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DYNAMICS OF SEVERAL POINT VORTICES FOR THE

LAKE EQUATIONS

LARS ERIC HIENTZSCH, CHRISTOPHE LACAVE, AND EVELYNE MIOT

Abstract. The global asymptotic dynamics of point vortices for the
lake equations is rigorously derived. Vorticity that is initially sharply
concentrated around N distinct vortex centers is proven to remain con-
centrated for all times. Specifically, we prove weak concentration of the
vorticity and in addition strong concentration in the direction of the
steepest ascent of the depth function. As a consequence, we obtain the
motion law of point vortices following at leading order the level lines
of the depth function. The lack of strong localization in the second
direction is linked to the vortex filamentation phenomena. The main
result allows for any fixed number of vortices and general assumptions
on the concentration property of the initial data to be considered. No
further properties such as a specific profile or symmetry of the data are
required. Vanishing topographies on the boundary are included in our
analysis. Our method is inspired by recent results on the evolution of
vortex rings in 3D axisymmetric incompressible fluids.

1. Introduction

The purpose of this paper is to derive the point vortex dynamics for the
lake equations, which are a two-dimensional geophysical model essentially
described by H. P. Greenspan [13, p. 235]. Given a domain Ω ⊂ R

2 and
a topography (depth function) b : Ω → R+, the pair (Ω, b) is called a lake
and the lake equations read

(1.1)

{
∂t(bv) + div(bv ⊗ v) + b∇p = 0 on Ω

div(bv) = 0 on Ω, (bv) · n = 0 on ∂Ω,

where v : Ω → R
2 is the velocity field, p the pressure and n the outward-

pointing unit normal vector on ∂Ω. The vector field v corresponds to the
vertically averaged horizontal component of a three-dimensional velocity, see
[3] for a rigorous derivation of this system as the low Froude number limit of
the usual inviscid shallow water equations. In the case where b is constant,
System (1.1) reduces to the well-known 2D incompressible Euler equations,
for which well-posedness is established in various settings in the works of W.

Wolibner [32] and V. I. Yudovich [33]. As for the 2D Euler equations,
the notion of vorticity plays a prevalent role in the qualitative analysis of
the solutions of the lake equations, especially for vortex like solutions. More
precisely, we consider the potential vorticity ω as

ω(t, x) :=
curl v(t, x)

b(x)
=

(∂1v2 − ∂2v1)(t, x)

b(x)
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which satisfies the continuity equation together with the incompressibility
condition

∂t(bω) + div(bvω) = 0, div(bv) = 0 on Ω.

When the lake (Ω, b) has a finite number of islands Ω = Ω̃ \
(⋃Nis

k=1 Ik
)
, see

Assumption 1.2 below for the precise geometrical hypotheses, this amounts
to the following vorticity formulation

(1.2)





∂t(bω) + div(bvω) = 0 on Ω

curl v = bω, div(bv) = 0 on Ω,
(bv) · n = 0 on ∂Ω,
˛

∂Ik

v · τ ds = Γk for k = 1, . . . , Nis

which is equivalent to (1.1) for smooth lakes, see [19, Appendix A]. The
conservation of the circulation is related to Kelvin’s theorem, see [19, Propo-
sition 2.13]. When the depth b is bounded away from zero, existence and
uniqueness of global weak solutions to (1.1) is proven by C. D. Levermore,

M. Olivier and E. S. Titi in [20]. In [5], D. Bresch and G. Métivier

include varying depth functions vanishing on the boundary. Subsequently,
C. Lacave, T. Nguyen and B. Pausader [19] extend the work in [5]
treating the case of singular domains and rough bottoms. They show that
the inviscid lake equations are structurally stable under Hausdorff approxi-
mations of the fluid domain and Lp-perturbations of the depth. This study
is extended by the present authors for an evanescent or emergent island in
[15] giving rise to an asymptotic dynamics including an additional Dirac
mass in the vorticity: a point vortex located in z0 ∈ Ω with b(z0) = 0 and
∇b(z0) = 0. Very recently, B. Al Taki and C. Lacave establish in [2] the
existence and uniqueness of global classical solutions. Moreover, it is shown
in [2] that these classical solutions are recovered in the vanishing viscosity
limit for the viscous lake equations.

In this paper, we aim to rigorously justify the ε-limit of (1.2) for N
vortices of core size proportional to ε > 0, namely for solutions to (1.2)
with initially sharply concentrated vorticity around N distinct points. Our
analysis applies to any fixed number N of vortices without restrictions on
the size or sign of their intensities, lakes (Ω, b) with vanishing topographies
on the boundary are included. G. Richardson [28] formally computes the
asymptotic motion law depending on the topography variations: to leading
order, the vortex centers evolve according to the ODE

(1.3) żi(t) = −| ln ε| γi
4π

∇⊥b(zi(t))

b(zi(t))
,

where γi =
´

Ω bωi dx and ∇⊥b = (−∂2b, ∂1b). So, vortices move along the
level lines of the depth function b. For smooth lakes and depth functions
bounded away from zero, the motion law (1.3) is rigorously proven by J.

Dekeyser and J. Van-Schaftingen [10] for a single vortex. The method
developed in [10] does not seem to allow for an extension of the theory to
several point vortices and vanishing topography on the boundary. No strong
localization property of the vorticity around its asymptotic trajectory is
provided.
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The strategy we pursue here is totally different from the one in [10], that
relies on sophisticated elliptic techniques. It is rather inspired by the anal-
ogy between point vortices for the lake equations and vortex rings for 3D
axisymmetric inviscid fluids. Since the work by L. Da Rios [9], the dy-
namics of an isolated vortex filament in 3D inviscid fluids is conjectured to
be well modelled by the binormal flow, but the rigorous derivation in the
general case is an open problem, see [17] for a result in this direction. In
the special case of (one or several) vortex rings, recent progress is due to P.

Buttà, G. Cavallaro and C. Marchioro [6], who rigorously prove that
the leading order term in the velocity of vortex rings starting from sharply
localized vortex rings with same axis of symmetry (say span(~ez)), of radii

ri, with ri 6= rj if i 6= j, and circulation γi, is | ln ε| γi4π ~ez
ri
. In the same spirit

for (1.2), we consider N vortices placed at mutual distance of order one and
show that the velocity of the vortex centers is of order γi| ln ε| at leading
order, which therefore is a rigorous justification of Richardson’s law (1.3).
The leading order term in both problems stems from the 3D nature of the
considered phenomena. After dimension reduction of the respective prob-
lems (by axisymmetry for the vortex rings [8, Equation (1.6)] and vertically
averaging of v [3, 13] for (1.1)), the leading order contribution is linked to
the anelastic constraint for v in (1.1), see also (4.2) below. This contribu-
tion vanishes in the case of the 2D Euler equations, namely b = const., see
[24, 25].

In order to highlight the main order contribution, we choose as in [10]
to accelerate the time scale: we set s = | ln ε|t ∈ [0, T ]. Denoting by ωε

the unique weak solution of (1.2) with the initial data ω0
ε , we consider the

rescaled vorticity

ω̃ε(s, x) = ωε

(
s

| ln ε| , x
)

and ṽε the corresponding velocity field. In this rescaling, (1.2) reads

(1.4)





∂s(bω̃ε) +
1

| ln ε| div(bṽεω̃ε) = 0 on (0,∞) × Ω

curl ṽε = bω̃ε, div(bṽε) = 0 on [0,∞)× Ω,
(bṽε) · n = 0 on [0,∞)× ∂Ω
˛

∂Ik

ṽε · τ ds = Γk
ε for k = 1, . . . , Nis and on [0,∞),

with the initial data ω̃ε(0, ·) = ω0
ε .

Remark 1.1. We point out here that this time rescaling is equivalent to
keeping the time invariant and to considering small vortices | ln ε|γε = O(1)
as in [6], where γε :=

´

Ω bωε. This equivalence comes from the non-linearity

of the lake equations (1.1): if we consider γε = γ̃/| ln ε|, Γk
ε = Γ̃k/| ln ε|,

with γ̃ and (Γk) independent of ε, then we set ω̃ε = | ln ε|ωε which verifies
´

bω̃ε = γ̃. The velocities recovered through the div-curl problem satisfies
ṽε = | ln ε|vε and we obtain that (ω̃ε, ṽε) is the solution of (1.4).

As we work only with these rescaled variables, we omit the tilde in the
following and return to t for the time variable, so (ωε, vε)(t, x) corresponds
to the solution of (1.4) in the sequel.
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Assumptions and main result. The lakes under consideration in this
article are smooth, with Nis ∈ N islands and their depth function may
vanish on the boundary. We give below a precise definition.

Assumption 1.2. The lake (Ω, b) satisfies the following conditions

(i) Ω := Ω̃\
( Nis⋃

k=1

Ik
)
, where Ω̃, Ik are bounded simply-connected subsets of

R
2, Ω̃ is open, Ik are disjoint and compact subsets of Ω̃, and ∂Ω ∈ C3,

(ii) b(x) = c(x)ϕα(x) with α > 0, c, ϕ ∈ C3(Ω) and c(x) > c0 > 0 on Ω,
(iii) Ω = {ϕ > 0} with ∇ϕ 6= 0 on ∂Ω.

These conditions enable us to consider the simplest case of a non-vanishing
shore (α = 0) or the more realistic case of a vanishing topography on the
boundary (α > 0). The function ϕ plays the role of the distance to ∂Ω close
to the boundary: see Lemma A.1.

For a vanishing topography on the boundary, these assumptions ensure
that the level sets {x ∈ Ω : b(x) = b0} are unions of disjoint connected
compact subsets of Ω for all b0 > 0. The compactness in Ω of the level set
is also true for a non-vanishing shore if b0 /∈ b(∂Ω). If b0 ∈ b(∂Ω), we will
consider a connected component of the respective level set being disjoint to
the boundary, see the following remark.

Remark 1.3. Under Assumption (1.2) and given z0 such that the connected
component C of {x ∈ Ω : b(x) = b(z0)} containing z0 satisfies C ∩ ∂Ω = ∅,
the Cauchy-Lipschitz theorem yields that (1.3) has a unique global solution
in C1(R+) where z(0) = z0. Even if b may vanish at the boundary, the
solution is indeed global because it holds b(z(t)) = b(z0) for all t > 0. The
assumption on the disjointness of C and ∂Ω only means that a point moving
on this level set cannot reach the boundary.

We have stated Assumption 1.2 with only one commun coefficient α, but
we can, as in [19, 15], specify different rates αk around Ik. This extension
is trivial because we only derive estimates in this paper in compact subsets
of Ω. However, in the case of different αk, we would need to split Ω into
different neighborhoods, which makes the assumption more complicated to
state.

Next, we specify the assumptions on the initially concentrated vorticity
ω0
ε around N point vortices which belong to different and mutually disjoint

connected components of level sets.

Assumption 1.4. Let Nv ∈ N
∗ and (z01 , . . . , z

0
Nv

) ∈ ΩNv , we define Ci to be

the connected component of the level set {x ∈ Ω : b(x) = b(z0i )} containing
z0i .

The points (z0i ) and the sequence of initial vorticities ω0
ε satisfy:

(i) Ci ∩ Cj = Ci ∩ ∂Ω = ∅, for all i 6= j.
(ii) There exist M0, ε0 > 0 and (δ1, . . . , δNv ) ∈ {−1, 1}Nv such that

ω0
ε(x) :=

Nv∑

i=1

ω0
ε,i(x),
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where ω0
ε,i ∈ L∞(Ω) satisfies the following properties for all ε ∈ (0, ε0]

and i = 1, . . . , Nv:

• supp(ω0
ε,i) ⊂ B(z0i ,M0ε);

• 0 6 δiω
0
ε,i 6

M0

ε2
;

• γε,i :=

ˆ

Ω
bω0

ε,i dx→ γi ∈ R
∗ as ε→ 0.

Remark 1.5. As the Ci containing the vortex center z0i are mutually disjoint
connected compact sets, we state that there is ρ1,2 > 0 such that for all
ρ ∈ (0, ρ1,2] the compacts subsets Cρ,1 and Cρ,2 are disjoint, where

Cρ,j := the connected component containing z0j of {x ∈ Ω : |b(x)−b(z0j )| 6 ρ}.

Indeed, by contradiction, we would have a decreasing sequence ρn → 0 and
xn ∈ Cρn,1∩Cρn,2 which would imply by extracting a subsequence redenoted
by xn that xn → x∞ such that b(x∞) = b(z01) = b(z02). This means that
Cρn,1 = Cρn,2 is a decreasing sequence of connected compact sets, hence

verifying that the limit is connected, contained in the level set {x ∈ Ω :
b(x) = b(z01)} and containing z01 and z02 , which is in contradiction with C1 ∩
C2 = ∅. In the same way, observing that ∂Ω̃ and ∂Ik are connected compact
sets, we also infer that Cρ,1 and ∂Ω are disjoint for ρ 6 ρ01. Defining ρb :=
min06i<j6Nv ρi,j, we get that (Cρ,i)i=1,...,Nv and ∂Ω are mutually disjoint
connected compact sets for all ρ 6 ρb. Decreasing ε0 if necessary, this allows
us to introduce r0 > 0 and C > 0 such that for all i, j ∈ {1, . . . , Nv}, i 6= j

dist(Cρb,i, ∂Ω) > r0, dist(Cρb,i, Cρb,j) > r0, supp(ω0
ε,i) ⊂ CCε,i ⊂ Cρb/2,i

for all ε ∈ (0, ε0]. Here and in all the sequel, the distance of two com-
pact subsets of R2 corresponds to their minimal distance (and not to the
Hausdorff distance):

dist(K1,K2) := min
x∈K1

dist(x,K2) = min{|x− y| : (x, y) ∈ K1 ×K2}.

This ensures in particular that the supports of ω0
ε,i are mutually disjoint

compact subsets of Ω.

In our main result, we prove that, for concentrated initial data, the vor-
ticity evolving through (1.4) remains weakly concentrated in moving disks
and strongly concentrated in the direction of the steepest ascent of the to-
pography b.

Theorem 1.6. Let (Ω, b) be a lake satisfying Assumption 1.2, let
(
ω0
ε , (z

0
k)

Nv
k=1

)

be a sequence of initial data satisfying Assumption 1.4 and let (Γk
ε)

Nis
k=1 be a

sequence in R
Nis converging to (Γk)Nis

k=1 as ε→ 0.
For all i = 1, . . . , Nv, let zi be the unique global solution of

(1.5) żi(t) = − γi
4π

∇⊥b(zi(t))

b(zi(t))
, zi(0) = z0i .
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Then the following hold for the global weak solution1 ωε of (1.4) with
initial data ω0

ε :
(i) There exist trajectories zε,i ∈ C(R+; Ω) such that

sup
t∈[0,T ]

|zε,i(t)− zi(t)| → 0 as ε→ 0, for all T > 0 and 1 6 i 6 Nv.

There exists a decomposition

ωε(t, x) =

Nv∑

i=1

ωε,i(t, x), ωε,i ∈ L∞(R+, L
∞(Ω))∩C(R+, L

p(Ω)) for p ∈ [1,∞)

verifying ωε,i(0, ·) = ω0
ε,i and such that

sup
t∈[0,T ]

∣∣∣∣∣γi−
ˆ

B(zε,i(t),Rε)
bωε,i(t, x) dx

∣∣∣∣∣→ 0 as ε→ 0, for all T > 0 and 1 6 i 6 Nv

where Rε → 0 as ε→ 0.
(ii) For every k ∈ (0, 1/4) and T > 0 there exists εk,T , Ck,T > 0 depending

only on (z0i )i=1,...,Nv , (γi)i=1,...,Nv , (Γ
i)i=1,...,Nis, M0, b, Ω, k and T such that,

for any ε ∈ (0, εk,T ], suppωε,i(t, ·) ⊂ Cρb,i. Moreover,

(1.6) suppωε,i(t, ·) ⊂
{
x : |b(x)− b(z0i )| 6

Ck,T

| ln ε|k
}

for all t ∈ [0, T ] and i ∈ {1, . . . , Nv}.
We stress that the result allows one to consider any fixed number Nv of

vortices that are initially well-separated in the sense of Assumption 1.4 and
it also applies to lakes (Ω, b) with beaches, namely vanishing topographies at
the boundary. Note that the asymptotic dynamics (1.5) is a consequence of
the obtained localization properties which are pivotal to our method. The
first statement corresponds to a weak concentration property as obtained
in [10] for a single vortex. While the main part of each blob of vorticity
is included in a small disk close to the asymptotic vortex trajectory, some
small amount of vorticity can be located outside this disk. The second item
concerns the localization property for the blobs. A direct byproduct of the
inclusion suppωε,i(t, ·) ⊂ Cρb,i is the fact that the blobs remain separated
on [0, T ]. It also states the strong localization of ωε,i around the connected
component Ci of the level set containing z0i . More precisely, a small amount
of vorticity can be located outside a small disk around the vortex center, but
has to be close to Ci (see Remark 1.7). This stronger notion of localization
compared to the weak concentration is crucial for treating several vortices
and vanishing topographies. Note that the authors in [10] lack such a strong
localization property and hence only consider a single vortex.

