
ON THE GYROKINETIC LIMIT FOR THE

TWO-DIMENSIONAL VLASOV-POISSON SYSTEM

EVELYNE MIOT

Abstract. We investigate the gyrokinetic limit for the two-dimensional
Vlasov-Poisson system in the regime studied by Golse and Saint-Raymond
[12] and by Saint-Raymond [26]. We present another proof of the con-
vergence towards the Euler equation under several assumptions on the
energy and on the L∞ norms of the initial data.

1. Introduction and main results

The purpose of this paper is to investigate an asymptotic regime for the
following Vlasov-Poisson system as ε tends to zero:
(1.1)

∂tfε +
v

ε
· ∇xfε +

(
Eε
ε

+
v⊥

ε2

)
· ∇vfε = 0, (t, x, v) ∈ R+ × R2 × R2

Eε(t, x) =

∫
R2

x− y
|x− y|2

ρε(t, y) dy, ρε(t, x) =

∫
R2

fε(t, x, v) dv,

fε(0, x, v) = f0
ε (x, v).

Here, fε = fε(t, x, v) : R+ × R2 × R2 → R+ stands for the density of a two-
dimensional distribution of electric particles, called a plasma. The evolution
of the plasma in the plane is submitted to the self-consistent electric field
Eε(t, x) and to a large external and constant magnetic field, orthogonal to
the plane, which is represented by the term v⊥ = (v1, v2)⊥ = (−v2, v1). The
limit ε→ 0 corresponds to the situation where the strength of the magnetic
field tends to infinity. In the periodic setting, namely (x, v) ∈ T × R2,
the gyrokinetic limit was studied by Golse and Saint-Raymond [12], then
by Saint-Raymond [26], and also by Brenier [6] in a different regime. In
particular, Golse and Saint-Raymond proved that under suitable bounds
on the initial data1, the sequence of spatial densities (ρε)ε>0 is relatively
compact in2 L∞(R+,M+(T×R2)) weakly ∗ and that any accumulation point
ρ is a measure-valued solution3to the 2D Euler equation for the vorticity:

(1.2)

{
∂tρ+ E⊥ · ∇ρ = 0

E⊥ = 2π∇⊥∆−1ρ.

Date: March 15, 2016.
1See (1.3), (1.4) and (1.6) below.
2Here, M+(R2) denotes the space of bounded, positive Radon measures on R2.
3In a sense that will be specified in Definition 2.1 below.
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The main result of this paper will concern initial densities f0
ε satisfying

the following assumptions:

(1.3) f0
ε ∈ L1(R2) ∩ L∞(R2), f0

ε ≥ 0, f0
ε is compactly supported.

Moreover, defining for f ∈ L1 and ρ =
∫
f dv the energy

H(f) =
1

2

∫∫
R2×R2

|v|2f(x, v) dx dv − 1

2

∫∫
R2×R2

ln |x− y|ρ(x)ρ(y) dx dy,

we will assume that

sup
ε>0

(
‖f0
ε ‖L1 +

∫
R2

|x|2ρ0
ε(x) dx

)
< +∞,

sup
ε>0
H(f0

ε ) < +∞.
(1.4)

Finally,

(1.5) ε2Θ
(
‖f0
ε ‖L∞

)
→ 0, as ε→ 0,

where Θ(τ) = τ ln(τ + 2).
Adapting the classical Cauchy theory for the Vlasov-Poisson equation

[2, 20, 24] for any ε > 0, one obtains a unique global weak solution fε
to (1.1) belonging to L∞(R+, L

1 ∩ L∞(R2)), compactly supported, such
that fε(0) = f0

ε . In particular, the associated spatial density ρε belongs to
L∞loc(R+, L

∞(R2)). Finally, the energy and the Lp norms of the solution are
non-increasing in time.

Our main result on the asymptotics of (1.1) can be then stated as follows:

Theorem 1.1. Let f0
ε satisfy (1.3), (1.4) and (1.5). Let fε be the corre-

sponding global weak solution to (1.1). There exists a subsequence εn → 0
as n → +∞ such that (ρεn)n∈N converges to ρ in4 C(R+,M+(R2) − w∗).
Moreover, ρ belongs to L∞(R+, H

−1(R2)) and it is a global solution of the
2D Euler equation(1.2) in the sense of Definition 2.1.

Theorem 1.1 is a slight improvement of the convergence result in [26],
which handles initial densities satisfying (1.3), (1.4) and (1.6):

(1.6) ε‖f0
ε ‖L∞ → 0, as ε→ 0.

Typically, the assumption (1.5) allows for initial data such that for some
β > 1

sup
ε>0

ε2| ln ε|β‖f0
ε ‖L∞ < +∞.

Thus, Theorem 1.1 includes initial data that converge to monokinetic data:

f0
ε (x, v) = ρ0(x)

1

η2
ε

F

(
v − uε(x)

ηε

)
,

where for instance uε ∈ L2(R2), ρ0 ∈ L∞(R2), F ∈ L1 ∩ L∞(R2), and
ε2Θ(η−2

ε ) vanishes as ε→ 0.

