot ||L||$.

Nous définissons alors :

$$\delta((X, \|\cdot\|_X), (Y, \|\cdot\|_Y)) := \inf\{\log\left(\|\|L\|\|\cdot\|\|L^{-1}\|\right) : L \in \mathcal{L}(X, Y) \text{ isomorphisme}\}.$$

- 2. Appliquer le point 1 pour montrer que $\delta(X,Y) \geq 0$.
- 3. Montrer que $\delta(X,Y)=0$ s'il existe un isomorphisme isométrique entre X et Y.
- 4. Montrer que δ est symétrique.
- 5. Montrer que δ satisfait l'inégalité triangulaire.

Il faut maintenant montrer que si $\delta(X,Y)=0$ alors il existe un isomorphisme isométrique entre X et Y. Montrons d'abord que c'est le cas si la borne inférieure dans la définition de δ est atteinte :

6. Observer que, pour tout $L: X \to Y$ linéaire, et pour $L' = \lambda L, \lambda \in \mathbb{R}^*$,

$$|||L|| \cdot ||L^{-1}|| = ||L'|| \cdot ||(L')^{-1}||.$$

- 7. En deduire que, s'il existe $L: X \to Y$ inversible telle que $|||L||| \cdot |||L^{-1}||| = 1$, alors on peut supposer |||L||| = |||L'||| = 1.
- 8. Conclure que, si $\delta(X,Y)=0$ et la borne inférieure est atteinte, alors il existe un isomorphisme isométrique entre X et Y.

Pour terminer l'exercice, nous allons montrer que la borne inférieure dans la définition de δ est toujours atteinte. Considérons donc une suite L_n telle que $\log(||L_n|| \cdot ||L_n^{-1}||)$ converge vers $\delta(X,Y)$.

- 9. Utiliser le point 6 pour montrer qu'on peut supposer $||L_n|| = 1$, et en déduire que $||L_n^{-1}||$ est bornée.
- 10. Déduire qu'on peut supposer, quitte à extraire des sous-suites, que L_n et L_n^{-1} convergent dans $\mathcal{L}(X,Y)$. (Indice : $\mathcal{L}(X,Y)$ est de dimension finie.)
- 11. Conclure que $\delta(X,Y)=0$ implique que X et Y sont isométriques, et donc que δ induit une distance sur $\{(X,\|\cdot\|_X)$ espace vectoriel normé de dimension $n\}/\sim$.