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EXISTENCE OF A WEAK SOLUTION TO THE VORTEX-WAVE SYSTEM

MILTON C. LOPES FILHO, EVELYNE MIOT, AND HELENA J. NUSSENZVEIG LOPES

Abstract. The vortex-wave system is a coupling of the two-dimensional vorticity equation
with the point-vortex system. It is a model for the motion of a finite number of concentrated
vortices moving on a distributed vorticity background. In this article, we prove existence of a
weak solution to this system with initial background vorticity in Lp, p > 2 up to the time of
first collision of point vortices.

1. Introduction

The two-dimensional incompressible Euler equations can be written as an active scalar trans-
port equation for vorticity, which takes the form

∂tω + u · ∇ω = 0,

with the transporting divergence-free velocity u(·, t) determined by ω(·, t) by means of the
Biot-Savart law. We focus on the full-plane case, where the Biot-Savart law takes the form:

u(x, t) =
1

2π

∫
R2

(x− y)⊥

|x− y|2
ω(y, t)dy ≡ K ∗ ω(·, t),

with (a, b)⊥ = (−b, a). Existence and uniqueness of a weak solution with initial vorticity
ω(t = 0) ∈ L∞ ∩ L1 is a classical result by Yudovich, see [17] and existence for initial vorticity
in the space of measures is known under sign and finite kinetic energy restrictions, see [3, 7].

One special case of solutions with bounded vorticity is the vortex patch problem, with initial
vorticity the characteristic function of a bounded set with smooth boundary. By Yudovich’s
Theorem, there exists a unique weak solution of the Euler equations with such initial data,
globally defined in time. Moreover, the boundary of the vortex patch stays smooth for all time,
see [1]. This special case of the Euler equations is also known as contour dynamics.

A second kind of special solution is the vortex sheet problem, where the initial vorticity is a
Dirac mass supported on a smooth curve. In this case, existence of a weak solution is known
under sign restrictions, but very little is known about the solution besides its existence.

A third kind of solution, called point vortex dynamics, assumes initial vorticity is a finite
sum of Dirac point masses. This type of initial data is not included in the existence results
because the associated flow has infinite kinetic energy. Indeed, a single point vortex in the
plane at position P induces a velocity of the form C(x − P )⊥/|x − P |2, which is not square-
integrable. However, if one places a finite number of point vortices in the plane, and assumes
that each point vortex moves with the speed induced by the other vortices, Euler equations
appear to reduce to a system of ODEs for the position of the vortices, called the point vortex
system. This hamiltonian system of ODEs is at the heart of important numerical methods, and
represents a good approximation for the motion of sharply concentrated vorticity parcels, see
[8].

Although it would be natural to consider point vortex dynamics as a weak solution of the
Euler equations, point vortices are too singular to include in the usual weak formulations of
the Euler equations, see [15]. In [12], F. Poupaud formulated a treatment of weak solutions
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2 MILTON DA COSTA LOPES FILHO, E. MIOT, AND HELENA J. NUSSENZVEIG LOPES

of the Euler equations which included point vortices, but he could not obtain existence in this
context due to the possible appearance of nonlinearity defects. To treat initial vorticities which
include point vortices together with continuously distributed vorticity, one alternative is to
separate the evolution of the continuous part of the vorticity, evolved using Euler equations,
from the evolution of the point vortices, evolved through the point vortex system, coupling
these equations by means of the Biot-Savart law. This idea was introduced by Marchioro and
Pulvirenti in [9, 10], together with the terminology vortex-wave system for the resulting system.

In [9], Marchioro and Pulvirenti proved existence of weak solutions for the vortex-wave system
with initial data consisting of a bounded, compactly supported continuous part plus a number
of point vortices, and uniqueness when the initial position of the vortices is outside the support
of the initial vorticity. They also indicated that uniqueness would still be true if the continuous
part of the vorticity was constant near the initial position of the point vortices. Uniqueness in
this case was proved by Staravoitov for Lipschitz continuous vorticities in [16] and by Lacave
and Miot for bounded vorticities in [2]. The purpose of the present article is to extend the
existence result of Marchioro and Pulvirenti to initial vorticities in Lp, p > 2.

We add a word regarding the physical meaning of the vortex-wave system. The incompressible
2D Euler equations are a useful simplified model for large-scale geophysical and astrophysical
flows and are also used in laboratory modeling of plasma dynamics, among other contexts, see
[5] and references therein. The situation where sharply concentrated vorticity appears coupled
with continuous background vorticity is common in applications, both with the point vortices
embedded in a constant vorticity background, see [5], and in layers of variable vorticity, see [14].
The coupling of point vortices and continuously varying vorticity leads to new phenomena, such
as the development of vortex cristals, see [13] and provides an explanation for the generation
of Rossby waves, see [11].