In the case where (1.5) is replaced by the uniform bound

(1.7) sup
ε>0
‖f0
ε ‖L∞ < +∞,

4Here, ρ ∈ C(R+,M+(R2) − w∗) if and only if ρ(t) ∈ M+(R2) for all t ∈ R+ and
moreover, t 7→

∫
φ(x) dρ(t, x) is continous, for all ϕ ∈ Cc(R2).
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any accumulation point is a true solution of the 2D Euler equation:

Theorem 1.2. Let f0
ε satisfy (1.3), (1.4) and (1.7). Let fε be the corre-

sponding global weak solution to (1.1). There exists a subsequence εn → 0 as
n→ +∞ such that (ρεn)n∈N converges to ρ in C(R+, L

2(R2)−w). Moreover,

(1) ρ ∈ L∞(R+, L
2(R2));

(2) (Eεn)n∈N converges to some E in C(R+, L
2
loc(R2));

(3) For all t ∈ R+, E(t) = (x/|x|2) ∗ ρ(t);
(4) ρ is a global weak solution of the 2D Euler equation (1.2) in the sense

of distributions.

Besides the already mentioned articles by Golse and Saint-Raymond [12]
and Saint-Raymond [26], a wide literature has been devoted to the math-
ematical analysis of the Vlasov equation in the limit of large magnetic or
electric field. Brenier [6] derived the Euler equation in a different scaling,
for smooth and well-prepared data, by means of a different method based on
the modulated energy. Various asymptotic regimes for linear or non linear
Vlasov equations were investigated by Frénod and Sonnendrücker [9, 10, 11],
Golse and Saint-Raymond [13, 25], Han-Kwan [15], Ghendrih, Hauray and
Nouri [17], Hauray and Nouri [16], and more recently by Bostan, Finot and
Hauray [5] and by Barré, Chiron, Goudon and Masmoudi [3]. The conver-
gence results in [12, 26] rely on the derivation of an equation for the spatial
density with a good control of the large velocities. Here, the main ingredi-
ent of proof is based on a different weak formulation for the spatial density,
following from the ODE satisfied by a suitable combination of the charac-
teristics along which the density is essentially constant, see Proposition 2.7.
This approach actually amounts to focusing on the equation satisfied by the
shifted density fε(t, x− εv⊥, v), see Proposition 2.11. These so-called gyro-
coordinates (x− v⊥, v) were used in [17] (see also [16]) for the derivation of
a gyrokinetic model from a linear Vlasov equation. We also mention that a
similar change of variable in the space variable, in addition to a transforma-
tion by rotation in the velocity variable, has been considered in [11] and in
the recent work [5].

2. Proof of Theorem 1.1

2.1. Vortex sheet solution of the Euler equation. We first define the
notion of weak solution to the Euler equation (1.2), called vortex sheet
solution, which is invoked in Theorem 1.1.

Definition 2.1 (According to [7, 27]). Let ρ0 ∈M+(R2)∩H−1(R2) be com-
pactly supported. We say that ρ ∈ C(R+,M+(R2)−w∗)∩L∞(R+, H

−1(R2))
is a global weak solution of the Euler equation with initial datum ρ0 if we
have for all Φ ∈ C∞c (R+ × R2)∫

R2

Φ(t, x) dρ(t, x) =

∫
R2

Φ(0, x) dρ0(x) +

∫ t

0

∫
R2

∂sΦ(s, x) dρ(s, x) ds

+

∫ t

0

∫∫
R2×R2

HΦ(x, y) dρ(s, x) dρ(s, y) ds,
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where

HΦ(x, y) =
1

2

(x− y)⊥

|x− y|2
· (∇Φ(x)−∇Φ(y)) .

For any compactly supported ρ0 in M+(R2) ∩H−1(R2), global existence
of a corresponding vortex sheet solution (satisfying a slightly different for-
mulation than the one above) was established by Delort [7]. The formulation
of Definition 2.1, which has been introduced later by Schochet [27], is moti-
vated by the observation that when ρ is a bounded and integrable map,

(2.1) 〈div(E⊥ρ),Φ〉D′,D = −
∫∫

HΦ(x, y)ρ(x)ρ(y) dx dy.

Moreover, HΦ is defined and continuous off the diagonal ∆ = {(x, x)|x ∈ R2}
and bounded on R2 × R2, since ‖HΦ‖L∞(R2×R2)) ≤ ‖Φ‖W 2,∞ . Hence the
expression (2.1) makes sense for ρ as in Definition 2.1, since the atomic
support a positive measure in H−1 is empty [7].

2.2. Uniform a priori estimates. In all the remainder of this section, fε
denotes the global weak solution of (1.1) with initial data f0

ε satisfying (1.3),
(1.4) and (1.5). Replacing ‖f0

ε ‖L∞ by max(1, ‖f0
ε ‖L∞) if necessary, we will

always assume that

‖f0
ε ‖L∞ ≥ 1.

