
LINKING NUMBER AND MILNOR INVARIANTS

JEAN-BAPTISTE MEILHAN

Abstract. We give a quick overview of the definitions and properties of the linking number and its higher-order
generalization, Milnor invariants. Preliminary version of a section for the Concise Encyclopedia of Knot theory.

1. Introduction

The linking number is probably the oldest invariant of knot theory. In 1833, several decades before the
seminal works of physicists Tait and Thompson on knot tabulation, the work of Gauss on electrodynamics
led him to formulate the number of “intertwinings of two closed or endless curves” as

(1)
1

4π

∫ ∫
(x′ − x)(dydz′ − dzdy′) + (y′ − y)(dzdx′ − dxdz′) + (z′ − z)(dxdy′ − dydx′)

[(x′ − x)2 + (y′ − y)2 + (z′ − z)2]3/2 ,

where x, y, z (resp. x′, y′, z′) are coordinates on the first (resp. second) curve. This number, now called
linking number, is an invariant of 2–component links,1 which typically distinguishes the trivial link and the
Hopf link, shown below.
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Alternatively, the linking number can be simply defined in terms of the first homology group of the link
complement (see Thm. 2.1). But, rather than the abelianization of the fundamental group, one can consider
finer quotients, for instance by the successive terms of its lower central series, to construct more subtle link
invariants. This is the basic idea upon which Milnor based his work on higher order linking numbers, now
called Milnor µ–invariants.

We review in Section 2 several definitions and key properties of the linking number. In Section 3, we
shall give a precise definition of Milnor invariants and explore some of their properties, generalizing those
of the linking number. In the final Section 4, we briefly review further known results on Milnor invariants.

2. The Linking Number

The linking number has been studied from multiple angles and has thus been given many equivalent
definitions of various natures. We already saw in (1) the original definition due to Gauss ; let us review
below a few others.

2.1. Definitions. For the rest of this section, let L = L1 ∪ L2 be a 2 component link, and let lk(L) denote the
linking number of L.

Recall that the first homology group of the complement S 3 \ L1 of L1 is the infinite cyclic
group generated by the class [m1] of a meridian m1, as shown on the right.

Theorem 2.1. The linking number of L is the integer k such that [L2] = k[m1] ∈ H1(S 3 \ L1;Z).

L1

m1

Recall now that any knot bounds orientable surfaces in S 3, called Seifert surfaces. Given a Seifert surface
S for L2, one may assume up to isotopy that L1 intersects S at finitely many transverse points. At each
intersection point, the orientation of L1 and that of S form an oriented 3–frame, hence a sign using the
right-hand rule ; the algebraic intersection of L1 and S is the sum of these signs over all intersection points.

Theorem 2.2. The linking number of L is the algebraic intersection of L1 with a Seifert surface for L2.

1In this note, by “link” we will always mean an ordered and oriented tame link in the 3–sphere, up to ambient isotopy.
1
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Given a regular diagram of L, the linking number can also simply be computed as the number of crossings
where L1 passes over L2, counted with signs as follow.

Theorem 2.3.
lk(L) =

(
number of

L L21

)
−

(
number of

L12L .

)
The proof of the above results, i.e. the fact that these definitions are all equivalent and are equivalent to

(1), can be found for example in [41, §. 5.D], along with several further definitions. See also [40] for details.

Remark 2.4. As part of Theorems 2.2 and 2.3, the linking number does not depend on the choices involved
in these definitions, namely the choice of a Seifert surface for L2 and of a diagram of L, respectively.

2.2. Basic properties. It is rather clear, using any of the above definitions, that reversing the orientation of
either component of L changes the sign of lk(L).

Also clear from Gauss formula (1) is the fact that the linking number does not depend on the order of the
link components, that is :

(2) lk(L1 ∪ L2) = lk(L2 ∪ L1).

This can also be seen, for example, from the diagrammatic definition (Thm. 2.3), by considering two projec-
tions, on two parallel planes which are ‘on either sides’ of L, so that crossings where 1 overpasses 2 in one
diagram are in one-to-one correspondence with crossings where 2 overpasses 1 in the other, with same sign.

The symmetry property (2) allows for a symmetrized version of Theorem 2.3:

lk(L) =
1
2

((
number of

)
−
(

number of
))

,

where one only counts crossings involving a strand of component 1 and a strand of component 2.

2.3. Two classification results. The following notion was introduced by Milnor in the fifties [30].

Definition 2.5. Two links are link-homotopic if they are related by a sequence of ambient isotopies and
self-crossing changes, i.e. crossing changes involving two strands of a same component (see Figure 1).

The idea behind this notion is that, as a first approximation to the general study of links, working up
to link-homotopy allows to unknot each individual component of a link, and only record their ‘mutual
interractions’ – this is in a sense studying ‘linking modulo knotting’.