Remark 1.7. We emphasize that the strong localization (1.6) in the direction
of steepest ascent of b gives the localization around Ci for the usual topology.
Indeed, if we draw any closed curve Λ which does not intersect Ci, but which
can be close to Ci, then we can apply Remark 1.5 to state that there is ρΛ > 0
such that CρΛ,i is disjoint to Λ, because Λ is a connected compact set disjoint

1Given by the well-posedness results by D. Bresch and G. Métivier in [5] as well as
by the second author, T. Nguyen and B. Pausader in [19], see Proposition 2.1 below.
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to Ci. This implies that for all ε such that
Ck,T

| ln ε|k
< ρΛ, the vorticity cannot

meet the curve Λ on [0, T ]. For more details on this argument, see the end
of the proof of Theorem 1.6 in Section 3.1.

The axisymmetric 3D Euler equations without swirl can be interpreted as
a special case of the lake equations for which Ω = R × R+ and b(z, r) = r,
see for instance the introduction in [8]. As mentioned in the introduction,
vortex rings in the 3D problem amount to point vortices for (1.1) and we
recall that the limit motion in [8, 6] is

żi(t) =
γi
4π

~ez
r0i

= − γi
4π

(0, 1)⊥

ri(t)
.

In this regard, Theorem 1.6 can be seen as a generalization to general Ω
and b of the results developed in [6] and references therein. However, such
a generalization is not trivial because [6] and previous results rely on the
3D explicit Biot-Savart law, which is not available for general b. One of the
main difficulties is to provide a proof of Theorem 1.6 without this kind of
representation formulas.

The assumption that the initial centers of vorticity z0i belong to different
connected components of level sets can be understood as a sufficient condi-
tion to rule out collisions between vortices or with the boundary ∂Ω. This
condition is reminiscent of requiring the vortex rings to be of different radii
in [6]. The question whether a local result can be achieved if two vortices
belong to the same Ci then arises naturally. Given that such a local result
was proven for 3D vortex rings in [8], we expect that a respective local re-
sult for the lake equations (1.1) is achievable with our approach, even with
a simplified proof compared to Theorem 1.6 as difficulties related to the
global validity are then not relevant. More precisely, the local result would
yield T0 > 0 such that the limit dynamics is proven on [0, T0]. As in [8]
we expect T0 to be strictly smaller than the time of first collision between
the limit point vortices Tc which can be Tc = +∞. This restriction for the
aforementioned models arising from 3D models after dimension reduction is
a major difference to the 2D Euler case for which the result is known up to
collision time [25]. As the strong localization only holds in one direction, a
collision of a vortex with a small filament emitted by the preceding vortex
core can occur at time Tε < Tc. The spreading of the support is related to
the phenomenon of filamentation of vortex patches which is well observed
experimentally and numerically, see e.g. [26, 21]. Vortex filamentation is
not yet fully understood and expected to be linked to various instability
mechanisms, see e.g. [31].

For the 2D Euler eq., C. Marchioro and M. Pulvirenti derive a
lower bound for the time of the first appearance of vortex filamentation [25].
Specifically, they show that there exists εT depending on T such that vor-
ticity initially compactly supported in a disk of radius ε remains supported
in a disk of radius εβ on [0, T ], provided that ε ∈ (0, εT ]. It remains a fasci-
nating open question to fully understand the spreading of the support. An
important step in that direction consists in determining the optimal β > 0.
While β < 1/300 is assumed in [25], this bound is improved to β < 1/3 in
[22] by C. Marchioro. In [7], P. Buttà and C. Marchioro investigate
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the time for which a small filament emanates from the disk of radius εβ

with β < 1/2. Understanding the respective mechanism for the dimension
reduced 3D models appears to be even more involved from a mathematical
point of view. Indeed, decomposing the velocity field as in (4.2) below, sug-
gests that the first order term corresponds to the analogous one as in the 2D
case which does not contribute to the displacement of the center of vorticity.
The second order term in the expansion determines the motion at scale of
velocity O(| ln ε|), see (4.4) below. Being related to the anelastic constraint,
its counterpart for 2D Euler vanishes. The special structure of this term
pointing in the direction of ~ez for vortex rings and ∇⊥b for (1.1), yields
the motion of the vortex core with velocity of order | ln ε| in that direction,
which corresponds to the binormal flow in this special case. Note that the
velocity in the exterior of the vortex core is of O(1). For the lake equation,
this significant difference of velocity heuristically suggests the mechanism
leading to the spreading of the support: a small filament emanating from
the disk of radius ε is transported by a velocity which is much smaller than
the one in the core of the vortex. The initial vortex will spread in the di-
rection ∇⊥b, we are only able to prove strong localization in the direction
of steepest ascent of b, namely close to the level set. In order to avoid this
spread, one would need to prove that the vorticities remain confined in a
disk of radius Rε, which is far from being known even in dimension two.
The link of the localization problem to the vortex filamentation phenomena
and the stability of vortex filaments further motivates its study. The vortex
filamentation effect is of high physical relevance and it has been extensively
investigated in the physical literature starting from the pioneering work [30]
by J.J. Thomson, see e.g. [31]. On a related note, the understanding of the
vortex dynamics for (1.1) may be of practical use to understand phenomena
such as rip currents, transport mechanisms of pollutants and sedimentation,
see [27] and also the introduction and conclusions in [28] as well as references
therein.

Similarly to the aforementioned results, Theorem 1.6 states the stability
of the motion of point vortices requiring only a very general localization as-
sumption, see Assumption 1.4. The result is therefore sufficiently robust and
general to allow for an experimental and numerical observation of the phe-
nomenon. In particular, we do not assume any special profile or symmetry
property for the initial data.

Concerning possible generalizations of Theorem 1.6 we mention that,
thanks to the strong localization property around the connected compo-
nents Ci of the respective level set of b, we require the regularity properties
of the lake (Ω, b) only locally close to Ci. Hence, we expect an extension for
lagrangian solutions, see Proposition 2.2, to rough lakes, as considered in
[19, 15], to be within reach by the present techniques.

Without commenting further on the dynamics of the limit trajectories, we
only mention that no assumptions on the zero-set of ∇b are required. Note
that under suitable regularity assumptions level sets can be characterized by
means of Sard’s Theorem [29] and its generalizations. We do not rely on any
such property of the level sets. If z0i is located on a critical point ∇b(z0i ) = 0,
then Theorem 1.6 states that ωε,i remains concentrated around a stationary
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point. It is then an interesting open problem to investigate the motion in
this case without rescaling the time, i.e. exhibiting the second term in the
motion expansion. In other words, Theorem 1.6 characterizes the dynamics
on a short time scale of order | ln ε|−1. The mutual interaction of vortices
is only relevant on time scales of order one. Alternatively, to observe the
interactions at the main order, we could initially place the vortices at a
distance of order 1/| ln ε|. In this case, our strong localization result does
not suffice to separate them because we would need k > 1 in (1.6).

The paper is organized as follows. Section 2 concerns the well-posedness
of the lake equations (1.1). In Section 3, it is shown how the problem
addressed in Theorem 1.6 can be reduced to the study of a single vortex
evolving according to the lake equations with additional external field. The
proof of the main Theorem 1.6 is completed assuming that the reduced
problem is solved, namely that Theorem 3.3 holds. The remaining part of
the paper is dedicated to the proof of Theorem 3.3, see the last paragraph
of Section 3 for a detailed outline of Sections 4 to 8. The Appendix A is
devoted to the proof of several regularity properties of solutions to (1.2)
stated in Proposition 2.2. Finally, Appendix B provides a result on the
rearrangement of the mass used several times throughout the paper.
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esting discussions on general geometrical assumptions related to connected
components, see Remark 1.5, and Emmanuel Russ for discussions concern-
ing elliptic estimates with islands. This work is supported by the French
National Research Agency in the framework of the project “SINGFLOWS”
(ANR-18-CE40-0027-01). L.E.H. was funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) - SFB 1283/2 2021 -
317210226. E.M. acknowledges the project “INFAMIE” (ANR-15-CE40-
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2. Preliminary results: Well-posedness and Biot-Savart type

law

2.1. Well-posedness of weak solutions for smooth lakes and addi-

tional properties. We begin this section by recalling the well-posedness
result for weak solutions proved by D. Bresch and G. Métivier in [5], see
also [19].

Proposition 2.1 ([5]). Let (Ω, b) a smooth lake, i.e. verifying Assump-
tion 1.2, (Γk) ∈ R

Nis and ω0 ∈ L∞(Ω). For all T > 0 there exists a unique
pair (v, ω) with ω ∈ L∞([0, T ] × Ω) which is a solution of (1.2) in the fol-
lowing sense:

(i)
√
bv ∈ L∞([0, T ];L2(Ω)) satisfies in the weak sense for a.e. t ∈ [0, T ]

div(bv) = 0 and curl v = bω in Ω, (bv) · n = 0 on ∂Ω,
˛

∂Ik

v · τ ds = Γk for k = 1, . . . , Nis;
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(ii) for all Φ ∈ C1([0, T ] × Ω), there holds for any t ∈ [0, T ]
ˆ

Ω
Φ(t, x)(bω)(t, x) dx−

ˆ

Ω
Φ(0, x)(bω0)(x) dx

=

ˆ t

0

ˆ

Ω
(bω)(s, x) (∂tΦ+ v · ∇Φ) (s, x) dxds.

Moreover, the solution satisfies the following additional regularity properties:
v ∈ L∞([0, T ];C(Ω)), v · n = 0 on ∂Ω and

ω ∈ C([0, T ];Lr(Ω)), v ∈ C([0, T ];W 1,r(Ω))

for any r ∈ [1,∞).

Considering Φ ≡ 1 it is then obvious that the vorticity mass is conserved:
ˆ

Ω
b(x)ω(t, x) dx =

ˆ

Ω
(bω0)(x) dx for all t ∈ [0, T ].

It is moreover proved in [2, Theorem 2.1] that2 v is log-lipschitz on Ω, namely

|v(t, x)− v(t, y)| 6 C(‖ω‖L∞([0,T ]×Ω))|x− y|
(
1 +

∣∣ ln |x− y|
∣∣).

We establish further properties of this solution.

Proposition 2.2. Let ω0 ∈ L∞(Ω) with compact support in Ω, and set

δ0 := dist(suppω0, ∂Ω) = inf
{
dist(x, ∂Ω) : x ∈ suppω0

}
.

Let T > 0 and let (v, ω) be the unique weak solution of the lake equations on
[0, T ] given by Proposition 2.1.

(i) There exists a compact subset KT of Ω, depending only on ‖ω0‖L∞ ,
δ0 and T , such that

suppω(t, ·) ⊂ KT , ∀t ∈ [0, T ].

(ii) We have ‖b1/pω(t, ·)‖Lp = ‖b1/pω0‖Lp, for t ∈ [0, T ], for p ∈ [1,∞).
(iii) There exists a unique flow associated to v in the classical sense: for

any x ∈ Ω and t0 ∈ [0, T ], there exists a unique characteristic curve
X(·, t0, x) ∈ C1([0, T ]; Ω) solving

dX(t, t0, x)

dt
= v(t,X(t, t0, x)), X(t0, t0, x) = x.

Moreover, we have ω(t, x) = ω0(X(0, t, x))) for all t ∈ [0, T ] and
x ∈ Ω.

For simplicity we will further denote X(t, x) = X(t, 0, x).
We mention that stability and existence of renormalized solutions are

established by D. Bresch and P.-E. Jabin [4] for a class of advective
equations with a vector field satisfying a degenerate anelastic constraint,
which includes the case of the lake equations (1.2) considered in the setting
of our paper.

2Even if this result is stated in [2] for simply connected domains, it holds true for lakes
with islands. Indeed, elliptic regularity in the interior of the lake comes from an easy
local elliptic argument, whereas the regularity close to a boundary is exactly the difficult
and established result in [2]. For more details about the localization of elliptic estimates
around each boundary, see [10, Sections 2.2 and 3].
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Proposition 2.2 is proved in Appendix A. The proof relies on several argu-
ments from the theory of linear transport equations developed by R. J. Di

Perna and P. L. Lions [12] with vector fields with bounded divergence.
The main difficulty here is that div(v) = −∇b · v/b is not bounded on Ω if
b vanishes on the boundary.

Here, the fact that the log-lipschitz constant of the velocity field vε de-
pends on ‖ωε(t, ·)‖L∞ = ‖ω0

ε‖L∞ , diverging possibly as ε−2, constitutes a
major difficulty. Indeed, this does a priori not suffice to infer a lower bound
for the distance to the boundary δT,ε when ε tends to zero. Such a uniform
control of the distance to the boundary will be included in the forthcoming
definition of Tε, see (3.5), and one of the main consequence of the strong
localization will be to state that Tε = T .

Remark 2.3. In view of the last item of Proposition 2.2, it is natural to
define the decomposition of ωε in Theorem 1.6 as the transport of the de-
composition of the initial data, see Assumption 1.4:

ωε,i(t, x) := ω0
ε,i(Xε(0, t, x))).

2.2. Green kernel for the lake equations. A classical feature of inviscid
flow is the reconstruction of the velocity in terms of the vorticity. The vector
field vε is uniquely determined by ωε and (Γk

ε)
Nis
k=1 through the following div-

curl problem

(2.1)

div(bvε) = 0 in Ω, curl vε = bωε in Ω, bvε · n = 0 on ∂Ω,
˛

∂Ik

vε · τ ds = Γk
ε for k = 1, . . . , Nis.

This vector field can be represented in terms of stream functions [19, Propo-
sition 2.10],

(2.2) bvε = ∇⊥Ψε +

Nis∑

k=1

(
Γk
ε +

ˆ

Ω
bωεϕ

k
)
∇⊥ψk,

where Ψε ∈ H1
0 (Ω) is the unique solution to

(2.3) div

(
1

b
∇Ψε

)
= bωε in Ω.

The functions ϕk and ψk are b-harmonic functions and form in particular
a basis for the space of b-harmonic functions, we refer to [19, Section 2.1]
for definitions. However, as they are independent of ωε and ε, we only need
very weak properties for these functions, namely that

(2.4) ϕk,∇ψk,D2ψk ∈ L∞
( Nv⋃

i=1

Cρb,i
)

where Cρb,i is the neighborhood of Ci as defined in Remark 1.5. This property
comes from local elliptic regularity.

While in general no explicit Biot-Savart formula seems available for (2.3),
J. Dekeyser and J. Van-Schaftingen establish in [10, Proposition 3.1]
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an interesting relation between the kernel GΩ,b associated to this problem
and the usual Laplacian kernel in bounded domain GΩ: we have

GΩ,b(x, y) = GΩ(x, y)
√
b(x)b(y) + SΩ,b(x, y),

where the remainder term is defined for all y ∈ Ω as a function x 7→ SΩ,b(x, y)
such that

(2.5)





divx

( 1

b(x)
∇xSΩ,b(x, y)

)
= GΩ(x, y)

√
b(y)∆

1√
b(x)

in D′(Ω),

SΩ,b(x, y) = 0 for all x ∈ ∂Ω.