The purpose of this paragraph is to collect a priori estimates and basic
properties for fε for later use. The notation C will stand for a constant
independent of ε, changing possibly from a line to another.

Proposition 2.2. We have

sup
t∈R+

sup
ε>0

(‖fε(t)‖L1 +H(fε(t))) < +∞,

and

sup
t∈R+

ε2Θ(‖fε(t)‖L∞) ≤ ε2Θ(‖f0
ε ‖)→ 0, as ε→ 0.

Proof. This is an immediate consequence of the fact that for (1.1), the energy
and the norms of fε satisfy

∀t ∈ R+, H(fε(t)) ≤ Hε(0), ‖fε(t)‖Lp ≤ ‖f0
ε ‖Lp .

�

Proposition 2.3. We have for all t ∈ R+ and for all 0 < ε < 1∫
R2

|x|2ρε(t, x) dx ≤ C
(

1 + ε2

∫∫
R2×R2

|v|2f0
ε (x, v) dx dv

)
+ Cε2

∫∫
R2×R2

|v|2fε(t, x, v) dx dv.

Proof. Let T > 0 and Rε > 0 such that supp(fε(t)) is included in B(0, Rε)×
B(0, Rε) on [0, T ]. We set ϕ(x, v) =

(
|x|2 + 2εx · v⊥

)
χ(|x|/Rε)χ(|v|/Rε),

where χ is a smooth cut-off function such that χ = 1 on B(0, 1) and χ = 0
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on B(0, 2)c. For t ∈ [0, T ), we compute using the weak formulation of (1.1)
for the test function ϕ,

d

dt

∫∫
R2×R2

(
|x+ εv⊥|2 − ε2|v|2

)
fε(t, x, v) dx dv

=
d

dt

∫∫
R2×R2

ϕ(x, v)fε(t, x, v) dx dv

=

∫∫
R2×R2

fε(t, x, v)

(
v

ε
· ∇xϕ+

Eε
ε
· ∇vϕ+

v⊥

ε2
· ∇vϕ

)
dx dv

=

∫∫
R2×R2

fε(t, x, v)

(
v

ε
· (2x+ 2εv⊥)− 2Eε · x⊥ − 2

v⊥

ε
· x⊥

)
dx dv

= −2

∫
R2

ρε(t, x)Eε(t, x) · x⊥ dx.

On the other hand, in view of the definition of Eε, we obtain by a classical
symmetrization argument∫
R2

ρε(t, x)Eε(t, x) · x⊥ dx =

∫∫
R2×R2

ρε(t, x)ρε(t, y)
x− y
|x− y|2

· x⊥ dx dy

=
1

2

∫∫
R2×R2

ρε(t, x)ρε(t, y)
x− y
|x− y|2

· (x⊥ − y⊥) dx dy = 0.

Since |x|2 ≤ 2(|x+ εv⊥|2 − ε2|v|2) + 4ε2|v|2, it follows that∫∫
R2×R2

|x|2fε(t, x, v) dx dv

≤ 2

∫∫
R2×R2

(
|x+ εv⊥|2 − ε2|v|2

)
f0
ε (x, v) dx dv + 4ε2

∫∫
R2×R2

|v|2fε(t, x, v) dx dv

≤ C
(∫

R2

|x|2ρ0
ε(x) dx+ ε2

∫∫
R2×R2

|v|2f0
ε (x, v) dx dv

)
+ Cε2

∫∫
R2×R2

|v|2fε(t, x, v) dx dv.

�

Proposition 2.4. We have

sup
t∈R+

sup
ε>0

(∫∫
R2×R2

|v|2fε(t, x, v) dx dv +

∫
R2

|x|2ρε(t, x) dx

)
< +∞,

and
sup
t∈R+

‖ρε(t)‖L2 ≤ C‖f0
ε ‖

1/2
L∞ .

Finally, setting

Jε(t, x) =

∫
R2

|v|fε(t, x, v) dv,

we have
sup
t∈R+

‖Jε(t)‖L4/3 ≤ C‖f0
ε ‖

1/4
L∞

and
sup
t∈R+

sup
ε>0
‖Jε(t)‖L1 < +∞.
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Proof. The proof is classical, but we provide some details for sake of com-
pleteness. We omit the dependence on t for simplicity. Setting

Kε =

∫∫
R2×R2

|v|2fε(x, v) dx dv,

we have the interpolation inequality (see e.g. [12, Lemma 3.1] or [26, Lemma
2.4])

‖ρε‖L2 ≤ C‖fε‖1/2L∞K
1/2
ε ≤ C‖f0

ε ‖
1/2
L∞K

1/2
ε .

On the other hand, Cauchy-Schwarz inequality and Proposition 2.3 yield

Kε ≤ 2H(fε) +

∫∫
R2×R2

ln+ |x− y|ρε(x)ρε(y) dx dy

≤ 2H(f0
ε ) +

∫∫
R2×R2

(|x|+ |y|) ρε(x)ρε(y) dx dy

≤ C + 2‖ρε‖3/2L1

(∫
R2

|x|2ρε(x) dx

)1/2

≤ C + C
(
1 + ε2Kε(0) + ε2Kε

)1/2
.