Observe that the linking number is invariant under link-homotopy. Furthermore, it is not too difficult to
check that any 2–component link is link-homotopic to an iterrated Hopf link, i.e. the closure of the pure
braid σ2n

1 for some n ∈ Z. This number n is precisely the linking number of the original link, thus showing:

Theorem 2.6. The linking number classifies 2–component links up to link-homotopy.

Generalizing this result to a higher number of components, however, requires additional invariants, and
this was one of the driving motivations that led Milnor to develop his µ–invariants, see Section 3.3.2. There
is, however, an equivalence relation on links with an arbitrary number of components which is classified by
the linking number; this is the ∆–equivalence, which is generated by the ∆–move, shown on the right-hand
side of Figure 1. Indeed, the following is due H. Murakami and Y. Nakanishi [33], see also [27].

Theorem 2.7. Two links ∪n
i=1Li and ∪n

i=1L′i (n ≥ 2) are ∆–equivalent if, and only if lk(Li ∪ L j) = lk(L′i ∪ L′j)
for all i, j such that 1 ≤ i < j ≤ n.

Notice in particular that the ∆–move is an unknotting operation, meaning that any knot can be made trivial
by a finite sequence of isotopies and ∆–moves.

←→ ←→

Figure 1. A self-crossing change (left) and a ∆–move (right)
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3. Milnor invariants

In this whole section, let L = L1 ∪ · · · ∪ Ln be an n–component link, for some fixed n ≥ 2.

3.1. Definition of Milnor µ–invariants. In his master’s and doctoral theses, supervised by R. Fox, Milnor
defined numerical invariants extracted from the peripheral system of a link, which widely generalize the
linking number.

Denote by X the complement of an open tubular neighborhood of L. Pick a point in the interior of X, and
denote by π the fundamental group of X based at this point. It is well-known that, given a diagram of L,
we can write an explicit presentation of π, called the Wirtinger presentation, where each arc in the diagram
provides a generator, and each crossing yields a relation. Such presentations, however, are in general difficult
to work with, owing to their large number of generators. We introduce below a family of quotients of π for
which a much simpler presentation can be given, and which still retain rich topological informations on L.

The lower central series (ΓkG)k≥1 of a group G is the nested family of subgroups defined inductively by

Γ1G = G and Γk+1G = [G,ΓkG].

The kth nilpotent quotient of the group G is the quotient G/ΓkG.
Let us fix, from now on, a value of k ≥ 2. For each i ∈ {1, · · · , n}, consider two elements mi, λi ∈ π/Γkπ,

where mi represents a choice of a meridian for Li in X, and where λi is a word representing the ith preferred
longitude of Li, i.e. a parallel copy of Li in X having linking number zero with Li. Denote also by F the free
group F(m1, · · · ,mn).

Theorem 3.1 (Chen-Milnor Theorem [31]). The kth nilpotent quotient of π has a presentation given by

π/Γkπ =
〈
m1, . . . ,mn |miλim−1

i λ−1
i (i = 1, · · · , n), ΓkF

〉
.

In order to extract numerical invariants from the nilpotent quotients of π, we consider the Magnus expan-
sion [25] of each λ j, which is an element E(λ j) of Z〈〈X1, ..., Xn〉〉, the ring of formal power series in non
commuting variables X1, . . . , Xn, obtained by the substitution

mi 7→ 1 + Xi and m−1
i 7→ 1 − Xi + X2

i − X3
i + . . .

We denote by µL(i1i2 . . . ip j) the coefficient of Xi1 Xi2 . . . Xip in the Magnus expansion of λ j:

(3) E(λ j) = 1 +
∑

i1i2...ip

µL(i1i2 . . . ip j)Xi1 Xi2 . . . Xip .

This coefficient is not, in general, an invariant of the link, as it depends upon the choices made in this
construction (essentially, picking a system of meridians and longitudes for L). We can, however, promote
these numbers to genuine invariants by regarding them modulo the following indeterminacy.

Definition 3.2. Given a sequence I of indices in {1, ..., n}, let ∆L(I) be the greatest common divisor of the
coefficients µL(I′), for all sequences I′ obtained from I by deleting at least one index and permuting cyclicly.

For example, ∆L(123) = gcd {µL(12), µL(21), µL(13), µL(31), µL(23), µL(32)}.

Theorem–Definition (Milnor [31]). The residue class

µL(I) ≡ µL(I) mod ∆L(I)

is an invariant of ambient isotopy of L, for any sequence I of at most k integers, called a Milnor invariant of
L. The number of indices in I is called the length of the invariant.

Before giving some examples in Section 3.2, a few remarks are in order.