The remainder of this article is divided as follows. In the next section we introduce the
definitions of Lagrangian and Eulerian weak solutions and give a precise statement of our main
result. In the following section we prove our main result in the case where the point vortices
are of the same sign. In the last section we present a short-time existence result without the
single-sign assumption on the point vortices and present some conclusions.

2. Lagrangian and eulerian solutions

The purpose of this section is to formulate precisely our main result. The unknowns for
the vortex-wave system are the background vorticity, which we denote by ω, belonging to
L1 ∩ L∞ and a weighted sum of Dirac masses

∑
diδzi

, i = 1, . . . , N called point vortices. Let
K = K(x) = x⊥/2π|x|2 be the kernel of the Biot-Savart law in the full plane. Let v = v(x, t) =
K ∗ ω be the part of the flow velocity associated with the background vorticity. We can write
the vortex-wave system as follows:

∂tω + (v +
N∑
j=1

djK(· − zj)) · ∇ω = 0,

v = K ∗ ω,
dzi
dt

= v(zi, t) +
∑
j 6=i

djK(zi − zj), i = 1, . . . , N,

ω(x, 0) = ω0(x), zi(0) = zi0.

(2.1)

Of course, even if ω0 is smooth, the transport equation for ω has a rather singular velocity,
so that the notion of solution for (2.1) should be a weak formulation. There are two weak
formulations for (2.1) in the literature, which we describe below.
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Definition 2.1 (Lagrangian solutions). Let ω0 ∈ L1∩L∞(R2) and let z10, . . . , zN0 be N distinct
points in R2. Let T > 0. We say that the map t 7→ (ω(·, t), z1(t), . . . , zN(t), φ(·, t)) is a La-
grangian solution to the vortex-wave system (2.1) on [0, T ] with initial condition (ω0, z10, . . . , zN0)
if we have

ω ∈ L∞
(
[0, T ], L1 ∩ L∞(R2)

)
, v = K ∗ ω ∈ C([0, T ]× R2)

and for all i
zi : [0, T ]→ R2, φ : R2 \ {z10, . . . , zN0} × [0, T ]→ R2

are such that zi ∈ C1([0, T ],R2), φ(x, ·) ∈ C1([0, T ],R2) for all x 6= zi0 and satisfy

ω(φ(x, t), t) = ω0(x), t ∈ [0, T ], v(·, t) = K ∗ ω(·, t),
dzi
dt

(t) = v(zi(t), t) +
∑
j 6=i

djK (zi(t)− zj(t)) ,

zi(0) = zi0,

∂φ

∂t
(x, t) = v(φ(x, t), t) +

N∑
j=1

djK (φ(x, t)− zj(t)) ,

φ0(x) = x, x 6= zi0,

(LS)

where, for all t, φt(·) = φ(·, t) is an homeomorphism from R2 \ {z10, . . . , zN0} into R2 \
{z1(t), . . . , zN(t)} which preserves Lebesgue’s measure.

Marchioro and Pulvirenti [9] proved global existence for (LS) when all the intensities di have
the same sign. The proof uses the almost-Lipschitz regularity of v = K ∗ ω and of the explicit
form of K. It is shown in particular that characteristics starting in R2 \ ∪{zi0} cannot collide
with the point vortices in finite time, and that there is no collision among the vortices in finite
time as well. Consequently, all the singular terms involved in (LS) remain well-defined for all
time.

This notion of Lagrangian solutions is rather strong, since it requires the existence of a flow
φ which is continuous in space and time. One can define a weaker notion of solutions: solutions
in the sense of distributions of the PDE (without involving the flow φ). As we will see, this
formulation (called Eulerian formulation) enables us to handle a larger class of solutions. In
particular, in contrast with our Lagrangian formulation, it allows the singular fields to become
infinite. We define these Eulerian solutions below.

Definition 2.2 (Eulerian solutions). Let p ∈ [1,+∞] and ω0 ∈ Lp(R2) have compact sup-
port. Let z10, . . . , zN0 be N distinct points in R2 and d1, . . . , dN be real numbers. We say
that (ω, z1, . . . , zN) is an Eulerian solution of the vortex-wave equation with initial condition
(ω0, z10, . . . , zN0) on [0, T ] if

ω ∈ L∞
(
[0, T ], Lp(R2)

)
, zi ∈ L∞

(
[0, T ],R2

)
and if we have in the sense of distributions

∂tω + (v +H) · ∇ω = 0,

ω(0) = ω0,
dzi
dt

(t) = v (zi(t), t) +
∑
j 6=i

djK (zi(t)− zj(t)) , zi(0) = zi0, i = 1, . . . , N,
(ES)

where v and H are given by

v = K ∗ ω, H =
N∑
j=1

djK (· − zj) .
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In other words, we have for any test function ϕ ∈ D([0, T )× R2)

−
∫

R2

ω0(x)ϕ(0, x) dx =

∫ T

0

∫
R2

ωs(∂tϕ+ (v +H) · ∇ϕ) ds dx,

and for all t ∈ [0, T ], for i = 1, . . . , N ,

zi(t) = zi0 +

∫ t

0

{
v(z(s), s) +

∑
j 6=i

djK (zi(s)− zj(s))

}
ds.