For the same reasons, we have

Kε(0) ≤ 2H(f0
ε ) +

∫∫
R2×R2

ln+ |x− y|ρ0
ε(x)ρ0

ε(y) dx dy

≤ C + C‖ρ0
ε‖

3/2
L1

(∫
R2

|x|2ρ0
ε(x) dx

)1/2

≤ C

in view of (1.5). So we conclude that Kε ≤ C, and by Proposition 2.3, it
also follows that

∫
R2 |x|2ρε(t, x) dx ≤ C.

Again by interpolation, we have

‖Jε‖L4/3 ≤ C‖fε‖1/4L∞K
3/4
ε ≤ C‖f0

ε ‖
1/4
L∞K

3/4
ε ,

and by Cauchy-Schwarz inequality, we obtain

‖Jε‖L1 ≤ C‖fε‖1/2L1 K
1/2
ε ≤ C‖f0

ε ‖
1/2
L1 K

1/2
ε ,

so the conclusion follows.
�

To conclude this paragraph, we introduce a smooth, positive function ρ̃ε,
compactly supported in B(0, 1), such that

(2.2)

∫
R2

ρ̃ε(x) dx =

∫
R2

ρε(x) dx, sup
ε>0
‖ρ̃ε‖L∞ < +∞

and we set

Ẽε(x) =

∫
R2

x− y
|x− y|2

ρ̃ε(y) dy.

Since
∫

(ρε(t) − ρ̃ε) = 0 and ρε(t) − ρ̃ε is compactly supported, it is well-

known that Eε(t)− Ẽε belongs to L2(R2), see e.g. [23, Proposition 3.3]. In
addition,
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Proposition 2.5. We have

sup
t∈R+

sup
ε>0
‖Eε(t)− Ẽε‖L2 < +∞.

Proof. The computations below are quite standard and we perform them for
sake of completeness. We first integrate by parts, using that Eε(t) − Ẽε =
2π∇G ∗ (ρε(t) − ρ̃ε), with G the fundamental solution of the Laplacian in
R2. Then we expand, which yields

‖Eε(t)− Ẽε‖2L2 = −2π

∫∫
R2×R2

ln |x− y| (ρε − ρ̃ε) (t, x) (ρε − ρ̃ε) (t, y) dx dy

≤ −2π

∫∫
R2×R2

ln |x− y|ρε(t, x)ρε(t, y) dx dy

− 2π

∫∫
B(0,1)2

ln− |x− y|ρ̃ε(x)ρ̃ε(y) dx dy

+ 4π

∫∫
R2×B(0,1)

ln+ |x− y|ρε(t, x)ρ̃ε(y) dx dy.

Then we use Proposition 2.4 and (2.2) to infer that

‖Eε(t)− Ẽε‖2L2

≤ C
(
H(fε(t)) + ‖ρ̃ε‖2L∞ +

∫∫
R2×B(0,1)

(|x|+ |y|)ρε(t, x)ρ̃ε(y) dx dy
)

≤ C
(
H(fε(t)) + ‖ρ̃ε‖2L∞ + ‖ρ̃ε‖L∞‖ρε(t)‖1/2L1

(∫
R2

|x|2ρε(t, x) dx

)1/2 )
+ C‖ρ̃ε‖L∞‖ρε(t)‖L1

≤ C.

�

Proposition 2.6. We have Eε − Ẽε ∈ L∞(R+, H
1(R2)) and

sup
t∈R+

‖Eε(t)− Ẽε‖H1(R2) ≤ C‖f0
ε ‖

1/2
L∞ .

In particular, for all q ≥ 2 we have

sup
t∈R+

‖Eε(t)− Ẽε‖Lq ≤ C√q‖f0
ε ‖

1/2
L∞ .

Proof. On the one hand, ‖Eε(t) − Ẽε‖L2 ≤ C by virtue of Proposition 2.5.
On the other hand, standard elliptic regularity theory yields a constant
C > 0 such that

‖∇(Eε(t)− Ẽε)‖L2 ≤ C‖ρε(t)− ρ̃ε‖L2 ≤ C‖f0
ε ‖

1/2
L∞ ,

where we have used Proposition 2.4 and (2.2) in the last inequality.
Finaly, the second statement follows from the Sobolev embedding theorem

H1(R2) ⊂ Lq(R2) for all q ≥ 2, with the dependence of the constant with
respect to q given in, e.g., [19, Paragraph 8.5, p. 206]. �
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2.3. Lagrangian trajectories and weak formulation. We introduce the
field

bε(t, x, v) =

(
v

ε
,
Eε(t, x)

ε
+
v⊥

ε2

)
,

which satisfies
bε

1 + |x|+ |v|
∈ L1

loc(R+, L
1(R2 × R2)) + L1

loc(R+, L
∞(R2 × R2)),

see e.g. [4, Proposition 6.2]. Moreover, by Proposition 2.6, we have5

Dbε ∈ L1
loc(R+, L

2
loc(R2 × R2)).