For the non-vanishing topography, it is proved in [10] that SΩ,b(·, y) is in
W 1,∞(Ω). In the present case of a vanishing topography, the existence and
regularity of SΩ,b(·, y) is far from being obvious because ∆ 1√

b(x)
lacks to be

integrable. This question is solved in [2, Lemma 3.1] where the existence
of a unique solution SΩ,b(·, y) is proven. Moreover, it was also established
therein that for any δ > 0, there exists Cδ > 0 which depends only on Ω, b
and δ such that∥∥∥ 1√

b
∇xSΩ,b(·, y)

∥∥∥
L2(Ω)

6 Cδ, for all y ∈ Ω such that dist(y, ∂Ω) > δ.

By the Poincaré inequality, it also follows that
∥∥∥SΩ,b(·, y)

∥∥∥
L2(Ω)

6 Cδ. Let

(2.6) Ωδ := {x ∈ Ω,dist(x, ∂Ω) > δ}.
As b(x) > C̃δ > 0 on Ωδ/2, the elliptic problem div(b−1∇·) is non degenerate,
and standard elliptic estimates give for any p > 2

‖SΩ,b(·, y)‖W 2,p(Ωδ) 6 Cδ,p

(
‖GΩ(·, y)‖Lp(Ωδ/2) + ‖SΩ,b(·, y)‖L2(Ωδ/2)

)
6 Cδ

which implies that

|SΩ,b(x, y)| + |∇xSΩ,b(x, y)| 6 Cδ, for all x, y ∈ Ωδ.

Finally, this leads to the stream function

(2.7) Ψε(x) =

ˆ

Ω
GΩ,b(x, y)(bωε)(y) dy.

In the present paper, we are only interested in vorticities with support in
Ωr0 . Therefore, we can decompose GΩ,b as follows: let

(2.8) GΩ,b(x, y) =
1

2π

√
b(x)b(y) ln |x− y|+RΩ,b(x, y),

where the remainder part satisfies

(2.9) |RΩ,b(x, y)| + |∇xRΩ,b(x, y)| 6 Cδ, for all x, y ∈ Ωδ.

The estimates for RΩ,b are derived from the estimates of SΩ,b and from the

fact that for all y ∈ Ωδ fixed, R̃y(x) := GΩ(x, y)− 1
2π ln |x−y| is harmonic in

Ω and verifies R̃y(x) = − 1
2π ln |x−y| on ∂Ω, which is bounded independently

of y ∈ Ωδ. Finally, we also use that ∇
√
b is bounded in Ωδ.

We conclude this section by recalling the mean value theorem for general

Ω not necessarily convex. By the regularity of ∂Ω̃, where Ω̃ is defined in

Assumption 1.2, we know that Ω̃δ is of the same shape as Ω̃ for δ > 0 small
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enough, namely a simply connected open bounded set. Similarly, for Ωδ

one retrieves Ω̃δ minus Nis connected compact subsets. For such a δ, we

consider Ω̂δ such that Ωδ ⊂ Ω̂δ ⊂ Ωδ/2 with ∂Ω̂δ being composed by Nis +1

Jordan curves. We claim that Ω̂δ is aδ-quasiconvex for some aδ > 1, that

is, for any x, y ∈ Ω̂δ there exists a rectifiable path γ ⊂ Ω̂δ joining x, y and

satisfying ℓ(γ) 6 aδ|x−y|. This follows from the fact that Ω̂δ = Ω̃δ \
⋃Nis

k=1 Iδ
where ∂Ω̃δ and ∂Iδ are piecewise C1 Jordan curves with no cusp and hence
a quasidisc (see, e.g., [14]). L. V. Ahlfors shows in [1] that in 2D, we have

∂Ω̃δ is a quasidisk ⇐⇒ Ω̃δ is quasiconvex,

∂Ik is a quasidisk ⇐⇒ Ic
k is quasiconvex.

Splitting Ω̂δ on neighborhoods of the boundary, this allows us to conclude

that Ω̂δ is quasiconvex.
Therefore, for any x, y ∈ Ωδ and any f ∈ C1(Ωδ/2) we have

(2.10) |f(x)− f(y)| =
∣∣∣
ˆ 1

0

d

ds
(f(γ(s))) ds

∣∣∣ 6 ‖∇f‖L∞(Ωδ/2)aδ|x− y|.

We note here that for a convex domain, we consider γ the segment between
x and y, so aδ = 1 in (2.10). We will use (2.10) with b−1 ∈ C1(Ωδ/2) in view
of Assumption 1.2.

3. The reduced system for a single vortex

As will be proved in Theorem 1.6, the asymptotic vortex dynamics is
- at leading order - determined by the interaction with the topography b.
We therefore aim to reduce the problem of proving the vortex dynamics
to a problem for a single vortex, where the interaction between vortices is
accounted for by an additional external field Fε:

(3.1)





∂t(bωε) +
1

| ln ε| div(b(vε + Fε)ωε) = 0 in (0,∞) × Ω

curl vε = bωε and div(bvε) = 0 in [0,∞)× Ω
˛

∂Ik

vε · τ ds = Γk
ε on [0,∞) and for k = 1, . . . , Nis

(bvε) · n = 0 on [0,∞) × ∂Ω, ωε(0, ·) = ω0
ε in Ω.

The assumption concerning the initial data is then a trivial reduction of
Assumption 1.4.

Assumption 3.1. Let z0 ∈ Ω and ω0
ε ∈ L∞(Ω). We denote by C the

connected component of the level set {x ∈ Ω : b(x) = b(z0)} containing z0.
Assume that C ∩ ∂Ω = ∅ and that there exist M0, ε0 > 0 and δ ∈ {−1, 1}
such that for all ε ∈ (0, ε0] it holds

supp(ω0
ε) ⊂ B(z0,M0ε), 0 6 δω0

ε 6
M0

ε2
, γε :=

ˆ

Ω
bω0

εdx−→
ε→0

γ ∈ R
∗.

We next need to define suitable assumptions on Fε, which are verified by
the velocity field generated by the other vortices and which will be sufficient
to prove our main reduced theorem. Namely, we consider that the external
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field Fε is characterized by the following. We consider the neighborhood Cρb
of C as defined in Remark 1.5 (we omit the index i in the case of one vortex).

Assumption 3.2. The external field Fε satisfies

(i) the incompressibility and tangency conditions

div(bFε) = 0, (bFε) · n = 0,

(ii) a Lipschitz regularity estimate: for any T > 0, there exists CF , LF > 0
depending only on b, Ω, (z0i )i=1,...,Nv , (γi)i=1,...,Nv , (Γ

i)i=1,...,Nis, M0,
ε0, but not depending on ε ∈ (0, ε0], such that for all (t, x, y) ∈ [0, T ]×
Cρb × Cρb there holds

|Fε(x, t)| 6 CF , |Fε(t, x)− Fε(t, y)| 6 LF |x− y|.

Concerning the flexibility of this approach for adaptions to different scal-
ing regimes, we refer to Remark 5.7.

The reduced version of Theorem 1.6 reads as follows.

Theorem 3.3. Let (Ω, b) be a lake satisfying Assumption 1.2, the initial
ω0
ε sharply concentrated in the sense of Assumption 3.1, Fε satisfying As-

sumption 3.2 and let (Γk
ε)

Nis
k=1 be a sequence in R

Nis converging to (Γk)Nis
k=1

as ε→ 0. Let

(3.2) ż(t) = − γ

4π

∇⊥b(z(t))

b(z(t))
, z(0) = z0.

Then the following holds for all T > 0 and ωε solution3 to (3.1) with initial
data ω0

ε :

(i) The vorticity ωε is strongly localized in the direction of steepest ascent
of b, namely for every k ∈ (0, 1/4) there exist εk,T , Ck,T > 0 depending
only on (z0i )i=1,...,Nv , (γi)i=1,...,Nv , (Γi)i=1,...,Nis, M0, b, Ω, k and T
such that suppωε(t, ·) ⊂ Cρb for all t ∈ [0, T ]. Moroever,

suppωε(t, ·) ⊂
{
x ∈ Ω : |b(x)− b(z0)| 6 Ck,T

| ln ε|k
}

for all ε ∈ (0, εk,T ].
(ii) The vorticity ωε is weakly localized, namely there exist zε ∈ C([0, T ]; Ω)

and C depending only on (z0i )i=1,...,Nv , (γi)i=1,...,Nv , (Γ
i)i=1,...,Nis, M0,

b, Ω and T , such that for all ε ∈ (0, ε 1

8
,T ] and t ∈ [0, T ]

∣∣∣∣∣γ −
ˆ

B(zε(t),Rε)
bωε(t, x) dx

∣∣∣∣∣ 6
C

ln | ln ε| where Rε =

(
ln | ln ε|
| ln ε|

)1/2

.

(iii) We have

sup
t∈[0,T ]

|zε(t)− z(t)| → 0 as ε→ 0,

where the limit trajectory z is the solution of (3.2).

3Such that ωε ∈ C([0, T ];Lr(Ω)) for any r ∈ [1,∞) and where (Vε, ωε) is a weak solution
in the sense of (ii) in Proposition 2.1 and satisfies Proposition 2.2 for Vε = 1

| ln ε|
(vε +Fε).
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The proof of Theorem 3.3 constitutes the main and difficult step towards
the main result of this paper. Indeed, Theorem 1.6 will then follow from
Theorem 3.3 upon proving that the vorticity ωε is given by the superposi-
tion of vortices ωε,i that evolve according to (3.1) and where the external
field accounting for the interaction with the other vortices satisfies Assump-
tion 3.2 for all times. For that purpose, the strong localization property in
Theorem 3.3 is crucial. The authors in [10] lack such a property and only
consider a single vortex.

The strategy of reducing the problem to the evolution of a single vortex
is inspired by the approach for point vortices [25] and vortex rings [6], see
also references therein. However, for the lake equations (1.1) new difficulties
arise due to the generality of both the geometry Ω and the topography
b. For instance, no explicit Biot-Savart law is available - in contrast to
b = const. (2D-Euler) and b(z, r) = r (axisymmetric 3D-Euler without
swirl). Note that the aforementioned results for the respective problems
build upon that explicit formula. Moreover, we consider general bounded
domains and vanishing topographies that were not included in [10].

3.1. Proof of Theorem 1.6 assuming that Theorem 3.3 is proved.

Under the assumptions of Theorem 1.6, let (vε, ωε) be the unique global
solution to (1.4) with initial data (v0ε , ω

0
ε) and where the velocity fields vε, v

0
ε

are uniquely determined by ωε, ω
0
ε respectively through the div-curl problem

(2.1). This solution is given by Proposition 2.1 and satisfies Proposition 2.2.
In particular, we define ωε,i through the characteristics by Remark 2.3, which
is a solution of

(3.3) ∂t(bωε,i) +
1

| ln ε| div(b(vε,i + Fε,i)ωε,i) = 0, ωε,i(0) = ω0
ε,i,

where bvε,i = ∇⊥Ψε,i+
∑Nis

k=1

(
Γk
ε+
´

Ω bωε,iϕ
k
)
∇⊥ψk is uniquely determined

by ωε,i through (2.7), and

(3.4) Fε,i :=
1

b

∑

j 6=i

(
∇⊥Ψε,j +

Nis∑

k=1

( ˆ

Ω
bωε,jϕ

k
)
∇⊥ψk

)
.

In the previous definition Ψε,j is recovered from ωε,j through (2.7).
The only point to check in order to use Theorem 3.3 is that Fε,i satisfies

Assumption 3.2, in particular (ii), because (i) is already verified by the
definition of Fε,i. For this purpose, we use the neighborhoods Cρb,i of Ci
introduced in Remark 1.5, with a distance r0 separating to Cρb,j and ∂Ω.

For T > 0 be fixed, we set

(3.5) Tε := sup
{
t ∈ [0, T ] : suppωε,i(s, ·) ⊂ Cρb,i

for all s ∈ [0, t], i ∈ {1, . . . , Nv}
}
,

which implies that the vortex blobs are separated on [0, Tε]. Note that by
assumption on ω0

ε,i, Tε exists for ε sufficiently small depending only on ρb
fixed by Remark 1.5.

First, we show that Fε,i defined in (3.4) satisfies Assumption 3.2.
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Lemma 3.4. Under the assumptions of Theorem 1.6, for all i ∈ {1, . . . Nv},
Cρb,i and Tε, as in Remark 1.5 and (3.5) respectively, there exists CΩ,b,r0 > 0
independent of ε (depending only on Ω, b and r0) such that

|∇Ψε,j(t, x)| 6 CΩ,b,r0 |γε,j|, |∇Ψε,j(t, x)−∇Ψε,j(t, y)| 6 CΩ,b,r0 |γε,j||x−y|,
for all (t, x, y) ∈ [0, Tε]× Cρb,i × Cρb,i and j 6= i.

By (2.4), this lemma directly implies that the vector field Fε,i as defined
in (3.4) satisfies

|Fε,i(t, x)| 6 CF , |Fε,i(t, x)− Fε,i(t, y)| 6 LF |x− y|
for all (t, x, y) ∈ [0, Tε]× Cρb,i × Cρb,i, where CF and LF depends only on Ω,
b, M0, (z

0
i )i=1,...,Nv , (γi)i=1,...,Nv and (Γi)i=1,...,Nis , and therefore it satisfies

Assumption 3.2 on [0, Tε].

Proof of Lemma 3.4. We recall from (2.7) and (2.8) that

∇Ψε,j(t, x) =∇
ˆ

Ω

(
1

2π

√
b(x)b(y) ln |x− y|+RΩ,b(x, y)

)
(bωε,j)(y) dy

=
1

2π

ˆ

Ω

x− y

|x− y|2
√
b(x)b(y)(bωε,j)(y) dy

+
∇b(x)
4πb(x)

ˆ

Ω
ln |x− y|

√
b(x)b(y)(bωε,j)(y) dy

+

ˆ

Ω
∇xRΩ,b(x, y)(bωε,j)(y) dy =: I1 + I2 + I3.

Note by Assumption 1.2 that b ∈ W 1,∞(Cρb,i ∪ Cρb,j), and by Remark 1.5
that |x− y| > r0 for all (x, y) ∈ Cρb,i × Cρb,j which allows us to estimate I1:

|I1| 6
CΩ‖b‖L∞(Ω)

r0

ˆ

Ω
|bωε,j(y)|dy 6 CΩ,b,r0 |γε,j|.

The second contribution is controlled in the same way:

|I2| 6 CΩ,b,r0 |γε,j|,
upon using infΩr0

b > 0 with Ωr0 as defined in (2.6). The third contribution
is bounded by

|I3| 6 C‖∇xRΩ,b‖L∞(Cρb,i×Cρb,j)
γε,j 6 C|γε,j|,

where we used (2.9). These three estimates give the desired bound for∇Ψε,j.
Next, we prove the Lipschitz property. By the same arguments and the

C2-regularity of b, the Lipschitz regularity is obvious for I1 and I2 because
for all y ∈ Cρb,j, the function x 7→ ln |x − y| belongs to C2(Cρb,i), with its
W 2,∞ norm bounded by a constant depending only on r0, hence independent
of y ∈ Cρb,j. This comes from the estimates by below of |x − y|. To finish
this proof, we only need to prove the Lipschitz regularity for I3 which will
be the consequence of the following

‖∇2
xRΩ,b‖L∞(Cρb,i×Cρb,j)

6 CΩ,b,r0 .
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As the term depending on GΩ(·, y)− 1
2π ln | · −y| in the definition of RΩ,b is

harmonic, see the argument following (2.9), it remains only to prove the pre-
vious inequality for SΩ,b. We fix y ∈ Cρb,j and we recall that x 7→ SΩ,b(x, y)
satisfies the elliptic problem (2.5), where the right hand side term is not
singular when (x, y) ∈ Cρb,i × Cρb,j. Hence, we adapt the argument used to
derive (2.9): as b(x) > C > 0 on Ωr0/2, the elliptic problem div(b−1∇·) is
non singular, and standard elliptic estimates give

‖SΩ,b(·, y)‖W 3,4(Cρb,i)
6 Cr0,p

(
‖GΩ(·, y)‖W 1,4(Cρb,i+B(0,

r0
2
)) + ‖SΩ,b(·, y)‖L2(Ω)

)

6 Cr0 ,

independently of y ∈ Cρb,j. By the Sobolev embedding W 1,4 →֒ L∞, this
ends the proof. �

We are now in position to prove Theorem 1.6.