When p = +∞, equivalence between Lagrangian and Eulerian formulations has been proved
in [2]. In particular, global existence of Eulerian solutions follows from the existence result for
vorticity in L∞ stated by Marchioro and Pulvirenti [9].

To work with Eulerian solutions it is necessary to give sense to the products ωv and ωH.
Assume that ω ∈ Lp, with p ≥ 1. Since H belongs to Lqloc(R2) for all q < 2, then ωH belongs
to L1

loc(R2) provided p > 2. On the other hand, as will be recalled in Lemma 3.1, the velocity
v = K ∗ ω is uniformly bounded and continuous in space for all p > 2, so that ωv belongs to
L1

loc(R2). It is therefore natural to focus on vorticites belonging to Lp(R2), for p > 2. Our main
result will be the following theorem.

Theorem 2.3. Let p > 2 and ω0 ∈ Lp(R2) have compact support. Let {zi0}, i = 1, . . . , N be N
distinct points in R2, and let di, i = 1, . . . , N be N positive numbers. Then there exists a global
Eulerian solution of the vortex-wave system with this initial data.

3. Global existence for single signed vortices

The purpose of this section is to prove Theorem 2.3. We start by recalling a useful result.

Lemma 3.1. Let p > 2 and f ∈ L1 ∩ Lp(R2). Let g = K ∗ f . Then we have

‖g‖L∞(R2) ≤ C(p)‖f‖1−
p′
2

L1(R2)‖f‖
p′
2

Lp(R2),

where p′ denotes the conjugate exponent of p and C depends only on p.

Proof. The proof consists of splitting the integral defining K ∗ f(x) into an integral in a ball
of radius ε around x and an integral in the complement. One estimates the integral outside
the small ball by ‖f‖L1/ε, then one uses Hölders inequality to estimate the integral inside the
small ball. Finally, one chooses the optimal ε.

�

The next lemma concerns the regularity of velocity in our problem.

Lemma 3.2. Let p > 2, f ∈ L1 ∩ Lp(R2) and g = K ∗ f . Then g is Hölder continuous with
exponent α(p) = 1− 2/p.

Proof. First we observe that ∇g ∈ Lp(R2); this follows from Calderón-Zygmund inequality
since f ∈ Lp(R2). Next, note that K ∈ L1(R2) + Lp(R2). Hence g ∈ Lp(R2), and the result
follows from Morrey’s inequality. �

In what follows, we will denote by ‖ω0‖ the quantity ‖ω0‖L1(R2) + ‖ω0‖Lp(R2).
The proof of Theorem 2.3 relies on Marchioro and Pulvirenti’s result [9] which states global

existence for initial vorticity belonging to L∞(R2). For that purpose, we regularize the initial
vorticity ω0 by setting

ω0,δ = ρδ ∗ ω0,
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where δ is a small parameter and ρδ is a standard regularizing kernel. Since all the intensities
di have the same sign, there exists a global solution (ωδ, vδ, zδi , φ

δ
t ) of the vortex-wave system

in Lagrangian formulation (although nothing can be said about uniqueness).
We first establish some control on the growth of the smooth flow and the vortices.

Proposition 3.3. Let (ωδ, vδ, zδi , φ
δ
t ) be defined as above, then there exists a constant C1 de-

pending only on (ω0, zi0, di) such that for all t and for all δ, we have

|zδi (t)| ≤ C1(1 + t), i = 1, . . . , N.

Moreover, the support of ωδ grows at most linearly in time. More precisely, there exists C2

depending only on (ω0, zi0, di) such that for all x 6= zi0 belonging to the support of ω0, we have

|φδt (x)| ≤ C2(1 + t).

Proof. Since ωδ is transported by a measure preserving flow and ω0 belongs to L1 ∩Lp(R2), we
first infer that ωδ is uniformly bounded in L∞ (R+, L1 ∩ Lp(R2)) with respect to δ. In view of
Proposition 3.1, there exists a constant C, depending only on ‖ω0‖, such that for all δ

‖vδ‖L∞(R+×R2) ≤ C. (3.1)

Next, we introduce the angular momentum defined by

Iδ(t) =
N∑
i=1

di|zδi (t)|2,

which is for the point vortex system constant in time. In the presence of the background part
ωδ, Iδ is no longer conserved, but we can obtain some control of its growth. Indeed, we have,
using first symmetry properties of the Kernel K, then the bound (3.1)

dIδ

dt
(t) = 2

N∑
i=1

diz
δ
i (t) · vδ(zδi (t), t) ≤ C

N∑
i=1

|di||zδi (t)|.