Therefore, the DiPerna and Lions theory [8] applies, providing a unique La-
grangian flow associated to bε, which we denote by (Xε, Vε). We refer to the
recent survey [1] or to [4], which handles specifically the Vlasov-Poisson case.
In particular, for almost every (x, v) ∈ R2 × R2, t 7→ (Xε(t, x, v), Vε(t, x, v)
is an absolutely continuous map which satisfies

(2.3)


Xε(t, x, v) = x+

1

ε

∫ t

0
Vε(s, x, v) ds

Vε(t, x, v) = v +
1

ε2

∫ t

0

(
V ⊥ε (s, x, v) + εEε(s,Xε(s, x, v))

)
ds.

Moreover, the solution fε is the push-forward6 of the initial density f0
ε by

the flow,

(2.4) fε(t) = (Xε(t), Vε(t))#f
0
ε .

Recalling that ρε belongs to L∞loc(R+, L
∞(R2)) for all 0 < ε < 1, we infer

that Eε satisfies

∀T > 0, sup
t∈[0,T ]

‖Eε(t)‖L∞ ≤ C(ε, T ),

sup
t∈[0,T ]

|Eε(t, x)− Eε(t, y)| ≤ C(ε, T )|x− y|(1 + | ln |x− y||)

(see e.g. [18, Lemma 4]). Thus it turns out that for all (x, v) ∈ R2 ×R2 the
map t 7→ (Xε(t, x, v), Vε(t, x, v)) belongs to W 1,∞(R+,R2 × R2) and is the
unique solution to the ODE (2.3).

We define then the following combination of the characteristics:

Zε(t, x, v) = Xε(t, x, v) + εV ⊥ε (t, x, v).

Proposition 2.7. For all (x, v) ∈ R2 × R2, the map t 7→ Zε(t, x, v) belongs
to W 1,∞(R+,R2) and it satisfies

Żε(t, x, v) = E⊥ε (t,Xε(t, x, v)), for a.e. t ∈ R+.

Proof. We have for a.e. t ∈ R+

Żε(t) =
Vε(t)

ε
+ ε

(
V ⊥ε (t) + εEε(t,Xε(t))

ε2

)⊥
= E⊥ε (t,Xε(t)).

�

5Db denotes the differential matrix of b with respect to x and v.
6In view of the support properties of fε, this means here that for all ϕ ∈ L1

loc(R2×R2),
we have

∫∫
fε(t, x, v)ϕ(x, v) dx dv =

∫∫
f0
ε (x, v)ϕ(Xε(t, x, v), Vε(t, x, v)) dx dv.
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We can now derive a weak formulation for the spatial density.

Proposition 2.8. Let Φ ∈ C∞c (R+ × R2). We have∫
R2

ρε(t, x)Φ(t, x) dx−
∫
R2

ρ0
ε(x)Φ(0, x) dx =

∫ t

0

∫
R2

∂sΦ(s, x)ρε(s, x) dx ds

+

∫ t

0

∫∫
R2×R2

HΦ(s,·)(x, y)ρε(s, x)ρε(s, y) dx dy ds+Rε(t),

where Rε converges to zero locally uniformly on R+ as ε→ 0. More precisely,

|Rε(t)| ≤ C(1 + t)‖Φ‖L∞(W 2,∞)

(
ε2Θ(‖f0

ε ‖L∞)
)1/2

.

Proof. Thanks to (2.4), we may write∫∫
R2×R2

fε(t, x, v)Φ(t, x) dx dv =

∫∫
R2×R2

f0
ε (x, v)Φ(t, Zε(t, x, v)) dx dv +Rε,1(t),

where

Rε,1(t) =

∫∫
R2×R2

f0
ε (x, v) (Φ(t,Xε(t, x, v))− Φ(t, Zε(t, x, v))) dx dv.

On the one hand, we have by the mean-value theorem

|Rε,1(t)| ≤ ‖DΦ(t)‖L∞ε
∫∫

R2×R2

f0
ε (x, v)|Vε(t, x, v)| dx dv

hence using (2.4) and Proposition 2.2 we get

sup
t∈R+

|Rε,1(t)| ≤ C ε‖DΦ(t)‖L∞ .

On the other hand, Proposition 2.7 implies that for all (x, v) ∈ R2 × R2,
the map t 7→ Φ(t, Zε(t, x, v)) belongs to W 1,∞(R+) therefore∫∫

R2×R2

f0
ε (x, v)Φ(t, Zε(t, x, v)) dx dv

=

∫∫
R2×R2

f0
ε (x, v)Φ(0, Zε(0, x, v)) dx dv

+

∫∫
R2×R2

f0
ε (x, v)

∫ t

0

d

ds
Φ(s, Zε(s, x, v)) ds dx dv

=

∫∫
R2×R2

f0
ε (x, v)Φ(0, x+ εv⊥) dx dv

+

∫∫
R2×R2

f0
ε (x, v)

∫ t

0
∂sΦ(s, Zε(s, x, v)) ds dx dv

+

∫∫
R2×R2

f0
ε (x, v)

∫ t

0
∇Φ(s, Zε(s, x, v)) · E⊥ε (s,Xε(s, x, v)) ds dx dv.
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Using again (2.4), we obtain∫∫
R2×R2

f0
ε (x, v)Φ(t, Zε(t, x, v)) dx dv

=

∫∫
R2×R2

f0
ε (x, v)Φ(0, x+ εv⊥) dx dv

+

∫ t

0

∫∫
R2×R2

fε(s, x, v)∂sΦ(s, x+ εv⊥) ds dx dv

+

∫ t

0

∫∫
R2×R2

fε(s, x, v)∇Φ(s, x+ εv⊥) · E⊥ε (s, x) dx dv ds.