Proof of Theorem 1.6. Let T > 0 be fixed. In view of Assumption 1.4 and
the regularity of (vε, ωε), we deduce that Tε > 0, by the definition of Cρb,i
in Remark 1.5 and the definition of Tε in (3.5). As observed just above, we
infer from Lemma 3.4 that Fε,i defined in (3.4) satisfies Assumption 3.2 for
all t ∈ [0, Tε) and i ∈ {1, . . . , Nv}. Therefore, we may apply Theorem 3.3
to ω0

ε,i, z
0
i ∈ Ci, γε,i and Fε,i. We conclude first that the i-th vortex blob

is strongly localized in the direction of steepest ascent, namely for every
k ∈ (0, 1/4), there exist εk,T = mini εk,T,i > 0 and Ck,T = maxiCk,T,i > 0
depending only on (z0i )i=1,...,Nv , (γi)i=1,...,Nv , (Γi)i=1,...,Nis , M0, b, Ω, k and
T such that, for any ε ∈ (0, εk,T ],

suppωε,i(t, ·) ⊂
{
x : |b(x)− b(z0i )| 6

Ck,T

| ln ε|k
}

for all t ∈ [0, Tε] and i ∈ {1, . . . , Nv}. Up to choosing, ε 1

8
,T smaller if

necessary, we can assume that
C 1

8
,T

| ln ε 1
8
,T

|
1
8

6 ρb/2. As ωε,i(t, ·) is constant

along continuous curves from B(z0, ε) ⊂ Cρb/2, see Remark 1.5, we infer
that suppωε,i(t, ·) ⊂ Cρb/2. By definition of Tε (3.5), we obtain that Tε = T
for every ε ∈ (0, ε 1

8
,T ].

The point (i) of Theorem 1.6 is proved by the weak localization and the
limit of trajectories, when we consider Tε = T for every ε ∈ (0, ε 1

8
,T ].

In order to show item (ii) , namely the strong localization on [0, T ] for all
k ∈ (0, 1/4), it suffices to replace εk,T by min(εk,T , ε 1

8
,T ), which completes

the proof of Theorem 1.6. �

The remaining part of this paper is dedicated to the proof of Theorem 3.3.
More precisely, Section 4 details the Biot-Savart type decomposition of vε
and provides first estimates, while the energy estimates are proven in Sec-
tion 5. Section 6 is devoted to bound the moment of inertia and to establish
the weak localization property of Theorem 3.3 for short time. In Section 7 we
prove the strong localization property in the transverse direction, namely (i)
of Theorem 3.3, which will imply that the weak localization holds on [0, T ].
The asymptotic trajectory is derived in Section 8.
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Remark 3.5. Let us notice that, up to changing the sign of ωε, vε and t, it is
enough to prove Theorem 3.3 for non-negative vorticities, namely δ = 1 in
Assumption 3.1. Hence, we will always use in the sequel |ωε| = ωε for every
t, x and ε.

4. Decomposition of the Biot-Savart law

The aim of this section is to introduce a suitable Hodge decomposition
for the velocity field which the subsequent sections build upon.

Throughout this and the subsequent sections, we work under the hypoth-
esis of Theorem 3.3. For the convenience of the reader, we summarize the
setting of the solutions to (1.1) under consideration.

Assumption 4.1. The lake (Ω, b) satisfies Assumption 1.2, the initial data
ω0
ε are sharply concentrated in the sense of Assumption 3.1 (for δ = 1) and
Fε satisfies Assumption 3.2. Let T > 0, we denote by (ωε, vε) the unique
corresponding weak solution of (3.1) in the sense of Proposition 2.1 on [0, T ],
where v in (ii) has to be replaced by 1

| ln ε|(vε + Fε). This solution verifies

Proposition 2.2 with ω = ωε and v = 1
| ln ε|(vε + Fε), but where we note that

KT in the first item depends on ε.
We consider the neighborhood Cρb of C as defined in Remark 1.5. Analo-

gously to (3.5), we define the time

(4.1) Tε = sup
{
t ∈ [0, T ] : suppωε(s, ·) ⊂ Cρb for all s ∈ [0, t]

}
.

Note that in view of Remark 1.5 one has dist(Cρb , ∂Ω) > r0 hence Cρb ⊂
Ωr0 , where Ωr0 is defined in (2.6).

First, we introduce a suitable decomposition of the velocity field vε in
terms of stream functions. We recall that vε is the vector field given by the
Biot-Savart type law (2.2) and (2.7). The expansion of the Green kernel
(2.8) allows one to decompose the velocity field vε as

(4.2) vε = vε,K + vε,L + vε,R,

where we define

• the most singular term as the 2D Biot-Savart law:

(4.3)

vε,K(x) =
1

2πb(x)

ˆ

Ω
∇⊥

x (ln |x− y|)
√
b(x)b(y)(bωε)(y) dy

=
1

2πb(x)

ˆ

Ω
K(x, y)

√
b(x)b(y)(bωε)(y) dy,

where we have denoted

K(x, y) :=
(x− y)⊥

|x− y|2 .

Note that while being singular vε,K has a symmetric structure and
will give the standard spinning around the point vortex which will
not contribute to the displacement of the vortex core;



VORTEX DYNAMICS FOR THE LAKE EQUATIONS 19

• the intermediate vector field which will account for the main dynam-
ics:

(4.4)

vε,L(x) =
∇⊥b(x)

4πb2(x)
ψε(x)

ψε(x) =

ˆ

Ω
ln |x− y|

√
b(x)b(y)(bωε)(y) dy;

• and the remainder term

(4.5)

vε,R(x) =
1

b(x)

ˆ

Ω
∇⊥

xRΩ,b(x, y)(bωε)(y) dy

+
1

b(x)

Nis∑

k=1

(
Γk
ε +

ˆ

Ω
bωεϕ

k
)
∇⊥ψk.

Note that in view of (2.4) and (2.9), it follows that for all t ∈ [0, Tε) it
holds

(4.6) ‖vε,R‖L∞(Cρb )
6 Cr0

ˆ

Ω
(bωε)(t, y) dy + Cr0 |Γε| 6 Cr0(γ + |Γ|).

A first consequence of the decomposition (4.2) is the following bound.

Lemma 4.2. Under Assumption 4.1, for k > 1, let

Jk(t) =

ˆ

Ω
b(x)k(bωε)(t, x) dx.

Then there exists Ck > 0 independent of ε such that

|Jk(t)− γεb(z
0)k| 6 Ck

| ln ε| ∀t ∈ [0, Tε).

Proof. We use the weak formulation of (3.1) (see Proposition 2.1) with test
function b(x)kχ(x) where χ ∈ C∞

c (Ω) is a smooth cutoff function such that
χ ≡ 1 on Cρb , so that bkχ is C1 by definition of Cρb and Tε. We have for a.e.
t ∈ [0, Tε]:

d

dt
Jk(t) =

d

dt

ˆ

Ω
b(x)kχ(x)(bωε)(t, x) dx

=
1

| ln ε|

ˆ

Ω
∇
(
b(x)kχ(x)

)
· (vε + Fε)(t, x)(bωε)(t, x) dx

=
1

| ln ε|

ˆ

Ω
∇
(
b(x)k

)
· (vε + Fε)(t, x)(bωε)(t, x) dx.

This use of (3.1) will be systematic in the sequel, and we will not mention
anymore the use of χ and that the equalities hold true almost everywhere.

The decomposition (4.2) together with the estimates of vε,R (4.6) and of
Fε, see Assumption 3.2, allow us to compute

d

dt
Jk(t) =

ˆ

Ω

vε,K(t, x) · ∇bk(x)
| ln ε| (bωε)(t, x) dx+O

(
1

| ln ε|

)

=
1

2π| ln ε|

¨

Ω2

K(x, y) ·
(∇bk(x)

b(x)

)√
b(x)b(y)(bωε)(x)(bωε)(y) dxdy

+O
(

1

| ln ε|

)
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=
1

4π| ln ε|

¨

Ω2

K(x, y) ·
(∇bk(x)

b(x)
− ∇bk(y)

b(y)

)

×
√
b(x)b(y)(bωε)(x)(bωε)(y) dxdy +O

(
1

| ln ε|

)

by symmetrizing with respect to x and y. From the application of the mean-

value theorem (2.10) to ∇bk

b on Ωr0 we get

∣∣∣∇b
k(x)

b(x)
− ∇bk(y)

b(y)

∣∣∣ 6 C̃r0 |x− y|.

We deduce that ∣∣∣∣
d

dt
Jk(t)

∣∣∣∣ 6
C

| ln ε| ,

which implies that

|Jk(t)− γεb(z
0)k| 6 |Jk(0)− γεb(z

0)k|+ CT

| ln ε| 6 Cε+
C

| ln ε| ,

by virtue of Assumption 3.1 on the initial data ω0
ε . �

Corollary 4.3. Under Assumption 4.1 we have
ˆ

Ω
ωε(t, x) dx =

γε
b(z0)

+O
(

1

| ln ε|

)
, ∀t ∈ [0, Tε).

Proof. We expand the mass as
ˆ

Ω
ωε(t, x) dx =

ˆ

Ω
(bωε)(t, x)

(
1

b(x)
− 1

b(z0)

)
dx+

γε
b(z0)

=

ˆ

Ω
(bωε)(t, x)

(b(z0)− b(x))2

b(x)b(z0)2
dx

+
1

b(z0)2

ˆ

Ω
(bωε)(t, x)

(
b(z0)− b(x)

)
dx+

γε
b(z0)

.

We observe that by the definition of Tε (4.1) we have b(x) > minΩr0
b > 0

for x ∈ supp(ωε)(t, ·) therefore
ˆ

Ω
(bωε)(t, x)

(b(z0)− b(x))2

b(x)b(z0)2
dx 6 C

ˆ

Ω
(bωε)(t, x)(b(z

0)− b(x))2 dx

6 C
(
b(z0)2γε + J2(t)− 2b(z0)J1(t)

)

6
C

| ln ε| ,

where we have applied Lemma 4.2.
Similarly,

∣∣∣∣
1

b(z0)2

ˆ

Ω
(bωε)(t, x)

(
b(z0)− b(x)

)
dx

∣∣∣∣ =
1

b(z0)2

∣∣b(z0)γε − J1(t)
∣∣ 6 C

| ln ε| .

This concludes our proof. �
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5. Estimates on the energy and the stream function

Working again in the setting of Assumption 4.1, we aim to introduce
suitable bounds on the local energy defined by

Eε(t) =

ˆ

Ω
b(x)|b−1(x)∇⊥Ψε(t, x)|2 dx

=

ˆ

Ω
∇⊥Ψε(t, x) · b−1(x)∇⊥Ψε(t, x) dx = −

ˆ

Ω
Ψε(t, x)(bωε)(t, x) dx

=−
¨

Ω2

GΩ,b(x, y)(bωε)(t, x)(bωε)(t, y) dxdy

and on the stream function ψε defined in (4.4). In the absence of external
field and islands, the local energy coincides with the total energy and it is
therefore conserved, see the proof of Proposition 5.6.

First, we relate the local energy and the stream function ψε in the follow-
ing lemma.

Lemma 5.1. Under Assumption 4.1, we have for all t ∈ [0, Tε)

Eε(t) = − 1

2π

ˆ

Ω
ψε(t, x)(bωε)(t, x) dx+O(1).

Proof. By definition of RΩ,b, see (2.8), it is clear that

Eε(t) +
1

2π

ˆ

Ω
ψε(t, x)(bωε)(t, x) dx

= −
¨

Ω2

RΩ,b(x, y)(bωε)(t, x)(bωε)(t, y) dxdy

the conclusion follows from (2.9). �

We use this relation to establish a lower bound for the initial energy.

Lemma 5.2. Under Assumption 4.1, it holds

Eε(0) >
1

2π
γ2ε b(z

0)| ln ε|+O(1).

Proof. By Lemma 5.1, it suffices to bound

− 1

2π

ˆ

Ω
ψ0
ε(x)(bω

0
ε )(x) dx.

Exploiting that the initial data ω0
ε is sharply concentrated, see Assump-

tion 3.1, and the mean value theorem (2.10), we have
∣∣∣
√
b(x)−

√
b(y)

∣∣∣ 6 CΩ,r0‖∇b‖L∞(Ωr0/2
)|x− y| 6 CΩ,b,r0 |x− y|,

for all x, y ∈ supp(ω0
ε), where we recall that supp(ω0

ε) ⊂ Cρb ⊂ Ωr0 for all
ε ∈ (0, ε0], see Remark 1.5. It follows that
ˆ

Ω
ψ0
ε(x)(bω

0
ε )(x) dx =

¨

Ω2

ln |x− y|
√
b(x)b(y)(bω0

ε)(x)(bω
0
ε)(y) dxdy

=

¨

Ω2

ln |x− y|b(x)(bω0
ε)(x)(bω

0
ε )(y) dxdy +O(1)
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=

¨

Ω2

ln |x− y|(b(x)− b(z0))(bω0
ε)(x)(bω

0
ε )(y) dxdy

+ b(z0)

¨

Ω2

ln |x− y|(bω0
ε)(x)(bω

0
ε )(y) dxdy +O(1).

On the one hand, we use the localization assumption of ω0
ε to get

∣∣∣
¨

Ω2

ln |x− y|(b(x)− b(z0))(bω0
ε )(x)(bω

0
ε )(y) dxdy

∣∣∣

6 C‖∇b‖L∞(Ωr0/2
)M0ε

¨

Ω2

(− ln |x− y|)(bω0
ε)(x)(bω

0
ε )(y) dxdy

6 Cε

ˆ

Ω
(bω0

ε)(y)
( ˆ

B(0,2M0ε)
(− ln |z|)‖b‖L∞

M0

ε2
dz
)
dy

6 Cε| ln ε|.
On the other hand, we use that |x − y| 6 2M0ε for all x, y ∈ suppω0

ε to
estimate

−b(z
0)

2π

¨

Ω2

ln |x− y|(bω0
ε)(x)(bω

0
ε)(y) dxdy > −b(z

0)

2π
ln(2M0ε)γ

2
ε ,

which completes the proof. �

Remark 5.3. Since the proof of Lemma 5.2 relies on the sharp concentration
of the initial data ω0

ε , namely that supp(ω0
ε) ⊂ B(z0,M0ε), we do not claim

that it extends to positive times. Nevertheless, by the slow variation prop-
erty of the local energy, we will deduce that this lower bound holds for any
time, see Proposition 5.6 below.

The purpose of the next lemma is to provide an upper bound for ψε as
defined in (4.4) which in turn will yield a precise estimate of the initial
energy by virtue of Lemma 5.1 and Lemma 5.2. The lemma is stated for
arbitrary times as such an estimate is required below.

Lemma 5.4. Under Assumption 4.1 and for ε0 sufficiently small, there
exists C > 0 such that

−C 6 −ψε(t, x) 6 γε
b(x)2

b(z0)
| ln ε|+ C

for any x ∈ Cρb and t ∈ [0, Tε).

Proof. We infer from the mean value theorem (2.10) that

−
ˆ

Ω
ln |x− y|

√
b(x)b(y)(bωε)(t, y) dy

=− b(x)2
ˆ

Ω
ln |x− y|ωε(t, y) dy

−
√
b(x)

ˆ

Ω
ln |x− y|(b3/2(y)− b3/2(x))ωε(t, y) dy

=− b(x)2
ˆ

Ω
ln

( |x− y|
diamΩ

)
ωε(t, y) dy +O(1),

where diamΩ = maxΩ2 |x − y|. This equality is sufficient to get −C 6

−ψε(t, x). We use now the rearrangement of the mass, namely we apply
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Lemma B.1 for g(s) := − ln(s/diamΩ)1s6diamΩ and γ := γ̃ε =
´

Ω ωε(t, x) dx,
to obtain

−ψε(t, x) 6 b(x)2
2πM0

ε2

ˆ R0

0
sg(s) ds+O(1)

with

π
M0

ε2
R2

0 = γ̃ε =

ˆ

Ω
ωε(t, x) dx

(in particular R0 < 1 for ε0 small enough). Hence

−ψε(t, x) 6
2πM0

ε2
b(x)2

(
− 1

2
R2

0 lnR0 +
1

4
R2

0 +
R2

0

2
ln diamΩ

)
+O(1)

6 γ̃εb(x)
2| ln ε|+O(1).