Since all the di are positive, we obtain

dIδ

dt
(t) ≤ C

√
Iδ(t),

which yields for all i

|zδi (t)|2 ≤ CIδ(t) ≤ C(1 + t2).

This is the first part of Proposition 3.3. We now turn to the second part. Given x 6= zi0, we
observe that the flow φδt (x) has finite velocity except in the neighborhood of the point vortices.
Let C1 be such that, for all t and δ > 0,

|zδi (t)| ≤ C1(1 + t). (3.2)

Then, we consider a constant C2 ≥ 2C1 so that supp ω0 ⊂ B(0, C2/2). Let x 6= zi0 ∈ supp ω0.
We claim that for all t, we have |φδt (x)| < 2C2(1 + t). Indeed, we have |φδ0(x)| < C2. Therefore,
if there exists a time t1 such that |φδt1(x)| = 2C2(1+t1), then, since |φδt (x)|/(1+t) is continuous,
we can find a time 0 < t0 < t1 such that |φδt0(x)| = C2(1 + t0) and such that, for t ∈ I = [t0, t1],
|φδt (x)| ≥ C2(1 + t). In view of (3.1) and (3.2), we have for t ∈ I∣∣∣∣dφδt (x)

dt

∣∣∣∣ ≤ ‖vδ‖L∞ +
N∑
i=1

di
|φδt (x)− zδi (t)|

≤ C +
C

C1

.
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Increasing possibly C2, we therefore obtain for t ∈ I∣∣∣∣dφδt (x)

dt

∣∣∣∣ ≤ C2,

thus

2C2(1 + t1)− C2(1 + t0) = |φδt1(x)| − |φδt0(x)| ≤ C2(t1 − t0).
This yields a contradiction, and the conclusion follows. �

The next step is to control the minimal distance between the vortices zδi (t) uniformly with
respect to δ.

Proposition 3.4. There exists a positive and continuous function t 7→ d(t) depending only on
t and (ω0, zi0, di) such that

inf
δ>0

min
i 6=j
|zδi (t)− zδj (t)| ≥ d(t), ∀t ∈ R+.

Proof. We define the generalized Hamiltonian Hδ as

Hδ(t) =

∫∫
R2×R2

ln |x− y|ωδ(x, t)ωδ(y, t) dx dy +
∑
i 6=j

didj ln |zδi (t)− zδj (t)|

+ 2
N∑
i=1

di

∫
R2

ln |x− zδi (t)|ωδ(x, t) dx.

We observe that when ωδ ≡ 0, Hδ corresponds to the classical Hamiltonian Hδ associated to
the point vortex system, which is known to be constant in time. Additionally, in the absence of
point vortices (di = 0) then Hδ corresponds to the pseudo-energy, also known to be conserved
in time. Conservation of Hδ actually still holds in the present situation, as established in
Proposition A.1 in the appendix. We infer that

Hδ(t) = Hδ(0)−
∫∫

R2×R2

ln |x− y|ωδ(x, t)ωδ(y, t) dx dy

− 2
N∑
i=1

di

∫
R2

ln |x− zδi (t)|ωδ(x, t) dx,

where

Hδ(t) =
∑
i 6=j

didj ln |zδi (t)− zδj (t)|.

On the one hand, since ωδ0 is uniformly bounded in Lp(R2) and has compact support, we have

|Hδ(0)| ≤ C.

On the other hand, we deduce from Proposition 3.3 and from the uniform bounds for ωδ in
L∞ (R+, L1 ∩ Lp(R2)) that ∣∣∣∣∫∫

R2×R2

ln |x− y|ωδ(x, t)ωδ(y, t) dx dy
∣∣∣∣

+2

∣∣∣∣∣
N∑
i=1

di

∫
R2

ln |x− zδi (t)|ωδ(x, t) dx

∣∣∣∣∣ ≤ C(1 + ln(1 + t)),

which yields

|Hδ(t)| ≤ C (1 + ln(1 + t)) .
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As all the intensities di are positive, we obtain, using the first part of Proposition 3.3

ln |zδi (t)− zδj (t)| ≥ −C (1 + ln(1 + t)) ,

which concludes the proof.
�

We are now in position to state some compactness for the trajectories and for the regular
vorticity.