Therefore, we have∫∫
R2×R2

f0
ε (x, v)Φ(t, Zε(t, x, v)) dx dv

=

∫∫
R2×R2

f0
ε (x, v)Φ(0, x) dx dv +

∫ t

0

∫∫
R2×R2

fε(s, x, v)∂sΦ(s, x) ds dx dv

+

∫ t

0

∫∫
R2×R2

fε(s, x, v)∇Φ(s, x) · E⊥ε (s, x) dx dv ds+
5∑

k=2

Rε,k(t),

where

Rε,2(t) =

∫∫
R2×R2

f0
ε (x, v)

(
Φ(0, x+ εv⊥)− Φ(0, x)

)
dx dv,

Rε,3(t) =

∫ t

0

∫∫
R2×R2

fε(s, x, v)
(
∂sΦ(s, x+ εv⊥)− ∂sΦ(s, x)

)
dx dv ds,

Rε,4(t) =

∫ t

0

∫∫
R2×R2

fε(s, x, v)
(
∇Φ(s, x+ εv⊥)−∇Φ(s, x)

)
· (E⊥ε (s, x)− Ẽ⊥ε (x)) dx dv ds,

Rε,5(t) =

∫ t

0

∫∫
R2×R2

fε(s, x, v)
(
∇Φ(s, x+ εv⊥)−∇Φ(s, x)

)
· Ẽ⊥ε (x) dx dv ds.

On the one hand, inserting the definition of Eε and symmetrizing as in
[27], we get∫
R2

ρε(s, x)∇Φ(s, x)·E⊥ε (s, x)dx =

∫∫
R2×R2

HΦ(s,·)(x, y)ρε(s, x)ρε(s, y) dx dy.

On the other hand, as before, we obtain

|Rε,2(t)| ≤ Cε‖∇Φ(0)‖L∞ .

Besides, Proposition 2.6 yields

|Rε,3(t)| ≤ Cεt‖D∂sΦ‖L∞(L∞) sup
s∈R+

∫∫
R2×R2

|v|fε(s, x, v) dx dv ≤ Ctε‖D2Φ‖L∞(L∞).
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Next, we infer from the mean-value theorem, Hölder inequality and Propo-
sition 2.6 that

|Rε,4(t)| ≤ ε ‖D2Φ‖L∞(L∞)

∫ t

0

∫∫
R2×R2

fε(s, x, v)|v||Eε(s, x)− Ẽε(x)| dx dv ds

≤ Ctε ‖D2Φ‖L∞(L∞) sup
s∈[0,t]

(
‖Eε(s)− Ẽε‖Lq‖Jε(s)‖Lq′

)
≤ Ctε ‖D2Φ‖L∞(L∞)

√
q‖f0

ε ‖
1/2
L∞ sup

s∈[0,t]
‖Jε(s)‖Lq′ ,

where q′ is the conjugate exponent of q, and where q ≥ 4 will be chosen
later. Since q′ ∈ (1, 4/3], we have

‖Jε(s)‖Lq′ ≤ ‖Jε(s)‖
1− 4

q

L1 ‖Jε(s)‖
4
q

L4/3 ,

thus Proposition 2.4 yields

|Rε,4(t)| ≤ Ctε ‖D2Φ‖L∞(L∞)
√
q‖f0

ε ‖
1
2

+ 1
q

L∞ .

Finally, we set
q = max(4, ln(‖f0

ε ‖L∞)),

so that

|Rε,4(t)| ≤ Ctε ‖D2Φ‖L∞(L∞)Θ
(
‖f0
ε ‖L∞

)1/2
.

We turn to the last term. We infer from (2.2) and from classical potential
estimates, see e.g. [23], that

sup
ε>0
‖Ẽε‖L∞ ≤ C sup

ε>0
‖ρ̃ε‖1/2L1 ‖ρ̃ε‖

1/2
L∞ ≤ C,

therefore

|Rε,5(t)| ≤ Ctε ‖D2Φ‖L∞(L∞)‖Ẽε‖L∞ sup
s∈[0,t]

∫
R2×R2

|v|fε(s, x, v) dx dv

≤ Ctε‖D2Φ‖L∞(L∞).

Gathering the previous bounds and recalling that Θ(‖f0
ε ‖L∞) ≥ 1, we

obtain the desired estimate.
�

2.4. Passing to the limit. We establish a property of uniform equiconti-
nuity with respect to time for the spatial densities.