In particular, we have just proved that

(5.1) −
ˆ

Ω
ln

( |x− y|
diamΩ

)
(bωε)(t, y) dy 6 C| ln ε|.

Applying now Corollary 4.3, we conclude that

−ψε(t, x) 6 γε
b(x)2

b(z0)
| ln ε|+O(1).

�

Combining Lemmas 5.1 and 5.2 with Lemma 5.4 enables us to determine
the leading order term of the initial energy.

Corollary 5.5. Under Assumption 4.1 and for ε0 small enough, we have

Eε(0) =
1

2π
γ2ε b(z

0)| ln ε|+O(1)

for all ε ∈ (0, ε0).

Proof. Lemma 5.2 yields the lower bound. To compute the upper bound,
we invoke Lemmas 5.1 and 5.4 to obtain

Eε(0) = − 1

2π

ˆ

Ω
ψ0
ε(x)(bω

0
ε )(x) dx

6
γε| ln ε|
2πb(z0)

ˆ

Ω
b(x)2(bω0

ε)(x) dx+ Cγε

6
γ2ε
2π
b(z0)| ln ε|+ γε

2πb(z0)
| ln ε|

ˆ

Ω
(b(x)2 − b(z0)2)(bω0

ε)(x) d + Cγε

6
γ2ε
2π
b(z0)| ln ε|+ Cγ2εε| ln ε|+O(1),

where we have used the initial localization of the vorticity, see Assump-
tion 3.1 and (2.10). �

Next, we prove the conservation of the local energy at leading order up
to time Tε.

Proposition 5.6. Under Assumption 4.1 and for ε0 small enough, there
exists C > 0 such that for all t ∈ [0, Tε) we have

∣∣∣Eε(t)−
1

2π
γ2ε b(z

0)| ln ε|
∣∣∣ 6 C.



24 L.E. HIENTZSCH, C. LACAVE, AND E. MIOT

Proof. As
√
bvε ∈ C(R+;L

2(Ω)), we can give a sense in D′(0, Tε) to the time-
derivative of Eε by arguing similarly as detailed in the proof of Lemma 4.2.
We compute

d

dt
Eε(t) =− 2

| ln ε|

¨

Ω2

∇xGΩ,b(x, y) · (vε + Fε)(t, x)(bωε)(t, x)(bωε)(t, y) dxdy

=− 2

| ln ε|

Nis∑

k=1

(
Γk
ε +

ˆ

Ω
bωεϕ

k
)

×
¨

Ω2

∇xGΩ,b(x, y) · ∇⊥ψk(x)(bωε)(t, x)(bωε)(t, y) dxdy

− 2

| ln ε|

¨

Ω2

∇xGΩ,b(x, y) · Fε(t, x)(bωε)(t, x)(bωε)(t, y) dxdy

because

b(x)vε(t, x) =
(ˆ

Ω
∇xGΩ,b(x, z)(bωε)(z) dz

)⊥
+

Nis∑

k=1

(
Γk
ε +

ˆ

Ω
bωεϕ

k
)
∇⊥ψk.

By the decomposition of the Green kernel (2.8), we deduce easily from
(2.4), (2.9) and Assumption 3.2 that
∣∣∣ 2

| ln ε|

¨

Ω2

∇xRΩ,b(x, y) · ∇⊥ψk(x)(bωε)(t, x)(bωε)(t, y) dxdy
∣∣∣ 6 C

| ln ε| ,
∣∣∣ 2

| ln ε|

¨

Ω2

∇xRΩ,b(x, y) · Fε(t, x)(bωε)(t, x)(bωε)(t, y) dxdy
∣∣∣ 6 C

| ln ε| .

Next, we compute by the skew-symmetry of K combined with the mean
value theorem (2.10) and Assumption 3.2
∣∣∣ 1

π| ln ε|

¨

Ω2

K(x, y)⊥ · Fε(t, x)
√
b(x)b(y)(bωε)(t, x)(bωε)(t, y) dxdy

∣∣∣

=
∣∣∣ 1

2π| ln ε|

¨

Ω2

K(x, y)⊥ ·
(
Fε(t, x)− Fε(t, y)

)

×
√
b(x)b(y)(bωε)(t, x)(bωε)(t, y) dxdy

∣∣∣

6
C

| ln ε| .

The last term is treated using Assumption 3.2
∣∣∣ 1

π| ln ε|

¨

Ω2

ln |x− y|∇b(x)
2b(x)

· Fε(t, x)
√
b(x)b(y)(bωε)(t, x)(bωε)(t, y) dxdy

∣∣∣

6
C

| ln ε|

ˆ

Ω
(bωε)(t, y)

( ˆ

Ω
| ln |x− y||(bωε)(t, x) dx

)
dy

6
C

| ln ε|

ˆ

Ω
(bωε)(t, y)

( ˆ

Ω
− ln

|x− y|
diamΩ

(bωε)(t, x) dx
)
dy +O

( 1

| ln ε|
)

6 O(1)

where we have used (5.1). These two last estimates can be performed in the
same way replacing Fε by ∇⊥ψk.
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With these estimates, we conclude that for all t ∈ [0, Tε)
∣∣∣ d
dt
Eε(t)

∣∣∣ 6 C

which means that Eε(t) = Eε(0)+O(1). Corollary 5.5 allows us to conclude.
�

Remark 5.7. We emphasize that throughout the paper we only rely once
on Lipschitz property of Fε stated in Assumption 3.2, namely to infer the
expansion of the energy in Proposition 5.6. Note that the proof adapts to
exterior fields with Lipschitz constant of order O(| ln ε|) instead of O(1) as
considered in Assumption 3.2.

The approach presented is hence robust enough to be adapted to different
scaling regimes leading to an exterior field which respects such a bound.
Note, however, that this is insufficient in order to investigate phenomena
such as leapfrogging vortex rings and similar behavior for the lake equations.

This section is completed by an estimate on the stream function ψε that
is required in the sequel.

Lemma 5.8. Under Assumption 4.1 and for ε0 small enough, there exists
C > 0 such that for all t ∈ [0, Tε) we have

ˆ

Ω

∣∣∣∣γεψε(t, x)−
ˆ

Ω
ψε(t, y)(bωε)(t, y) dy

∣∣∣∣
2

(bωε)(t, x) dx 6 C| ln ε|.

Proof. We have by Cauchy-Schwarz inequality

1

γε

ˆ

Ω

(
ˆ

Ω
(ψε(x)− ψε(y)) (bωε)(y) dy

)2

(bωε)(x) dx

=
1

γε

ˆ

Ω

(
ˆ

Ω
(ψε(x)− ψε(y))

√
(bωε)(y)

√
(bωε)(y) dy

)2

(bωε)(x) dx

6

¨

Ω2

(ψε(x)− ψε(y))
2 (bωε)(y)(bωε)(x) dxdy

6

¨

Ω2

ψε(x)
2(bωε)(y)(bωε)(x) dxdy +

¨

Ω2

ψε(y)
2(bωε)(y)(bωε)(x) dxdy

− 2

¨

Ω2

ψε(x)ψε(y)(bωε)(y)(bωε)(x) dxdy

62γε

ˆ

Ω
ψε(x)

2(bωε)(x) dx− 2

(
ˆ

Ω
ψε(x)(bωε)(x) dx

)2

.

Using Lemma 5.4, we estimate the first term in the right hand side:

2γε

ˆ

Ω
ψε(x)

2(bωε)(x) dx 6 2
γ3ε

b(z0)2
| ln ε|2

ˆ

Ω
b(x)4(bωε)(x) dx+C| ln ε|.

Therefore, Lemma 5.1 implies that

1

γε

ˆ

Ω

(
ˆ

Ω
(ψε(x)− ψε(y)) (bωε)(y) dy

)2

(bωε)(x) dx

6 2

(
γ3ε

b(z0)2
| ln ε|2

ˆ

Ω
b(x)4(bωε)(x) dx− (2π)2Eε(t)

2

)
+C(| ln ε|+Eε(t)).
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Proposition 5.6 gives

Eε(t)
2 =

1

(2π)2
γ4εb(z

0)2| ln ε|2 +O(| ln ε|),

thus we obtain

ˆ

Ω

(
ˆ

Ω
(ψε(x)− ψε(y)) (bωε)(y) dy

)2

(bωε)(x) dx

6 2
γ4ε | ln ε|2
b(z0)2

(
ˆ

Ω
b(x)4(bωε)(x) dx− γεb(z

0)4
)
+ C| ln ε|.

By virtue of Lemma 4.2 for k = 4 we conclude that
ˆ

Ω

(
ˆ

Ω
(ψε(x)− ψε(y)) (bωε)(y) dy

)2

(bωε)(x) dx 6 C| ln ε|.

�

6. Estimate on the momentum and weak concentration

Throughout this section, we consider again solutions (ωε, vε) to (3.1) on
[0, T )× Ω that satisfy Assumption 4.1. We introduce the center of mass

(6.1) zε(t) =
1

γε

ˆ

Ω
xb(x)ωε(t, x) dx

and the moment of intertia centered at zε(t) given by

(6.2) Iε(t) =
ˆ

Ω
|x− zε(t)|2b(x)ωε(t, x) dx,

both of which are crucial for the study of the evolution of initially sharply
concentrated vorticity. Note that in view of Assumption 4.1, we initially
have

Iε(0) 6 4γεM
2
0 ε

2

because suppω0
ε ⊂ B(z0, εM0) and

|z0 − zε(0)| 6
1

γε

ˆ

Ω
|z0 − x|(bω0

ε)(x) dx 6M0ε.

As zε(t) belongs to the convex hull of Cρb for any t ∈ [0, Tε), it is not
obvious, without adding an extra geometrical assumption on the lake, that
zε(t) belongs to Ω. For this reason, we introduce

(6.3) T ′
ε = sup {T0 ∈ [0, Tε] : zε(t) ∈ Cρb for all t ∈ [0, T0)} .

One of the purposes of this section is to prove that T ′
ε = Tε.

We start with the following lemma.

Lemma 6.1. Under Assumption 4.1, there exists C > 0 such that for all
t ∈ [0, T ′

ε)

|b(zε(t)) − b(z0)| 6 Ct

(
sup
s∈[0,t]

√
Iε(s) +

1

| ln ε|

)
+ Cε.
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Proof. We use the weak formulation of (3.1) given by Proposition 2.1 with
test function Φ(x) = x. We therefore have in D′(0, Tε) and by the decom-
position (4.2) of the velocity field vε:

d

dt
b(zε) =żε · ∇b(zε)

=
1

γε| ln ε|
∇b(zε) ·

ˆ

Ω
(vε + Fε)(x)(bωε)(x) dx

=
1

γε| ln ε|
∇b(zε) ·

ˆ

Ω
vε,K(x)(bωε)(x) dx

+
1

γε| ln ε|
∇b(zε) ·

ˆ

Ω
vε,L(x)(bωε)(x) dx

+
1

γε| ln ε|
∇b(zε) ·

ˆ

Ω
(vε,R + Fε)(x)(bωε)(x) dx.

We estimate the first term by the skew-symmetry of K

4π
∣∣∣
ˆ

Ω
vε,K(x)(bωε)(x) dx

∣∣∣

=2
∣∣∣
¨

Ω2

1

b(x)
K(x, y)

√
b(x)b(y)(bωε)(x)(bωε)(y) dxdy

∣∣∣

=
∣∣∣
¨

Ω2

( 1

b(x)
− 1

b(y)

)
K(x, y)

√
b(x)b(y)(bωε)(x)(bωε)(y) dxdy

∣∣∣

6C

where we have used as usual the mean value theorem (2.10).
For the second term, we compute

4π
∣∣∣∇b(zε) ·

ˆ

Ω
vε,L(x)(bωε)(x) dx

∣∣∣ =
∣∣∣∇b(zε) ·

ˆ

Ω

∇⊥b(x)

b2(x)
ψε(x)(bωε)(x) dx

∣∣∣

=
∣∣∣∇b(zε) ·

ˆ

Ω

∇⊥b(x)−∇⊥b(zε)

b2(x)
ψε(x)(bωε)(x) dx

∣∣∣

6 C| ln ε|
ˆ

Ω
|x− zε|(bωε)(x) dx 6 C| ln ε|

√
Iε,

where we have used Lemma 5.4, the mean value inequality (2.10) and that
zε ∈ Cρb ⊂ Ωr0 for t ∈ [0, T ′

ε). We have also used that supp(ωε(t, ·)) ⊂ Ωr0

on [0, Tε) with infΩr0
b > 0.

The bound for last term follows immediately from (4.6) and the properties
of Fε, see Assumption 3.2,

∣∣∣
ˆ

Ω
(vε,R + Fε)(x)(bωε)(x) dx

∣∣∣ 6 C

Combining the previous three estimates, we infer that
∣∣∣ d
dt
b(zε(t))

∣∣∣ 6 C
(√

Iε +
1

| ln ε|
)

∀t ∈ [0, T ′
ε).

Finally, we observe that

zε(0) =
1

γε

ˆ

Ω
x(bω0

ε)(x) dx = z0 +
1

γε

ˆ

Ω
(x− z0)(bω0

ε)(x) dx
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therefore |b(zε(0)) − b(z0)| 6 C|zε(0) − z0| 6 Cε by virtue of (2.10). The
conclusion follows. �

Next, we derive an estimate on the time derivative of the momentum Iε
as defined in (6.2).

Proposition 6.2. Under Assumption 4.1, there exists C > 0 such that for
all t ∈ [0, T ′

ε)
d

dt
Iε 6 CIε +

C

| ln ε| .

Proof. Using the weak formulation of (3.1) in Proposition 2.1, we compute
the time derivative of Iε defined in (6.2)

d

dt
Iε(t) =2

ˆ

Ω
(x− zε(t)) ·

(
(vε + Fε)(x)

| ln ε| − żε(t)

)
(bωε)(x) dx

=
2

| ln ε|

ˆ

Ω
(x− zε) · vε,K(x)(bωε)(x) dx

+
2

| ln ε|

ˆ

Ω
(x− zε) · vε,L(x)(bωε)(x) dx

+
2

| ln ε|

ˆ

Ω
(x− zε) · (vε,R + Fε)(x)(bωε)(x) dx

− 2żε ·
ˆ

Ω
(x− zε)(bωε)(x) dx,

where we have decomposed vε by means of (4.2).
We treat the first term as in Lemma 6.1, namely by skew-symmetry of

K, to obtain

4π

ˆ

Ω
(x− zε) · vε,K(x)(bωε)(x) dx

=2

¨

Ω2

(x− zε) ·
1

b(x)
K(x, y)

√
b(x)b(y)(bωε)(x)(bωε)(y) dxdy

=

¨

Ω2

(x− zε) ·
1

b(x)
K(x, y)

√
b(x)b(y)(bωε)(x)(bωε)(y) dxdy

−
¨

Ω2

(y − zε) ·
1

b(y)
K(x, y)

√
b(x)b(y)(bωε)(x)(bωε)(y) dxdy

=

¨

Ω2

(x− y) · 1

b(x)
K(x, y)

√
b(x)b(y)(bωε)(x)(bωε)(y) dxdy

−
¨

Ω2

(y − zε) ·
( 1

b(y)
− 1

b(x)

)
K(x, y)

×
√
b(x)b(y)(bωε)(x)(bωε)(y) dxdy

which is bounded by a constant because of the mean value theorem (2.10)
and x, y ∈ Cρb for all x, y ∈ supp(ωε(t, ·)) with t ∈ [0, Tε).