Remark 3.3. Observe from (3) that µL(I) is only defined for a sequence I of two or more indices. As a
convention, we set µL(i) = 0 for all i.

Remark 3.4. If all Milnor invariants of L of length < k are zero, then those of length k are well defined
integers. These first non-vanishing Milnor invariants are thus much easier to study in practice and, as a
matter of fact, a large proportion of the litterature on Milnor link invariants focusses on them.

Remark 3.5. Working with the kth nilpotent quotient of π only allows to define Milnor invariants up to
length k. But this k can be chosen arbitrarily large, so this is no restriction. Also, the invariant µL(I) does not
depend on the choice of k, as long as k is no greater than the length of I.
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3.2. First examples. By Remark 3.3, length 2 Milnor invariants are well-defined over Z. In order to define
them, it suffices to work in the second nilpotent quotient, i.e. in π/Γ2π � H1(X;Z). But the (image of the)
jth preferred longitude λ j in H1(X;Z) writes

∑
i, j lk(Li, L j)mi, and we have

E(λ j) = 1 +
∑
i, j

lk(Li, L j)Xi + terms of degree ≥ 2.

Hence length 2 Milnor invariants are exactly the pairwise linking numbers of a link. This justifies regarding
length ≥ 3 Milnor invariants as ‘higher order linking numbers’. In order to get a grasp on these, let us
consider an elementary example.

Example 3.6. Consider the Boromean rings B, illustrated below.2 The Wirtinger presentation for π is

π =

〈
m1 , m2 , m3 m3m1m−1

3 n−1
1 ; m1m2m−1

1 n−1
2 ; m2m3m−1

2 n−1
3

n1 , n2 , n3 n−1
1 n2n1m−1

2 ; n−1
2 n3n2m−1

3 ; n−1
3 n1n3m−1

1

〉
.

Consider the third nilpotent quotient of π, i.e. fix k = 3. We choose the merid-
ians mi as (representatives of) generators, and express preferred longitudes λi:
we have λ3 = m−1

2 n2 = m−1
2 m1m2m−1

1 (the other two are obtained by cyclic
permutation of the indices, owing to the symmetry of the link). Taking the
Magnus expansion gives

E(λ3) = 1 + X1X2 − X2X1 + terms of degree ≥ 3.

1 2

3

m1

m

m

n

n

1

2

3

3

n2

B

We thus obtain that µB(I) = 0 for any sequences I of two indices (i.e. all linking numbers are zero), and that

µB(123) = µB(231) = µB(312) = 1 and µB(132) = µB(213) = µB(321) = −1.

Example 3.6 illustrates the fact that, just like the linking number detects (and actually, counts copies
of) the Hopf link, the triple linking number µ(123) detects the Borromean rings. This generalizes to the
following realization result, due to Milnor [30].

Lemma 3.7. Let Mn be the n–component link shown on the right,
and let σ be any permutation in S n−2. Then

µMn
(σ(1) · · ·σ(n − 2)n − 1n) =

{
1 if σ =Id,
0 otherwise.

n+1
n

n−1

...

1
2

3.3. Some properties. We gather here several well-known properties of Milnor µ–invariants, most being
due to Milnor himself [30, 31] (unless otherwise specified).

3.3.1. Symmetry and Shuffle. It is rather clear that, if L′ is obtained from L be reversing the orientation of
the ith component, then µL′ (I) = (−1)i(I)µL, where i(I) denotes the number of occurences of the index i in the
sequence I. The next two relations were shown by Milnor [31], using properties of the Magnus expansion:

Cyclic symmetry: For any sequence i1 · · · im of m indices in {1, · · · , n}, we have

µL(i1 · · · im) = µL(imi1 · · · im−1).

Shuffle: For any k ∈ {1, · · · , n} and any two sequences I, J of indices in {1, · · · , n}, we have∑
H∈S (I,J)

µL(Hk) ≡ 0 (mod gcd{∆(Hk) |H ∈ S (I, J)}),

where S (I, J) is the set of all sequences obtained by inserting the indices of J into I, preserving order.
It follows in particular that there is essentially only one triple linking number: for any 3–component

algebraically split link L, we have µL(123) = µL(231) = µL(312) = −µL(132) = −µL(213) = −µL(321). In
general, the number of independent µ–invariants was given by K. Orr, see [37, Thm. 15].

2 There, we use the usual convention that a small arrow underpassing an arc of the diagram represents a loop, based at the reader’s
eye and going straight down to the projection plane, enlacing positively the arc and going straight back to the basepoint.
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3.3.2. Link-homotopy and concordance. Milnor invariants are not only invariants of ambiant isotopy: they
are actually invariants of isotopy, i.e. homotopy through embeddings. In particular, Milnor invariants do not
see ’local knots’, as those can be shrunk to a point by a general isotopy.