Lemma 2.9. There exists K0 > 0 such that for all s, t ∈ R+,

‖ρε(t)− ρε(s)‖W−2,1(R2) ≤ K0

(
|t− s|+ (1 + t+ s)εΘ(‖f0

ε ‖L∞)1/2
)
.

Proof. This is a simple consequence of Proposition 2.8 and of the estimate
|HΦ(x, y)| ≤ ‖Φ‖W 2,∞ .

�

We are now in position to complete the proof of Theorem 1.1. A straight-
forward adaptation of Ascoli’s theorem yields:

Lemma 2.10. Let T > 0. Let (F, d) be a complete metric space. Let (fn)n∈N
be a family of C([0, T ], F ) such that
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(1) For all t ∈ [0, T ], (fn(t))n∈N is relatively compact in F ;
(2) There exists C > 0 and a sequence rn → 0 as n→ +∞ such that for

all t, s ∈ [0, T ], for all n ∈ N, |fn(t)− fn(s)| ≤ C|t− s|+ rn.

Then the family (fn)n∈N is relatively compact in C([0, T ], F ).

Using the fact that (ρε)ε>0 is uniformly bounded in L∞(R+,M+(R2))
and recalling Lemma 2.9, we can apply this Lemma to F = W−2,1(R2) and
we can mimick the proof of Lemma 3.2 in [27, Lemma 3.2] to show that
there exists εn → 0 as n → +∞ such that (ρεn)n∈N converges to some
ρ in C(R+,M+(R2) − w∗). By Proposition 2.5, (ρεn)n∈N is bounded in
L∞(R+, H

−1(R2)). It was proved in [7] (see also [22, 27]) that this implies
that the non-linear term∫ ∫∫

HΦ(x, y)ρεn(s, x)ρεn(s, y) dx dy ds

converges to ∫ ∫∫
HΦ(x, y)ρ(s, x)ρ(s, y) dx dy ds

as n → +∞ for all test function Φ. On the other hand, all linear terms
appearing in the formulation given by Proposition 2.8 pass to the limit.
This means that ρ satisfies the conclusion of Theorem 1.1.

2.5. Alternative proof of Theorem 1.1 without Lagrangian trajec-
tories. The purpose of this paragraph is to propose another proof of Theo-
rem 1.1, for smooth solutions, that does not rely on the characteristics. Here,
we assume that the initial data f0

ε satisfy the assumptions of Theorem 1.1
and that moreover

f0
ε ∈ C1,α(R2 × R2)

for some α ∈ (0, 1). The corresponding solution to (1.1) then belongs to
C1(R+ × R2 × R2).

As in [17], we consider the microscopic and macroscopic densities in the
gyro-coordinates:

fε(t, x, v) = fε(t, x− εv⊥, v), ρε(t, x) =

∫
R2

fε(t, x, v) dv.

Proposition 2.11. We have

∂tfε + E⊥ε (t, x− εv⊥) · ∇xfε +

(
v⊥

ε2
+
Eε(t, x− εv⊥)

ε

)
· ∇vfε = 0,

and

∂tρε +∇x ·
(∫

R2

E⊥ε (t, x− εv⊥)fε dv

)
= 0.

Proof. We compute

∂tfε(t, x, v) = ∂tfε(t, x− εv⊥, v), ∇xfε(t, x, v) = ∇xfε(t, x− εv⊥, v),

∇vfε(t, x, v) = (ε∇⊥x +∇v)fε(t, x− εv⊥, v),
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then(
v⊥

ε2
+
Eε(t, x− εv⊥)

ε

)
· ∇vfε(t, x− εv⊥, v)

=

(
v⊥

ε2
+
Eε(t, x− εv⊥)

ε

)
·
(
∇v − ε∇⊥x

)
fε(t, x, v)

= −v
ε
· ∇xfε(t, x, v) + E⊥ε (t, x− εv⊥) · ∇xfε(t, x, v) +

(
v⊥

ε2
+
Eε(t, x− εv⊥)

ε

)
· ∇vfε(t, x, v).

Therefore fε satisfies the first equation in Proposition 2.11. Next, we inte-
grate with respect to v and we observe that∫

R2

v⊥ · ∇vfε dv = −
∫
R2

∇v · v⊥ fε dv = 0,∫
R2

E⊥ε (x− εv⊥) · ∇vfε dv = −
∫
R2

∇v · [Eε(x− εv⊥)] fε dv = ε

∫
R2

curl(Eε)(x− εv⊥) fε dv,

where curl(G) = ∂2G1 − ∂1G2. Similarly,∫
R2

E⊥ε (x− εv⊥) · ∇xfε dv = ∇x ·
(∫

R2

E⊥ε (x− εv⊥)fε dv

)
−
∫
R2

curl(Eε)(x− εv⊥) fε dv.

Now, since Eε is a gradient, we have curl(Eε) = 0, hence the second equation
of Proposition 2.11 follows.