We treat the second term at the end of this proof. The bound for the
third term easily follows from (4.6) and Assumption 3.2:

∣∣∣
ˆ

Ω
(x− zε) · (vε,R + Fε)(x)(bωε)(x) dx

∣∣∣ 6 C.
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Following the proof of Lemma 6.1 we compute żε(t) by

| ln ε|żε(t) =
1

γε

ˆ

Ω
(vε + Fε)(x)(bωε)(x) dx

=
1

γε

ˆ

Ω
vε,K(x)(bωε)(x) dx

+
1

γε

ˆ

Ω
vε,L(x)(bωε)(x) dx

+
1

γε

ˆ

Ω
(vε,R + Fε)(x)(bωε)(x) dx.

The first and third term on the right-hand-side are bounded by a constant
as in the proof of Lemma 6.1, namely by exploiting the skew-symmetry of
K, the distance r0 in Remark 1.5, (4.6) for vε,R and Assumption 3.2 for Fε.
It follows

(6.4) | ln ε|żε(t) =
1

γε

ˆ

Ω
vε,L(x)(bωε)(x) dx+O(1).

Combining this equality with the two estimates above, we get

d

dt
Iε(t) =

2

| ln ε|

ˆ

Ω
(x− zε) · vε,L(x)(bωε)(x) dx+O

( 1

| ln ε|
)

− 2

| ln ε|
( 1

γε

ˆ

Ω
vε,L(x)(bωε)(x) dx

)
·
( ˆ

Ω
(x− zε)(bωε)(x) dx

)

=
2

γε| ln ε|

¨

Ω2

(vε,L(x)− vε,L(y)) · (x− zε)(bωε)(x)(bωε)(y) dxdy

+O
( 1

| ln ε|
)

=
1

2πγε| ln ε|

¨

Ω2

(∇⊥b(x)

b2(x)
ψε(x)−

∇⊥b(y)

b2(y)
ψε(y)

)
· (x− zε)

× (bωε)(y)(bωε)(x) dxdy +O
( 1

| ln ε|
)
.

Introducing b(zε) we rewrite this formula as follows

2πγε| ln ε|
d

dt
Iε(t)

=γε

ˆ

Ω

(∇⊥b(x)

b2(x)
− ∇⊥b(zε)

b2(zε)

)
· (x− zε)ψε(x)(bωε)(x) dx

+ γε

ˆ

Ω

∇⊥b(zε)

b2(zε)
· (x− zε)ψε(x)(bωε)(x) dx

−
¨

Ω2

(∇⊥b(y)

b2(y)
− ∇⊥b(zε)

b2(zε)

)
· (x− zε)ψε(y)(bωε)(y)(bωε)(x) dxdy

−
¨

Ω2

∇⊥b(zε)

b2(zε)
· (x− zε)ψε(y)(bωε)(y)(bωε)(x) dxdy +O(1).
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Recalling Lemma 5.4 for ψε and that supp(ωε(t, ·)) ⊂ Cρb ⊂ Ωr0 for any
t ∈ [0, Tε) by Assumption 4.1 and zε(t) ∈ Ωr0 for all t ∈ [0, T ′

ε), we have

γε

∣∣∣
ˆ

Ω

(∇⊥b(x)

b2(x)
− ∇⊥b(zε)

b2(zε)

)
· (x− zε)ψε(x)(bωε)(x) dx

∣∣∣

+
∣∣∣
¨

Ω2

(∇⊥b(y)

b2(y)
− ∇⊥b(zε)

b2(zε)

)
· (x− zε)ψε(y)(bωε)(y)(bωε)(x) dxdy

∣∣∣

6 C‖∇b−1‖L∞(Ωr0/2
)

( ˆ

Ω
|x− zε|2|ψε(x)|(bωε)(x) dx

+

¨

Ω2

|x− zε||y − zε||ψε(y)|(bωε)(y)(bωε)(x) dxdy
)

6 C| ln ε|Iε.
For the other terms, we invoke Lemma 5.8 to conclude

∣∣∣∣∣

ˆ

Ω

∇⊥b(zε)

b2(zε)
· (x− zε)

(
γεψε(x)−

ˆ

Ω
ψε(y)(bωε)(y) dy

)
(bωε)(x) dx

∣∣∣∣∣

6 C
√
Iε
(
ˆ

Ω

∣∣∣∣γεψε(x)−
ˆ

Ω
ψε(y)(bωε)(y) dy

∣∣∣∣
2

(bωε)(x) dx

)1/2

6 C
√
Iε| ln ε|1/2 6 C| ln ε|Iε(t) + C.

We have readily found

d

dt
Iε(t) 6 CIε(t) +

C

| ln ε|
which ends the proof. �

This finally enables us to prove the following estimate on the moment of
inertia.

Proposition 6.3. Under Assumption 4.1, there exists ε0 > 0 depending
only on T , b, Ω, (z0i )i=1,...,Nv , (γi)i=1,...,Nv , (Γ

i)i=1,...,Nis, M0, such that for
ε 6 ε0 it holds T

′
ε = Tε with Tε and T

′
ε defined in (4.1) and (6.3) respectively.

Moreover, there exists C > 0 such that

|b(zε(t))− b(z0)|2 + Iε(t) 6
C

| ln ε| , ∀t ∈ [0, Tε).

Proof. We have proved in Proposition 6.2, that for t ∈ [0, T ′
ε)

d

dt
Iε(t) 6 CIε +

C

| ln ε|
and recalling that Iε(0) 6 Cε2 we obtain

Iε(t) 6
C0

| ln ε| , ∀t ∈ [0, T ′
ε)

for some constant C0 depending only on T , where T ′
ε 6 Tε 6 T .

By Lemma 6.1, we get for t ∈ [0, T ′
ε) that

|b(zε(t))− b(z0)| 6 C√
| ln ε|

.
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Consequently, by the definition of Cρb , see Remark 1.5, together with the
definition of T ′

ε, see (6.3), we conclude that for ε0 small enough, this inequal-
ity implies that zε(t) ∈ Cρb/2 for all t ∈ [0, T ′

ε), which implies that T ′
ε = Tε

and the desired estimate holds on [0, Tε). �

The first important consequence of Proposition 6.3 is the following weak
localization property.

Proposition 6.4. Under Assumption 4.1, there exists C > 0 such that for
all ε 6 ε0 (defined in Proposition 6.3), we have for all t ∈ [0, Tε)

ˆ

Ω\B(zε(t),Rε)
(bωε)(t, x) dx 6

C

ln | ln ε| ,

where

Rε =

(
ln | ln ε|
| ln ε|

)1/2

.

Proof. We simply write
ˆ

Ω\B(zε(t),Rε)
(bωε)(t, x) dx 6

1

R2
ε

Iε(t),

and the conclusion follows from Proposition 6.3. �

Remark 6.5. It follows from Proposition 6.4 that the vorticity ωε(t) remains
weakly localized close to the center of vorticity zε(t) up to time Tε defined
in (4.1). In order to prove the weak localization property stated in The-
orem 3.3, it remains to identify the limiting trajectory and to show that
Tε = T . We refer to Section 8 for the former item, the latter requires
a strong localization of ωε(t), namely that the support of ωε(t) is sharply
localized. While the initial data satisfy supp(ω0

ε) ⊂ B(z0, εM0) such a prop-
erty is not expected to hold for positive times, see the introduction for the
filamentation phenomenon. The term vε,L defined in (4.4) which accounts
for the limiting dynamics of the point vortices lacks suitable regularity prop-
erties and does not allow for an adaptation of the classical method [25, 23]
developed for point vortices for 2D Euler equations. For the axisymmetric
3D Euler equations without swirl, which can be seen as a special case of
(1.1) with b(z, r) = r, the authors of [8] were able to obtain the result only
up to short times, due to this difficulty. In [6], this obstacle has been over-
come by arguing that a strong localization property in the radial direction
suffices to show that Tε = T .

For the lake equations, this translates to seeking a strong localization
property in the direction of the steepest ascent of b, namely in the direction
of ∇b which motivates the level-set approach chosen in this paper. We will
refer to this direction as transverse direction. Note that vε,L is orthogonal to
that direction. In view of the definition (4.1) of Tε, this in turn will enable
us to infer Tε = T , see Proposition 7.4.

However, the method presented here differs from the one developed in [8,
6] for the axisymmetric 3D Euler equations without swirl in several aspects.
We need to deal with additional difficulties arising close to the boundary
due to both the geometry of Ω and the degeneracy of b. Further, we do not
rely on an explicit Biot-Savart law type formula which is not available for
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(2.1) but extensively used in [8, 6]. Moreover, we have provided a simplified
proof of the weak localization property that in particular does not require
bounds on second order moments as in [6, Lemma 4.1].

The strong localization property of the vorticity in the transverse direction
is the main objective of Section 7. We refer the reader to Remark 7.2 for a
comparison of the proofs of strong localization property in the present paper
and [6].

7. Strong localization in the transverse direction

As in the previous sections, for T > 0 and under Assumption 4.1 we denote
by (ωε, vε) the unique weak solution of (3.1) in the sense of Proposition 2.1
on [0, T ].

The aim of the present section consists in proving a strong localization
property in the transverse direction. This in turn will enable us to state a
global result, i.e. that Tε = T for T > 0 arbitrarily large, which could not
be inferred from the weak localization property alone, see Remark 6.5. To
that end, we introduce the moment of inertia in the transverse direction

Kε(t) =

ˆ

Ω
|b(x)− b(z0)|2b(x)ωε(t, x) dx.

Thanks to Lemma 4.2 we immediately obtain

(7.1) Kε(t) 6
C

| ln ε| , ∀t ∈ [0, Tε)

by developing the square.
To prove the strong localization property, we follow the strategy devel-

oped by C. Marchioro and M. Pulvirenti [25] in the planar case and
subsequently adapted to the 3D axisymmetric Euler equation without swirl
see e.g. [8, 6]. The main difference to the original proof in [25] is that all the
quantities are defined in the transverse direction only, see Remark 6.5. This
localization in one direction of the respective quantities is the key ingredient
in [6] which allows the authors to upgrade the local-in-time result of [8] to
a global result [6].

Indeed, when arbitrary directions are considered, the term vε,L defined
in (4.4) displays a diverging (in ε) term that lacks a suitable control. The
projection on the transverse direction avoids the presence of vε,L. We start
by adapting the estimates in the radial direction in [6] to obtain a strong
localization in the transverse direction for ωε.

Lemma 7.1. Under Assumption 4.1, we define

Rt := max
{
|b(x)− b(z0)| |x ∈ suppωε(t, ·)

}
.

For any t ∈ (0, Tε], we consider x0 ∈ suppω0
ε such that at time t, we have

|b(Xε(t, x0))− b(z0)| = Rt.

Then, at this time t,

d

dt
|b(Xε(t, x0))− b(z0)| 6 C

| ln ε| +
C

Rt| ln ε|
+
C
√
mt(Rt/2)

ε| ln ε| ,
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where the function mt(·) is defined by

mt(h) :=

ˆ

Ac
h

(bωε)(t, y) dy with Ah := {y ∈ Ω : |b(y)− b(z0)| 6 h}.

Remark 7.2. While our method is inspired by the one in [8, 6], we choose to
consider simplified definitions of Rt and Ah compared to [6]. More precisely,
the equivalent definitions to [6] would have led to consider b(zε(t)) instead
to b(z0) in the respective definitions of Rt and Ah. However, the main
objective is to prove that supp(ωε) is localized close to C being the connected
component of {b(x) = b(z0)} containing z0, see (i) Theorem 3.3. Considering
these quantities turns out to be sufficient and simplifies the computation of
the corresponding time derivatives.

Proof. Let x ∈ suppωε(t, ·) such that Rt = |b(x)−b(z0)|. By Proposition 2.2
there exists x0 = Xε(0, t, x) ∈ suppω0

ε such that x = Xε(t, 0, x0) = Xε(t, x0).
We compute the derivative with respect to time for s ∈ [0, t]:

d

ds
|b(Xε(s, x0))− b(z0))|

=
1

| ln ε|
(
∇b(Xε(s, x0)) · (vε + Fε)(s,Xε(s, x0))

) b(Xε(s, x0))− b(z0)

|b(Xε(s, x0))− b(z0)|

6
1

| ln ε| |∇b(Xε(s, x0)) · vε,K(s,Xε(s, x0))|

+
1

| ln ε| |∇b(Xε(s, x0)) · (vε,R + Fε)(s,Xε(s, x0))|,

where the special form of vε,L (4.4), namely the orthogonality of ∇b and
vε,L, is crucially used.

By (4.6) and Assumption 3.2, the second term in the right hand side at
time t is bounded by C/| ln ε| (since Xε(s, x0) ∈ suppωε(s, ·) ⊂ Cρb implies
that ∇b(Xε(s, x0)) is bounded).

For the first term, we split the integral defining vε,K(t, x) (4.3) on the
subset ARt/2 and on the complementary of ARt/2 where we recall Ah :=

{|b(y)− b(z0)| 6 h}.

On ARt/2, we use the mean value theorem (2.10)

Rt

2
6 |b(x)− b(y)| 6 a‖∇b‖L∞(Ωr0/2

)|x− y|

to get
∣∣∣∣∣
∇b(x)
b(x)

·
ˆ

ARt/2

K(x, y)
√
b(x)b(y)(bωε)(y) dy

∣∣∣∣∣ 6
C

Rt
.

On Ac
Rt/2

, we have

∣∣∣∣∣
∇b(x)
b(x)

·
ˆ

Ac
Rt/2

K(x, y)
√
b(x)b(y)(bωε)(y) dy

∣∣∣∣∣ 6 C

ˆ

Ac
Rt/2

(bωε)(y)

|x− y| dy
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and we estimate the right-hand side using the well-known fact, see e.g. [16],

that for all h ∈ L1∩L∞(S) we have
´

S |h(y)|/|x−y| dy 6 C‖h‖1/2
L1(S)

‖h‖1/2
L∞(S)

:
ˆ

Ac
Rt/2

(bωε)(y)

|x− y| dy 6
C

ε

√
mt(Rt/2).

This concludes the proof of the lemma. �

The second step aims towards the strong localization property consists in
proving that for any ℓ > 0, the mass of vorticity outside A1/| ln ε|k is smaller

than εℓ provided ε sufficiently small.

Lemma 7.3. For any ℓ > 0 and k ∈ (0, 1/4), we have

lim
ε→0

ε−ℓmt

( 1

| ln ε|k
)
= 0.

For the particular choice b(z, r) = r, namely for the axisymmetric 3D Eu-
ler equations without swirl, Lemma 7.3 recovers the statement of [6, Lemma
3.4].

Proof. We adapt again the proof of [6, Lemma 3.4] to our problem, namely
(3.1). We begin by defining a mollified version of mt:

µt(R,h) =

ˆ

Ω

(
1−WR,h

(
b(y)− b(z0)

))
(bωε)(t, y) dy

where WR,h is a smooth non-negative function from R to R such that

WR,h(s) =

{
1 if |s| 6 R

0 if |s| > R+ h

with W
(p)
R,h(s) 6 Cp/h

p for p = 1, 2. The function WR,h satisfies

µt(R,h) 6 mt(R) 6 µt(R− h, h).

To prove Lemma 7.3, it then suffices to find a sequence (hε)ε such that

ε−ℓµt

( 1

| ln ε|k − hε, hε

)
→ 0.

The smooth function µt is differentiable with respect to time, and we com-
pute

d

dt
µt(R,h) =− 1

| ln ε|

ˆ

∇
(
WR,h

(
b(y)− b(z0)

))
· (vε + Fε)(y)(bωε)(y) dy

=−
ˆ

Ω
W ′

R,h

(
b(y)− b(z0)

) 1

| ln ε|∇b(y) · (vε + Fε)(y)(bωε)(y) dy.

Upon applying the decomposition (4.2) for vε, we use the bound (4.6) of
vε,R and Assumption 3.2 for Fε to get
∣∣∣
ˆ

Ω
W ′

R,h

(
b(y)− b(z0)

) 1

| ln ε|∇b(y) · (vε,R + Fε)(y)(bωε)(y) dy
∣∣∣ 6 Cmt(R)

h| ln ε| .