Proposition 3.5 (compactness). There exists ω ∈ L∞ (R+, L1 ∩ Lp(R2)) such that up to a
subsequence, ωδ converges to ω in C(R+, L1 − w) ∩ C(R+, Lp − w). Let v = K ∗ ω. Then vδ

converges uniformly to v on the compact sets of R+ ×R2. Moreover, there exist N trajectories
zi ∈ C(R+,R2) such that for all i, zδi converges to zi uniformly on compact sets of R+.

Remark: We note that we do not expect uniform convergence for the flow φδt . Indeed, this
would require to prove that for x 6= zi0, the minimal distance between φδt (x) and the vortices
zi(t) is bounded from below uniformly in time. This property is proved in [9] by making use of
uniform almost-Lipschitz regularity for vδ; we do not have this regularity at hand since there
is no uniform bound for ωδ in L∞ (R+, L∞(R2)) available.

Proof. We first deduce from Lemma 3.1 and Proposition 3.3 that the field vδ +Hδ is uniformly
bounded in L∞loc (R+, Lqloc(R2)) for all q < 2, where Hδ(x, t) =

∑N
i=1 diK(x−zδi (t)). On the other

hand, (ωδ, vδ, zδi ) is a global Eulerian solution of the vortex-wave system (see [2] for a proof of
this fact). Therefore, ∂tω

δ = −(vδ + Hδ) · ∇ωδ is uniformly bounded in L∞loc

(
R+,W−1,1

loc (R2)
)
.

Moreover, the support of ωδ(·, t) is uniformly bounded for all t. We infer that there exists
ω ∈ L∞ (R+, L1 ∩ Lp(R2)) and a subsequence, still denoted by δ, such that ωδ converges to ω
in C(R+, L1 − w) ∩ C(R+, Lp − w); this is a consequence of the Aubin-Lions Lemma, see [6],
Appendix C, and of the Dunford-Pettis Theorem.

Moreover, the support of ω(·, t) is included in B (0, C(1 + t)). The uniform convergence of vδ

to v on compact sets is a consequence of the convergence of ωδ to ω in C(R+, L1−w) combined
with the uniform bound of ωδ in L∞ (R+, Lp(R2)) and the Hölder bound in Lemma 3.2.

Next, thanks to Lemma 3.1 and Proposition 3.4, we may invoke Ascoli’s Theorem and a
standard diagonal argument to find continuous zi(t) such that up to a subsequence, zδi converges
to zi uniformly on the compact sets of R+. The proposition is proved. �

We can now complete the proof of Theorem 2.3.

Proof of Theorem 2.3

We will prove that the limit (ω(·, t), z1(t), . . . , zN(t)) found above is a global Eulerian solution
of (ES) with initial data (ω0, z10, . . . , zN0).

For i ∈ {1, . . . , N}, set

Hi(x, t) =
N∑
j=1
j 6=i

djK(x− zj(t)), ui = v +Hi.

According to Propositions 3.4 and 3.5, we have

uδi
(
zδi (t), t

)
=
(
vδ +Hδ

i

) (
zδi (t), t

)
→ ui (zi(t), t)

uniformly for all i, which means that {zi(t)} satisfies the desired ordinary differential equation.
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We now turn to the equation satisfied by ω. To this aim, we define χ0 : R2 → R to be a
smooth, radial cut-off map such that

χ0 ≡ 0 on B(0,
1

2
), χ0 ≡ 1 on B(0, 1)c, 0 ≤ χ0 ≤ 1. (3.3)

For a small and positive ε, we set χε(z) = χ0 (z/ε), so that as ε goes to 0, we have for all q < 2

χε → 1 a.e., ‖∇χε‖Lq(R2) → 0. (3.4)

We let ϕ ∈ D(R+ × R2) be a test function and set

ϕε(x, t) = ϕ(x, t)
N∏
i=1

χiε(x, t) = ϕ(x, t)ξε(x, t),

where χiε(x, t) = χε (x− zi(t)).
We introduce

u = u(x, t) = v(x, t) +H(x, t) = v(x, t) +
N∑
j=1

djK (x− zj(t))

and

uδ(x, t) = vδ(x, t) +Hδ(x, t) = vδ(x, t) +
N∑
j=1

djK
(
x− zδj (t)

)
.

We claim that for all t ≥ 0, we have∫
R2

ω(x, t)ϕε(x, t)−
∫

R2

ω0(x)ϕε(x, 0) =

∫ t

0

∫
R2

ω (∂tϕε + u · ∇ϕε) dx ds. (3.5)

Indeed, since (ωδ(·, t), vδ(t), zδi (t)) is a global Eulerian solution for all δ, we have∫
R2

ωδ(x, t)ϕε(x, t) dx−
∫

R2

ωδ0(x)ϕε(x, 0) dx

=

∫ t

0

∫
R2

ωδ (∂tϕε + (vδ +Hδ) · ∇ϕε) dx ds.