�

We now establish Theorem 1.1. The same arguments as the ones of
Subsection 2.4 yield a subsequence such that (ρεn)n∈N converges to ρ in
C(R+,M+(R2)− w∗) as n→ +∞. Let Φ ∈ C∞c (R+ × R2). Using Proposi-
tion 2.11 and the fact that the Jacobian of x 7→ x+ εv⊥ is one for any fixed
v, we obtain

d

dt

∫
R2

ρεn(t, x)Φ(t, x) dx

=

∫
R2

ρεn(t, x)∂tΦ(t, x) dx+

∫
R2

∇Φ(t, x) ·
(∫

R2

E⊥εn(t, x− εnv⊥)f εn(t, x, v) dv

)
dx

=

∫
R2

(∫
R2

fεn(t, x− εnv⊥, v)
[
∂tΦ(t, x) +∇Φ(t, x) · E⊥εn(t, x− εnv⊥)

]
dx

)
dv

=

∫
R2

(∫
R2

fεn(t, x, v)
[
∂tΦ(t, x+ εnv

⊥) +∇Φ(t, x+ εnv
⊥) · E⊥εn(t, x)

]
dx

)
dv.

Writing finally∫
R2

(∫
R2

fεn(t, x, v)
[
∂tΦ(t, x+ εnv

⊥) +∇Φ(t, x+ εnv
⊥) · E⊥εn(t, x)

]
dx

)
dv

=

∫
R2

ρεn(t, x)
[
∂tΦ(t, x) +∇Φ(t, x) · E⊥εn(t, x)

]
dx

+

∫∫
R2×R2

fεn(t, x, v)
[
∂tΦ(t, x+ εnv

⊥)− ∂tΦ(t, x)
]
dx dv

+

∫∫
R2×R2

fεn(t, x, v)
[
∇Φ(t, x+ εnv

⊥)−∇Φ(t, x)
]
· E⊥εn(t, x) dx dv,

we conclude as in the previous section.
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3. Proof of Theorem 1.2

In this section we adapt the proof of Theorem 1.1 to the case of initial
data satisfying the assumptions of Theorem 1.2. We have

(3.1) sup
t∈R+

sup
ε>0
‖fε(t)‖L∞ <∞,

hence it follows from Propositions 2.4 and 2.6 that

(3.2) sup
t∈R+

sup
ε>0
‖ρε(t)‖L2(R2) <∞, sup

t∈R+

sup
ε>0
‖Eε(t)− Ẽε‖H1(R2) <∞.

Exactly as in Subsection 2.4, the family (ρε)ε>0 is relatively compact in
C(R+,M+(R2)−w∗). Moreover, (ρε(t))ε>0 is weakly relatively compact in
L2(R2) for all t ≥ 0. It follows that for some subsequence εn → 0, (ρεn)n∈N
converges to some ρ in C(R+, L

2(R2)− w) and in C(R+,M+(R2)− w∗) as
n→ +∞. Let E = (x/|x|2) ∗ ρ, so that E belongs to L∞loc(R+, L

1 +L2(R2)).
Decomposing

x

|x|2
=

x

|x|2
χδ +

x

|x|2
(1− χδ),

with χδ a cut-off function supported in B(0, 2δ) with value 1 on B(0, δ), we
see immediately that
x

|x|2
(1−χδ)∗ρεn →

x

|x|2
(1−χδ)∗ρ locally uniformly on R+ × R2 as n→ +∞,

while ∥∥∥∥( x

|x|2
χδ

)
∗ ρεn(t)

∥∥∥∥
L2

≤ Cδ‖ρεn(t)‖L2 ≤ Cδ.

So we conclude that (Eεn)n∈N converges to E in C(R+, L
2
loc(R2)). This

implies that (E⊥εnρεn)n∈N converges to E⊥ρ in the sense of distributions on

R+ × R2. Therefore, all terms pass to the limit in Proposition 2.8, and ρ
satisfies (1.2) in the sense of distributions. This concludes the proof.
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[3] J. Barré, D. Chiron, T. Goudon and N. Masmoudi, From Vlasov-Poisson and Vlasov-

Poisson-Fokker-Planck Systems to Incompressible Euler Equations: the case with fi-
nite charge, preprint arXiv:1502.07890, 2015.

[4] A. Bohun, F. Bouchut and G. Crippa, Lagrangian solutions to the Vlasov-Poisson
system with L1 density, preprint arXiv:1412.6358, 2014.

[5] M. Bostan, A. Finot and M. Hauray, The effective Vlasov-Poisson system for strongly
magnetized plasmas, preprint arXiv:1511.00169, 2015.

[6] Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler
equations, Comm. Partial Differential Equations 25 (2000), 737–754.

[7] J.-M. Delort, Existence de nappes de tourbillon en dimension deux (French) [Ex-
istence of vortex sheets in dimension two], J. Amer. Math. Soc. 4 (1991), no. 3,
553–586.

[8] R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and
Sobolev spaces, Invent. Math. 98 (1989), 511–547.



GYROKINETIC LIMIT 15
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