For the term containing vε,K , we write that
ˆ

Ω
W ′

R,h

(
b(y)− b(z0)

)
∇b(y) · vε,K(y)(bωε)(y) dy
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=
1

2π

¨

Ω2

W ′
R,h

(
b(y)− b(z0)

)∇b(y)
b(y)

·K(y, x)
√
b(x)b(y)(bωε)(y)(bωε)(x) dydx

=
1

4π

¨

Ω2

f(t, x, y) dydx

where

f(t, x, y) :=

(
W ′

R,h

(
b(y)− b(z0)

)∇b(y)
b(y)

−W ′
R,h

(
b(x)− b(z0)

)∇b(x)
b(x)

)

·K(y, x)
√
b(x)b(y)(bωε)(y)(bωε)(x)

vanishes if x, y ∈ AR due to the support properties of W ′
R,h. Hence,

¨

Ω2

f(t, x, y) dydx

=

¨

x∈Ac
R

f(t, x, y) dydx+

¨

y∈Ac
R

f(t, x, y) dy dx−
¨

x,y∈Ac
R

f(t, x, y) dydx

=2

¨

x∈Ac
R

f(t, x, y) dydx−
¨

x,y∈Ac
R

f(t, x, y) dydx

=2

¨

(x,y)∈Ac
R×AR−hα

f(t, x, y) dydx+ 2

¨

(x,y)∈Ac
R×Ac

R−hα

f(t, x, y) dydx

−
¨

x,y∈Ac
R

f(t, x, y) dydx

where α > 0 is a parameter to be fixed later such that R > 2hα. For all
(x, y) ∈ Ac

R ×AR−hα we have by the mean value theorem (2.10) that

hα 6 |b(x)− b(z0)| − |b(y)− b(z0)| 6 |b(x)− b(y)| 6 Cr0 |x− y|.
It follows that

∣∣∣
¨

(x,y)∈Ac
R×AR−hα

f(t, x, y) dydx
∣∣∣ 6 C

mt(R)

h1+α
.

For the remaining two integrals, we use that
∣∣∣∣∣W

′
R,h

(
b(y)− b(z0)

)∇b(y)
b(y)

−W ′
R,h

(
b(x)− b(z0)

)∇b(x)
b(x)

∣∣∣∣∣

6 C
( 1

h2
+

1

h

)
|x− y|.

Therefore, provided that h 6 1 and R > 2hα, implying R − hα > R/2, we
have

2

∣∣∣∣∣

¨

(x,y)∈Ac
R×Ac

R−hα

f(t, x, y) dydx

∣∣∣∣∣+
∣∣∣∣∣

¨

x,y∈Ac
R

f(t, x, y) dydx

∣∣∣∣∣

6
C

h2

¨

(x,y)∈Ac
R×Ac

R/2

(b2ωε)(y)(bωε)(x) dxdy

6
C

h2R2
Kε(t)mt(R) 6

Cmt(R)

h2R2| ln ε| ,
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where we have used (7.1) in the last inequality. Combining these estimates,
we obtain that

(7.2)
d

dt
µt(R,h) 6 Aε(R,h)mt(R)

with

(7.3) Aε(R,h) := C
( 1

h| ln ε| +
1

h1+α| ln ε| +
1

h2R2| ln ε|2
)
.

We note that the estimate on Aε(R,h) coincides with the one obtained in [6,
Equation (3.44)]. It hence suffices to reproduce verbatim the remaining part
of the proof of [6, Lemma 3.4] in order to complete the proof of Lemma 7.3.
Indeed, the rest of the proof of [6, Lemma 3.4] is an iterative argument only
based on (7.2)-(7.3). �

We finish this section with the strong localization property, namely (i) of
Theorem 3.3.

Proposition 7.4. Under Assumption 4.1, there exists ε0, depending only on
T , b, Ω, (z0i )i=1,...,Nv , (γi)i=1,...,Nv , (Γ

i)i=1,...,Nis, M0, such that for ε 6 ε0,
for Tε defined in (4.1) it holds Tε = T and the vorticity ωε is strongly localized
in the direction of steepest ascent of b, namely for every k ∈ (0, 1/4) there
exists εk,T , Ck,T > 0 depending only on z0, γ, M0, b, Ω, k and T such that

suppωε(t, ·) ⊂
{
x ∈ Ω : |b(x)− b(z0)| 6 Ck,T

| ln ε|k
}

for all ε ∈ (0, εk,T ] and all t ∈ [0, T ].

Note that for the particular choice b(z, r) = r, corresponding to the ax-
isymmetric 3D Euler equations without swirl, the identical localization prop-
erty is shown in [6, Equation (3.8)]. Once, Lemma 7.3 being the adaptation
of [6, Lemma 3.4] is proven, the proof of Proposition 7.4 follows the same
lines as the [6, Proof of (3.8), p.70]. For the sake of a concise exposition,
we refer to [6] for full details of the continuity argument, only based on the
inequality in Lemma 7.1 and the limit of Lemma 7.3.

8. Limiting trajectory

Throughout this section, given T > 0 we consider sharply concentrated
initial data ω0

ε in the sense of Assumption 3.1 and the unique corresponding
weak solution (ωε, vε) of (3.1) on [0, T ] with initial data ω0

ε and where the
exterior field satisfies Assumption 3.2.

We recall that Tε defined in (4.1) satisfies Tε = T by virtue of Propo-
sition 7.4 and that hence all statements in Sections 5 and 6 hold true on
[0, T ].

The purpose of the following proposition is to establish the limiting mo-
tion of the point vortex.

Proposition 8.1. Let zε defined by (6.1). There exists z ∈ C1([0, T ],R2)
such that zε converges uniformly to z on [0, T ], where z satisfies the ODE

(8.1) ż(t) = − γ

4π

∇⊥b(z(t))

b(z(t))
, z(0) = z0.
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Note that for all z0 ∈ Ω as in Assumption 4.1, see also Assumption 3.1,
there exists a unique global solution z of (8.1), see Remark 1.3. The limiting
dynamics (8.1) is consistent with the one obtained in [10, 28], see Remark 8.2.

Proof. By Equation (6.4) for the derivative of zε and the expression (4.4)
for vε,L, we have

| ln ε|żε(t) =
1

γε

ˆ

Ω

∇⊥b(x)

4πb2(x)
ψε(t, x)(bωε)(t, x) dx+O(1)

=
1

γε

∇⊥b(zε(t))

4πb2(zε(t))

ˆ

Ω
ψε(t, x)(bωε)(t, x) dx

+
1

4πγε

ˆ

Ω

(∇⊥b(x)

b2(x)
− ∇⊥b(zε(t))

b2(zε(t))

)
ψε(t, x)(bωε)(t, x) dx+O(1).

On the one hand, we note by Propositions 6.3 and 7.4 that zε(t), x ∈ Crb ⊂
Ωr0 for all x ∈ supp(ωε(t, ·)) and t ∈ [0, T ]. In particular, there exists
C = C(r0) > 0 such that |∇2b(x)| and b−1(x) are bounded by C(r0) on Ωr0/2.
It then follows from the mean-value theorem (2.10), Lemma 5.4 providing a
bound for ψε and by the estimate on Iε stated in Proposition 6.3 that

∣∣∣∣∣

ˆ

Ω

(∇⊥b(x)

b2(x)
−∇⊥b(zε(t))

b2(zε(t))

)
ψε(t, x)(bωε)(t, x) dx

∣∣∣∣∣

6 C

ˆ

Ω
|x− zε(t)||ψε(t, x)|(bωε)(t, x) dx

6 C| ln ε|
√

Iε 6 C
√

| ln ε|,
where we have used the Cauchy-Schwarz inequality in the second inequality.
On the other hand, Lemma 5.1 and the expansion of the energy given by
Proposition 5.6 yield that

ˆ

Ω
ψε(t, x)(bωε)(t, x) dx = −2πEε(t) +O(1)

= −γ2ε b(z0)| ln ε|+O(1).

Therefore, we get

żε(t) = − γε
4π
b(z0)

∇⊥b(zε(t))

b2(zε(t))
+O

(
1√
| ln ε|

)
.

Note that in view of Proposition 6.3 one has that

∣∣b(zε(t)− b(z0)
∣∣ 6 C√

| ln(ε)|
,

for all t ∈ [0, T ]. In particular, there exists c > 0 such that c 6 b(zε(t)) 6
1
c

for all times and ε sufficiently small. We obtain that

żε(t) =− γε
4π

∇⊥b(zε(t))

b(zε(t))
− γε

4π

b(z0)− b(zε(t))

b(zε(t))

∇⊥b(zε(t))

b(zε(t))
+O

(
1√
| ln ε|

)

=− γε
4π

∇⊥b(zε(t))

b(zε(t))
+O

(
1√
| ln ε|

)
.
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By Ascoli-Arzela, there exists z such that (up to a subsequence still de-
noted the same way), zε converges to z uniformly on [0, T ] with z the unique
solution of (8.1). By uniqueness of this solution, see Remark 1.3, we infer
that the full sequence converges to z. The conclusion follows. �

Remark 8.2. In the absence of an exterior field, i.e. Fε = 0 and for non-
vanishing topographies b, the limiting dynamics for a single vortex has for-
mally been derived in [28] and rigorously proven by J. Dekeyser and J.

Van Schaftingen [10]. Coming back to the proof above we observe

żε(t) = − 1

2γε

∇⊥b(zε(t))

b2(zε(t))

Eε(t)

| ln ε| +O
(

1√
| ln ε|

)
.

Therefore, this shows that

zε

(
γ| ln ε|s
Eε

)
→ q(s),

where

q̇(s) =
1

2
∇⊥(b−1)(q(s)).

Hence the asymptotic ODE (8.1) is consistent with [10, Theorem 1.1]. Note
that the limiting ODEs differ by the constant −1/2 which is due to the
definition of ∇⊥ (in the present paper ∇⊥b = (−∂2b, ∂1b)) and the definition
of the energy (where we do not have multiplied by 1/2 the integral). We
refer the reader to [10, Equation (1.3)] for a comparison with the dynamics
derived in [28].

The weak localization property provided by Proposition 6.4 with Tε = T
corresponds to (ii) Theorem 3.3 whereas the previous proposition is related
to (iii). The proof of Theorem 3.3 is then complete.

Appendix A. Proof of Proposition 2.2

The purpose of this section is to gather several properties of the linear
transport and continuity equations associated to the nonlinear lake equa-
tions in order to prove Proposition 2.2. The theory of transport equations
for non smooth velocity field with bounded divergence has been widely in-
vestigated since the pioneering work of R. J. Di Perna and P. L. Lions

[12]. More recently, existence and stability of renormalized solutions for the
lake equations have been proved by D. Bresch and P.-E. Jabin [4].

Here we will show that any weak solution to the linear transport equation
is renormalized, therefore unique, and that it is transported by the flow
associated to the velocity field. To this aim, we will adapt the theory of Di
Perna and Lions to the present case with possibly unbounded divergence on
the boundary, by relying on a specific analysis performed by B. Desjardins

[11] in this situation.
In all the following, (Ω, b) is a lake satisfying Assumption 1.2 and ω0 ∈

L∞(Ω). In the definition of b, replacing c(x) by (2‖ϕ‖L∞ )αc(x) if necessary,
we may assume that ϕ 6 1/2 on Ω if α > 0. If α = 0, we can also assume
ϕ 6 1/2 because it appears only in the definition of Ω and ∂Ω.

We begin by stating that ϕ is equivalent to the distance to the boundary
in the neighborhood of the boundary. This is probably well-known but we
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provide the full arguments for sake of completeness (and since we did not
find any precise reference).

Lemma A.1. There exists C > 0 such that
1

C
dist(x, ∂Ω) 6 ϕ(x) 6 C dist(x, ∂Ω) for all x ∈ Ω.

Proof. We first prove that there exist δ > 0, C > 0 such that

(A.1)
1

C
dist(x, ∂Ω) 6 ϕ(x) 6 C dist(x, ∂Ω) for all x ∈ Ω \ Ωδ,

where we recall that Ωδ = {x : dist(x, ∂Ω) > δ} according to the definition
(2.6).

The right-hand side inequality in (A.1) is clear by the C1 regularity of
∂Ω, which implies that there exists δ1 > 0 such that we can define the
orthogonal projection p(x) onto ∂Ω for all x ∈ Ω \ Ωδ1 . Hence by the mean
value theorem we get

ϕ(x) = |ϕ(x)−ϕ(p(x))| 6 max
y∈[p(x),x]

|∇ϕ(y)||x− p(x)| 6 ‖∇ϕ‖L∞ dist(x, ∂Ω).

For the left-hand side inequality in (A.1), we use ∇ϕ 6= 0 on ∂Ω, hence
by continuity of ϕ and compactness of ∂Ω, there exists a simply connected
compact set K1 ⋐ Ω and δ2 > 0 such that |∇ϕ| > δ2 on Ω \ K1. As
ϕ = 0 on ∂Ω and ϕ > 0 on Ω, there exists a simply connected compact set
K1 ⋐ K2 ⋐ Ω such that min∂K1

ϕ > supΩ\K2
ϕ.

For any x ∈ Ω \K1, we consider Y (·, x) ∈ C1([0, Tx),Ω \K1) the unique
solution of

d

ds
Y (s, x) = − ∇ϕ(Y (s, x))

|∇ϕ(Y (s, x))|2 , Y (0, x) = x,

where Tx is either infinite or corresponds to the time when the trajectory
reaches the boundary: Y (Tx, x) ∈ ∂(Ω \K1) = ∂Ω ∪ ∂K1.

For all x ∈ Ω \K2, we state that Tx = ϕ(x) and that Y (Tx, x) ∈ ∂Ω. In-

deed, we have
d

ds
ϕ(Y (s, x)) = −1 on (0, Tx) so the function s 7→ ϕ(Y (s, x))

is a decaying function, and it is not possible that Y (Tx, x) ∈ ∂K1 because
min∂K1

ϕ > ϕ(x). So the only restriction on Tx is to reach ∂Ω which is
the case only when Tx = ϕ(x), because we recall that Ω = {ϕ 6= 0} and
∂Ω = {ϕ = 0}.

Considering this trajectory implies that for all x ∈ Ω \K2, we have

dist(x, ∂Ω) 6 |x− Y (Tx, x)| 6
ˆ Tx=ϕ(x)

0

ds

|∇ϕ(Y (s, x))| 6
1

δ2
ϕ(x).

We end the proof of (A.1) by considering δ = min(δ1, δ3) where δ3 > 0 is
small enough such that K2 ⊂ Ωδ3 .

We have just proved that the functions x 7→ ϕ(x)
dist(x,∂Ω) and x 7→ dist(x,∂Ω)

ϕ(x)

are bounded in a neighborhood Ω \ Ωδ of the boundary, but it is clear that
they are also bounded in Ωδ, this finishes the proof of the lemma. �

Proposition A.2. Let T > 0 and let (v, ω) be the weak solution of the lake
equations as in Proposition 2.1 with initial condition ω0 on [0, T ]. For this
velocity field v, consider the linear transport equation

(A.2) ∂tρ+ v · ∇ρ = 0, ρ(0) = ω0, on Ω
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and the linear continuity equation

(A.3) ∂t(bρ) + div(bvρ) = 0, ρ(0) = ω0 on Ω.

Then ω is the unique distributional bounded solution on [0, T ]× Ω of (A.2)
and (A.3)4. Moreover, |ω|p is also a distributional bounded solution for any
p > 1.

Finally, we have ‖b1/pω(t, ·)‖Lp = ‖b1/pω0‖Lp for t ∈ [0, T ] and p ∈ [1,∞).