For fixed ε, we then let δ go to zero. Since ϕε(s) vanishes in ∪Ni=1B(zi(s), ε) and thanks to
the uniform convergence of zδi to zi, we deduce that uδ · ∇ϕε converges uniformly to u · ∇ϕε
on R+ × R2. The conclusion finally follows from the weak convergence of ωδ to ω stated in
Proposition 3.5.

The last step is to let ε go to zero in (3.5). We compute

∂tϕε + u · ∇ϕε = ξε(∂tϕ+ u · ∇ϕ) + ϕ(∂tξε + u · ∇ξε). (3.6)

We have

(∂tξε+u · ∇ξε)(x, s) =
N∑
i=1

(
∏
j 6=i

χjε)

(
−dzi
dt

+ v +H

)
· ∇χiε(x, s)

=
N∑
i=1

(
∏
j 6=i

χjε)

(
−dzi
dt

+ v +
∑
k 6=i

dkK (x− zk(s))

)
· ∇χiε(x, s),

where the last equality is due to the fact that K (x− zi(s)) · ∇χiε(x, s) vanishes since χiε(·, s) is
radial around zi(s). Now, for x ∈ supp (∇χiε), we have for all k 6= i and for ε sufficiently small

|x− zk(s)| ≥ |zi(s)− zk(s)| − ε ≥
d(s)

2
≥ d

2
,
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where d(s) is the positive function introduced in Proposition 3.4 and d is the minimum of d(s)
on [0, t]. According to the uniform L∞ bound for the velocity v, to Proposition 3.4 and in view
of the ordinary differential equations satisfied by the point vortices, this yields

|∂tξε + u · ∇ξε|(x, s) ≤ C
N∑
i=1

|∇χiε(x, s)|.

Thanks to Hölder’s inequality, we obtain

∣∣ ∫ t

0

∫
R2

ωϕ (∂tξε + u · ∇ξε) dx ds
∣∣ ≤ Ct‖ϕ‖L∞‖ω‖L∞(Lp)‖∇χε‖Lp′ ,

where p′ < 2 denotes the conjugate exponent of p. This last quantity tends to zero when ε goes
to zero in view of (3.3). Using (3.6) and the pointwise convergence of ξε to 1, we finally arrive
at ∫

R2

ω(x, t)ϕ(x, t) dx −
∫

R2

ω0(x)ϕ(x, 0) dx =

∫ t

0

∫
R2

ω (∂tϕ+ u · ∇ϕ) dx ds.

This concludes the proof of Theorem 2.3.

4. Point vortices without sign condition

In this section, we investigate the case where all the intensities di do not have necessarily the
same sign. In this situation, the boundedness of the linear momentum Iδ and the conservation
of the energy Hδ do not preclude collision of point vortices; in fact, even in the absence of
the background part ω, the point vortex system may evolve towards collisions (see [10] for an
explicit example involving three points). Therefore, only local existence is expected. We have
the following

Theorem 4.1. Let p > 2 and ω0 ∈ Lp(R2) have compact support. Let zi0, i = 1, . . . , N be N
distinct points in R2, and let di, i = 1, . . . , N be N non zero numbers. Then there exists a time
T ∗ and an Eulerian solution of the vortex-wave system in the sense of Definition 2.2 on [0, T ∗]
with this initial data.

Proof. The proof of Theorem 4.1 is similar to the one of Theorem 2.3. We first mollify ω0 to
obtain an initial vorticity ωδ0 belonging to L1 ∩ L∞(R2) and which is uniformly bounded in
L1 ∩ Lp(R2).

We set Kδ : R2 → R2 to be a smooth, bounded and divergence-free vector field such that
Kδ(x) = K(x) for |x| ≥ δ. For instance, if ϕ = ϕ(r) denotes a smooth, compactly supported

function with support in r ∈ (0, δ), such that
∫ δ

0
rϕ(r)dr = 1, then take

Kδ = Kδ(x) =
1

2π

x⊥

|x|2

∫ |x|
0

rϕ(r) dr.
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Next, we consider the following modified vortex-wave system in the Lagrangian formulation

v(·, t) = K ∗ ω(·, t),
dzi
dt

(t) = v(zi(t), t) +
N∑
j=1
j 6=i

djKδ (zi(t)− zj(t)) ,

zi(0) = zi0,

dφ

dt
(x, t) = v(t, φ(x, t)) +

N∑
j=1

djKδ (φ(x, t)− zj(t)) ,

φ0(x) = x, x 6= zi0,

ω(φ(x, t), t) = ωδ0(x), t ∈ R+.