Proof. Let δ > 0 defined in (A.1). For all x ∈ Ω \ Ωδ, by the proof of
Lemma A.1, we may define the orthogonal projection p(x) onto ∂Ω. We
write

∇ϕ(x) · v(t, x) = (v(t, x) − v(t, p(x)) · ∇ϕ(x)
+ v(t, p(x)) · (∇ϕ(x)−∇ϕ(p(x)))

where we have used the fact that v · n = 0 = v · ∇ϕ on ∂Ω. Therefore we
obtain by the log-Lipschitz regularity of v and the Lipschitz regularity of
∇ϕ that for all (t, x) ∈ [0, T ]× (Ω \ Ωδ):

|∇ϕ(x) · v(t, x)| 6 C|x− p(x)| (1 + |ln |x− p(x)||)
6 Cϕ(x)(1 + | lnϕ(x)|) = Cϕ(x)(1 − lnϕ(x))

6 −Cϕ(x) lnϕ(x),
where C depends on ‖ω‖L∞ and where we have used that ϕ 6 1/2. As the
function x 7→ −ϕ(x) lnϕ(x) is greater than a positive constant on Ωδ, we
have that the previous inequality holds also true in Ωδ:

(A.4) |∇ϕ(x) · v(t, x)| 6 −Cϕ(x) lnϕ(x), ∀(t, x) ∈ [0, T ]× Ω.

Recalling b = cϕα so ∇b = ϕα∇c + αcϕα−1∇ϕ, the first consequence of
(A.4) is to estimate div v as follows

|div v(x)| =
∣∣∣∇b(x)
b(x)

· v(x)
∣∣∣ 6 C + C

∣∣∣∇ϕ(x)
ϕ(x)

· v(x)
∣∣∣

so that

|div v(x)| 6 C(1− lnϕ(x)) 6 C(1− ln dist(x, ∂Ω)),(A.5)

from which it follows that

exp(T0|div v(t, x)|) 6 exp(CT0) dist(x, ∂Ω)
−CT0 ∈ L1([0, T ]× Ω)

for T0 sufficiently small. We may therefore apply the result by B. Des-

jardins [11, Lemma 3]: the linear transport equation (A.2) has a unique
distributional bounded solution on [0, T ]× Ω and this solution is renormal-
ized (see the remark just after [11, Theorem 3]): for all β ∈ C1(R) bounded,
β(ω) is also a weak bounded solution.

We infer that the corresponding linear continuity equation (A.3) also has
the renormalization property on [0, T ]×Ω since the distributional formula-
tions of these equations are equivalent on [0, T ]×Ω (noticing that b > 0 and
b ∈ C1 on Ω).

4Note that here, we consider test functions that are compactly supported on Ω, while
the test functions are not necessarily compactly supported in the weak formulation given
by Proposition 2.1



VORTEX DYNAMICS FOR THE LAKE EQUATIONS 41

Let p ∈ (1,∞). Setting β ∈ C1 such that β(s) = sp for |s| 6 ‖ω‖L∞ and
β constant for |s| > 2‖ω‖L∞ , hence β(ω) = |ω|p, we obtain that |ω|p satisfies
(A.3) in the sense of distributions on [0, T ]× Ω.

Finally, we introduce a smooth, non-increasing function χ0 : R → [0, 1]
which is identically one on [0, 1/4] and vanishes on [1/2, 1) and we take as
a test function

ΦR(x) = (1− χ0) (Rϕ(x))

which is compactly supported in Ω for all R > 0. Observe that for 1/4 6

Rϕ(x) 6 1/2 we have by using (A.4)

b(x)|ω|p(t, x)|v(x) · ∇ΦR(x)| 6 Rb(x)|ω|p(t, x)||v(x) · ∇ϕ(x)||χ′
0(Rϕ(x))|

6 C‖ω‖pL∞‖b‖L∞(Rϕ(x))| lnϕ(x)||χ′
0(Rϕ(x))|

6 C| lnR|1dist(x,∂Ω)6C/R

which implies that
ˆ

b(x)|ω|p(t, x)|v(x) · ∇ΦR(x)|dx 6
C| lnR|
R

→ 0

as R→ ∞. Therefore
´

Ω b(x)|ω|p(t, x) dx =
´

Ω b(x)|ω0|p(x) dx.
As this equality holds for any p > 1, it is enough to consider a sequence

pn = 1 + 1
n to state that it holds also true for p = 1, just by using the

dominated convergence theorem. �

Proposition A.3. Let ω0 ∈ L∞(Ω) with compact support in Ω. Let (v, ω)
be the unique weak solution of the lake equations as in Proposition 2.1 with
initial condition ω0. There exists a compact subset KT of Ω, depending only
on ‖ω0‖L∞, δ0 and T , such that

suppω(t, ·) ⊂ KT , ∀t ∈ [0, T ].

We recall that δ0 is defined by dist(suppω0, ∂Ω) in Proposition 2.2.

Proof. We set

δ1 := min
(e−1

2
; inf

suppω0

ϕ
)
.

By Proposition A.2, ω2 is a distributional bounded solution of (A.3) with
initial condition (ω0)2. In view of the time-regularity properties of ω stated
in Proposition 2.1, we obtain that ω2 satisfies the following weak formulation
for all t ∈ R+ and for all test function Φ ∈ C1

c ([0, T ] × Ω):
ˆ

Ω
Φ(t, x)(bω2)(t, x) dx−

ˆ

Ω
Φ(0, x)(b(ω0)2)(x) dx

=

ˆ t

0

ˆ

Ω
(bω2)(s, x)(∂tΦ+ v · ∇Φ)(s, x) dxds.

Moreover, we may assume that this formulation holds for any test func-
tion Φ ∈ C1([0, T ] × Ω): this is established by arguing as in the proof of
Proposition A.2 namely replacing Φ by ΦΦR ∈ C1

c and letting R→ ∞.
Now we introduce as before a smooth, non-increasing function χ0 : R →

[0, 1] which is identically one on [0, 1/4] and vanishes on [1/2, 1) and we set

χ(t, x) = χ0

(
ϕ(x)

r(t)

)
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with r(t) a decreasing C1 function less than one to be determined later on.
Using the weak formulation for ω2 with test function given by χ, we obtain
for any t ∈ R+
ˆ

Ω
χ(t, x)(bω2)(t, x) dx−

ˆ

Ω
χ(0, x)(b(ω0)2)(x) dx

=

ˆ t

0

ˆ

Ω
(bω2)(s, x)χ′

0

(
ϕ(x)

r(s)

)
1

r(s)

(
−r

′(s)

r(s)
ϕ(x) +∇ϕ(x) · v(s, x)

)
dxds

=

ˆ t

0

ˆ

Ω
(bω2)(s, x)

∣∣∣∣χ
′
0

(
ϕ(x)

r(s)

)∣∣∣∣
1

r(s)

(
r′(s)

r(s)
ϕ(x)−∇ϕ(x) · v(s, x)

)
dxds.

We infer from (A.4) that for r(s)
4 6 ϕ(x) 6 r(s)

2

r′(s)

r(s)
ϕ(x)−∇ϕ(x) · v(s, x) 6 r′(s)

4
+ Cr(s)(1− ln r(s)).

Setting

r(s) = exp
(
− e8C(s+s0)

)

where s0 > 0 is chosen such that r(0) = 2δ1, which uniquely exists because
2δ1 6 e−1, namely s0 = 1

8C ln(− ln(2δ1)). With this expression, it is clear
that r is decaying, less than one, and verifies for any s > 0

r′(s)

4
+ Cr(s)(1− ln r(s)) = Cr(s)

(
− 2e8C(s+s0) + 1 + e8C(s+s0)

)
6 0,

where we have used that s0 > 0. For such a function r, this implies
ˆ

Ω
χ(t, x)(bω2)(t, x) dx 6

ˆ

Ω
χ(0, x)(b(ω0)2)(x) dx = 0

because for any x ∈ suppω0, ϕ(x) > δ1 = r(0)/2, hence χ(0, x) = 0.
From this inequality, we deduce that suppω(t, ·) ⊂ {x : ϕ(x) > 1

4r(t)}.
The conclusion follows from Lemma A.1.

Note that such arguments establishing support properties without re-
quiring the notion of flow as been already used by the two last authors in
[18]. �

Next, the regularity assumptions on v in [0, T ]×Ω allow one to define the
flow in the classical sense: for any x ∈ Ω and t0, there exist 0 6 t1 < t0 <
t2 6 T and a unique characteristic curve X(·, t0, x) ∈ C1([t1, t2]; Ω) solving

dX(t, t0, x)

dt
= v(t,X(t, t0, x)), X(t0, t0, x) = x.

To prove that we can choose t1 = 0 and t2 = T , we need to establish that
the trajectory starting from x ∈ Ω cannot reach the boundary in finite time.

Proposition A.4. Let (v, ω) be the weak solution of the lake equations as
in Proposition 2.1 with initial condition ω0. There exists β > 1 depending
only on ‖ω0‖L∞ and T such that for any x ∈ Ω

ϕ(X(t, t0, x)) > ϕ(x)β , ∀t0 ∈ [0, T ], ∀t ∈ [t1, t2].
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Proof. This property is proved in [2, Lemma 4.1] in the case of smooth
vorticity, and we provide a self-contained proof below.

We compute again

d

dt
ϕ(X(t, t0, x)) = v(t,X(t, t0, x)) · ∇ϕ(X(t, t0, x))

and therefore we obtain by (A.4)

(A.6)
∣∣∣ d
dt
ϕ(X(t, t0, x))

∣∣∣ 6 −Cϕ(X(t, t0, x)) lnϕ(X(t, t0, x)), t ∈ [t1, t2]

which implies that

d

dt
ln
(
− lnϕ(X(t, t0, x))

)
6 C, t ∈ [t1, t2]

hence
ϕ(X(t, t0, x)) > ϕ(x)e

CT
, t ∈ [t0, t2].

On the other hand, (A.6) also gives

d

dt
ln
(
− lnϕ(X(t, t0, x))

)
> −C, t ∈ [t1, t2]

hence
ϕ(X(t, t0, x)) > ϕ(x)e

CT
, t ∈ [t1, t0]

from which the conclusion follows. �

This proposition means that we extend the solution in order to getX(·, t0, x) ∈
C1([0, T ]; Ω). By uniqueness, we have that X(t, t0, ·) is an homeomorphism
for any t, t0 ∈ [0, T ], with X(t, t0, ·)−1 = X(t0, t, ·).

Note that at this stage we never use that ω is transported by the flow,
which is not obvious due to the singularity of div v on the boundary. This
property is the content of the following:

Proposition A.5. Let ω0 ∈ L∞(Ω) with compact support in Ω. Let (v, ω)
be the unique weak solution of the lake equations as in Proposition 2.1 with
initial condition ω0. Then we have ω(t, y) = ω0(X(0, t, y)) for all y ∈ Ω and
t ∈ [0, T ].

Proof. Let Ω0 ⋐ Ω such that supp(ω0) ⊂ Ω0. By Proposition A.3 there
exists Ω1 ⋐ Ω, with Ω0 ⊂ Ω1, such that suppω(t, ·) ⊂ Ω1 for all t ∈ [0, T ].
By Proposition A.4, increasing Ω1 if necessary, we may assume that

(A.7) X(t, 0, x) ∈ Ω1, ∀x ∈ Ω0, ∀t ∈ [0, T ].

Moreover, by Proposition A.4 we may introduce Ω1 ⊂ Ω2 ⋐ Ω such that

(A.8) X(t, t0, x) ∈ Ω2, ∀x ∈ Ω1, ∀t, t0 ∈ [0, T ].

We finally introduce Ω2 ⋐ Ω3 ⋐ Ω, we extend all functions by 0 outside
Ω and we set ṽ = vχ where the smooth function χ satisfies χ = 1 on Ω2 and
χ = 0 in Ωc

3.
By definition of Ω1 we infer that ω is a weak bounded solution of

∂tω + ṽ · ∇ω = 0 on [0, T ]× R
2

where div(ṽ) = div(v)χ+v ·∇χ ∈ L∞([0, T ]×R
2) by (A.5) and the definition

of χ, and where ṽ satisfies the same regularity as v. In particular, we have ṽ ∈
L1([0, T ];W 1,1(R2)) and ṽ/(1+|x|) ∈ L1([0, T ];L1(R2))+L1([0, T ];L∞(R2)).
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We may then invoke classical results on linear transport equations on the
full space with vector fields of bounded divergence that where established
by R. J. Di Perna and P. L. Lions [12, Theorem III.2]: we have

ω(t, y) = ω0(X̃(0, t, y)), ∀x ∈ R
2, ∀t ∈ [0, T ]

where X̃ is the flow associated to ṽ. In particular this holds true for y ∈ Ω.
Now we fix t ∈ [0, T ] and y ∈ Ω. There are two cases.

• If y ∈ Ω\Ω1, we have ω(t, y) = 0 by definition of Ω1. Let x = X(0, t, y).
If x ∈ supp(ω0) then x ∈ Ω0 thus by (A.7), we have y = X(t, 0, x) ∈ Ω1

which is a contradiction. Therefore x /∈ supp(ω0) and ω(t, y) = 0 = ω0(x) =
ω0(X(0, t, y)).

• If y ∈ Ω1, we have y = X̃(t, 0, x̃) (where x̃ = X̃(0, t, y)) so that ω(t, y) =

ω0(x̃). Let f(s) = X̃(s, t, y) and g(s) = X(s, t, y) so that f(t) = g(t) = y ∈
Ω1. By (A.8) we have g(s) ∈ Ω2 for all s ∈ [0, T ]. On the other hand,
by continuity, there exists (t1, t2) ∈ [0, T ] containing t, maximal such that
f(s) ∈ Ω2 on (t1, t2) ∈ [0, T ]. Thus on (t1, t2) we have ṽ(s, f(s)) = v(s, g(s))
therefore f and g coincide on (t1, t2). Since g ∈ Ω2 on [0, T ] we conclude that
[t1, t2] = [0, T ] and finally f = g on [0, T ]. In particular, f(0) = g(0) which
means that x̃ = X(0, t, y). Thus, we have obtained ω(t, y) = ω0(X(0, t, y)).
Proposition A.5 is proved. �

Appendix B. Rearrangement of the mass

For M0, γ > 0, we define

FM0,γ :=
{
f ∈ L∞

c (R2), 0 6 f 6M0,

ˆ

f = γ
}
.

The following rearrangement result is commonly used in the literature, but
we provide a proof for sake of completeness.

Lemma B.1. Let g be a non increasing continuous function from (0,∞),
non-negative, such that s 7→ sg(s) ∈ L1

loc([0,∞)). Then for all x ∈ R
2, we

have

sup
f∈FM0,γ

ˆ

R2

g(|x− y|)f(y) dy = 2πM0

ˆ R0

0
sg(s) ds with R0 =

√
γ

πM0
,

i.e. the supremum is reached for the function f∗ =M01B(x,R0).

Proof. Let f ∈ FM0,γ given. We have
ˆ

R2

g(|x − y|)f(y) dy =

ˆ

B(x,R0)
g(|x− y|)f(y) dy +

ˆ

R2\B(x,R0)
g(|x− y|)f(y) dy

=

ˆ

B(x,R0)
g(|x− y|)(f(y)− f∗(y)) dy +

ˆ

R2\B(x,R0)
g(|x− y|)f(y) dy

+

ˆ

B(x,R0)
g(|x− y|)f∗(y) dy.

For y ∈ B(x,R0) we have f(y) 6 f∗(y) and g(|x − y|) > g(R0), therefore
ˆ

B(x,R0)
g(|x − y|)(f(y)− f∗(y)) dy 6 g(R0)

ˆ

B(x,R0)
(f(y)− f∗(y)) dy
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6 g(R0)

ˆ

B(x,R0)
f(y) dy − g(R0)γ.

Next, for y ∈ R
2 \B(x,R0) we have g(|x− y|) 6 g(R0), therefore

ˆ

R2\B(x,R0)
g(|x− y|)f(y) dy 6 g(R0)

ˆ

R2\B(x,R0)
f(y) dy.

Altogether, we obtain
ˆ

R2

g(|x − y|)f(y) dy 6g(R0)

ˆ

B(x,R0)
f(y) dy − g(R0)γ

+ g(R0)

ˆ

R2\B(x,R0)
f(y) dy +

ˆ

B(x,R0)
g(|x − y|)f∗(y) dy

6g(R0)

ˆ

R2

f(y) dy − g(R0)γ +

ˆ

B(x,R0)
g(|x − y|)f∗(y) dy

6

ˆ

R2

g(|x− y|)f∗(y) dy.

The conclusion follows. �
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