(4.1)

Since ωδ0 belongs to L∞(R2) and in view of the definition of Kδ, all the fields involved in
(4.1) are smooth (for each δ) and bounded. It is therefore simple to find a global solution(
ωδ, φδ, zδ1, . . . , z

δ
N

)
of (4.1), and we skip the proof.

We claim that there exists a positive T ∗ and a positive a which only depend on the initial
configuration of vortices and ||ω0‖ = ‖ω0‖L1(R2) + ‖ω0‖Lp(R2), such that for all t ≤ T ∗

inf
0<δ<1

min
i 6=j
|zδi (t)− zδj (t)| ≥ a > 0. (4.2)

Indeed, we set

dδ(t) = min
i 6=j
|zδi (t)− zδj (t)| ≥ 0,

and, possibly decreasing δ, we may assume that dδ(0) >> δ. In fact, since zδi (0) is independent
of δ, it follows that dδ(0) ≡ d > 0. We next introduce a positive time T δ so that dδ > δ on
[0, T δ). Setting then

rδij(t) = |zδi (t)− zδj (t)|, f(t) =
∑
i 6=j

1

(rδij(t))
2
,

we have for t ∈ [0, T δ)

d(rδij)
2

dt
= 2〈zδi − zδj ,vδ(zδi )− vδ(zδj )〉

+ 2
∑
k 6=i,j

dk〈zδi − zδj , K(zδk − zδi )−K(zδk − zδj )〉.

According to Lemma 3.1, and since ωδ is bounded in L∞(L1 ∩Lp), we have the uniform bound
‖vδ‖L∞(R+×R2) ≤ C(||ω0||). Using the identity

|K(a)−K(b)| = C
|a− b|
|a||b|

,

(see [4], identity (2.6)), we obtain∣∣∣∣∣d(rδij)
2

dt

∣∣∣∣∣ ≤ Crδij + C
∑
k 6=i,j

|dk|
(rδij)

2

rδikr
δ
jk

≤ Crδij + C(rδij)
2f.

Finally, this yields

df

dt
=
∑
i 6=j

−1

(rδij)
4

d(rδij)
2

dt
≤ Cf(1 + f).
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Solving this differential inequality gives

f(t) ≤ 1

(1 + [f(0)]−1)e−Ct − 1
,

with f(0) ≤ N(N − 1)d−2, uniformly in δ. This estimate holds as long as the denominator
(1 + [f(0)]−1)e−Ct − 1 > 0, i.e., 0 ≤ t < T ∗ ≡ C log(1 + [f(0)]−1). Hence, f ≤ C for t < T ∗,

and T ∗ depends only on f(0) and ||ω0||. Since dδ(t) ≥ 1/
√
f(t), we conclude that T δ ≥ T ∗ and

therefore it may be chosen independently on δ. This yields (4.2).
Now, we may apply exactly the same arguments as in the proof of Proposition 3.5 to find

ω ∈ L∞ ([0, T ∗], L1 ∩ Lp(R2)) so that ωδ converges weakly to ω in C([0, T ∗], L1 ∩ Lp − w) and
N trajectories z1(t), . . . , zN(t) defined on [0, T ∗] so that for all i, zδi converges uniformly to zi
on [0, T ∗]. In particular, the lower bound for the minimal distance between the point vortices
at every level δ given by (4.2) also holds for the limiting vortices. We may then follow the
remainder of the proof of Theorem 2.3 to state that (ω, z1, . . . , zN) is an Eulerian solution of
(ES) on [0, T ∗]. This concludes the proof of Theorem 4.1. �

We conclude with some final remarks. In summary, we have well-posedness of weak solutions
for the vortex-wave system when the initial background vorticity is bounded and constant near
the initial position of the vortices, existence of a Lagrangian weak solution when the initial
background vorticity is bounded and we just proved existence of an Eulerian weak solution
when the initial background vorticity is Lp, p > 2, without additional restrictions. It would
be natural to look for extensions of these results in bounded domains and, more interestingly,
in rotating spheres. We do not expect uniqueness for the weak solutions constructed here,
because the background velocity field is at best Hölder continuous, which ought to lead to
the standard counter-examples for the uniqueness of vortex trajectories. Also existence of
weak solutions for less regular background vorticities would be surprising, because we would
then expect discontinuous point vortex trajectories. The most interesting open problem in
this context is uniqueness when the point vortices move in a continuously varying background,
which is an interesting question from the modeling point of view, see [14], and appears very
plausible, although technically challenging.

Appendix

We prove here the following

Proposition A.1. Let ω0 ∈ L∞(R2) be compactly supported and z1, . . . , zN be N distinct
points in R2 with positive masses di. Let (ω, z1, . . . , zN , φ) be a global Lagrangian solution (in
the sense of Definition (2.1)). Then the function

H(t) =

∫∫
R2×R2

ln |x− y|ω(x, t)ω(y, t) dx dy

+
∑
i 6=j

didj ln |zi(t)− zj(t)|+ 2
N∑
i=1

di

∫
R2

ln |x− zi(t)|ω(x, t) dx.

is conserved in time.

Proof. We notice first that according to Proposition 3.3, supp (ω(·, t)) ⊂ B (0, C(1 + t)). There-
fore all the integrals involved in the definition of H are well-defined. In order to simplify the
notations, we will sometimes write in the following f(x) or ft(x) instead of f(x, t) for any
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function f . We set

H1(t) =

∫∫
R2×R2

ln |x− y|ωt(x)ωt(y) dx dy,

H2(t) =
∑
i 6=j

didj ln |zi(t)− zj(t)|,

H3(t) = 2
N∑
i=1

di

∫
R2

ln |x− zi(t)|ωt(x) dx.

Since φ(·, t) preserves Lebesgue measure, we have

H1(t) =

∫∫
R2×R2

ln |φ(x, t)− φ(y, t)|ω0(x)ω0(y) dx dy.

Let us assume for the moment that we may derive inside the integrals. We then have

− 1

2π

dH1

dt
(t) =

∫∫
K⊥ (φ(x, t)− φ(y, t)) ·

(
dφ

dt
(x, t)− dφ

dt
(y, t)

)
ω0(x)ω0(y) dx dy.

In view of the ordinary differential equation solved by φ(·, t), we obtain, after changing variables

− 1

2π

dH1

dt
(t) =

∫∫
K⊥ (x− y) · (v(x)− v(y))ωt(x)ωt(y) dx dy

+

∫∫
K⊥ (x− y) ·

N∑
i=1

di (K (x− zi)−K (y − zi))ωt(x)ωt(y) dx dy.

Using the symmetry properties of the Kernel K, we are led to

− 1

2π

dH1

dt
(t) = 2

∫∫
K⊥ (x− y) · v(x)ωt(x)ωt(y) dx dy

+ 2

∫∫
K⊥ (x− y) ·

N∑
i=1

diK (x− zi)ωt(x)ωt(y) dx dy.

We observe that∫∫
K⊥ (x− y) · v(x)ωt(x)ωt(y) dx dy =

∫
v(x)ωt(x) dx ·

∫
K⊥(x− y)ωt(y) dy

=

∫
v(x) · v⊥(x)ωt(x) dx = 0.

Besides, we have for all i∫∫
K⊥ (x− y) ·K (x− zi)ωt(x)ωt(y) dx dy =

∫
K (x− zi)ωt(x) dx ·

∫
K⊥(x− y)ωt(y) dy

=

∫
v⊥(x) ·K (x− zi)ωt(x) dx.

This finally yields

− 1

2π

dH1

dt
(t) = 2

N∑
i=1

di

∫
v⊥(x) ·K (x− zi)ωt(x) dx. (a)

Similarly, we obtain by change of variables

− 1

2π

dH3

dt
(t) = 2

N∑
i=1

di

∫
K⊥(x− zi) ·

(
v(x)− dzi

dt

)
ωt(x) dx,
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therefore we obtain

− 1

2π

dH3

dt
(t) = −2

N∑
i=1

di

∫
v⊥(x) ·K(x− zi)ωt(x) dx+ 2

N∑
i=1

di
dzi
dt
· v⊥(zi). (b)

Finally, we compute

− 1

2π

dH2

dt
(t) =

∑
i 6=j

didjK
⊥(zi − zj) · (

dzi
dt
− dzj

dt
) = T1 + T2,

where

T1 =
∑
i 6=j

didjK
⊥(zi − zj) ·

∑
k 6=i,j

dk (K(zi − zk)−K(zj − zk))

and

T2 =
∑
i 6=j

didjK
⊥(zi − zj) · (v(zi)− v(zj)) .

On the one hand, it is well-known that T1 = 0 (see [9]). On the other hand, exchanging i and
j in T2 and using that K is antisymmetric leads to

− 1

2π

dH2

dt
(t) = 2

∑
i 6=j

didjK
⊥(zi − zj) · v(zi). (c)

Combining (a), (b) and (c) finally yields the conclusion.

We finally give a few indications in order to justify rigorously the previous computations.
Let δ be a positive small number. In the definition of H(t), we replace ln by lnε, where lnε |z|
coincides with ln |z| on B(0, ε)c and is identically equal to ln ε in B(0, ε); this yields a function
Hε(t). Since ω ∈ L∞(L1 ∩ L∞), Hε(t) converges uniformly to H(t) when ε goes to zero with
respect to t. On the other hand, applying the previous computations to Hε(t), we show that
d
dt
Hε(t) converges locally uniformly to zero with respect to t. We conclude thatH(t) is conserved

in time.
�
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