As mentioned in Section 2.3, the notion of link-homotopy was introduced by Milnor himself, who proved
the following in [31].

Theorem 3.8. For any sequence I of pairwise distinct indices, µ(I) is a link-homotopy invariant.

Milnor invariants are sharp enough to detect link-homotopically trivial links, and to classify links up to
link-homotopy for ≤ 3 components [31]. The case of 4–component links was only completed thirty years
later by J. Levine, using a refinement of Milnor invariants [20]. The general case is discussed in Section 4.1.
Milnor link-homotopy invariants also form a complete set of link-homotopy invariants for Brunnian links,
i.e. links which become trivial under removal of any component (see Section 3.2 for examples) [30].

Recall that two n–component links L and L′ are concordant if there is an embedding f : tn
i=1(S 1 ×

[0, 1])i −→ S 3 × [0, 1] of n disjoint copies of the annulus S 1 × [0, 1], such that f
(
(tn

i=1S 1
i ) × {0}

)
= L × {0}

and f
(
(tn

i=1S 1
i ) × {1}

)
= L′ × {1}. The following was essentially shown by J. Stallings [43] (and also by

A. Casson [6] for the more general relation of cobordism).

Theorem 3.9. Milnor invariants are concordance invariants.

Let us also mention here that Milnor invariants are all zero for a boundary link, that is, for a link whose
components bound mutually disjoint Seifert surfaces in S 3 [42]. Characterizing geometrically links with
vanishing of Milnor invariants is the subject of the k–slice conjecture, proved by K. Igusa and K. Orr in [14],
which roughly states that all invariants of length ≤ 2k vanish if and only if the link bounds a surface which
“look like slice disks” modulo k–fold commutators of the fundamental group of the surface complement.

3.3.3. Cabling formula. Milnor invariants indexed by non-repeated sequences are not only topologically
relevant, by Theorem 3.8; they also ‘generate’ all Milnor invariants, by the following.

Theorem 3.10. Let I be a sequence of indices in {1, · · · , n}, such that some index i appears at least twice in
I. Then µL(I) = µL̃(Ĩ), where Ĩ is obtained from I by replacing one of the occurences of i by n + 1, and where
L̃ is obtained from L by adding an (n + 1)th component, which is a parallel copy of Li having linking number
zero with it.

Example 3.11. A typical example of a link-homotopically trivial link is the Whitehead link W, shown below

21

on the left-hand side. But Milnor concordance invariants do
detect W; specifically, we have µW (1122) = 1.

As a matter of fact, one can check that
µW (1122) = µW̃ (1324) = 1,

where W̃ is the 4–component link shown on the right. 2

3

4

1

3.3.4. Additivity. Given two n–component links L and L′, lying in two disjoint 3–balls of S 3, a band sum
L]L′ of L an L′ is any link made of pairwise disjoint connected sums of the ith components of L and L′

(1 ≤ i ≤ n). Although this operation is not well-defined, V. Krushkal showed that, for any sequence I,

µL]L′ (I) ≡ µL(I) + µL′ (I)
(
mod gcd(∆L(I),∆L′ (I))

)
,

meaning that Milnor invariants are independent of the choice of bands defining L]L′, see [19].

4. Further properties

Since their introduction in the fifties, Milnor invariants have been the subject of numerous works. In this
section, which claims neither exhaustivity nor precision, we briefly overview some of these results.

4.1. Refinements and generalizations. The main difficulty in understanding Milnor µ–invariants lies in
these intricate indeterminacies ∆(I). Multiple attempts have been made to refine this indeterminacy, in order
to get more subtle invariants. Milnor link-homotopy invariants were refined by Levine to tackle the 4–
component case (see Section 3.3.2), using the notion of ’reduced link group’, see [20]. A decisive step was
taken by Habegger and Lin, who showed that the indeterminacies ∆L(I) are equivalent to the indeterminacy
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in representing L as the closure of a string link, i.e. a pure tangle without closed component [11] (see also
[21]). This led them to a full link-homotopy classification of (string) links [11].

T. Cochran defined, by considering recursive intersection curves of Seifert surfaces, link invariants which
recover (and shed beautiful geometric lights on) µ–invariants, and sometimes refines them [8].

K. Orr defined invariants, as the class of the ambient S 3 in some third homotopy group, which refines
significantly the indeterminacy of Milnor invariants [36, 37]. Orr’s invariant is also the first attempt towards
a transfinite version of Milnor invariants, a problem posed in [31] ; see also the work of J. Levine in [22].

4.2. Link maps and higher dimensional links. There are several higher dimensional versions of the link-
ing number ; see [5, § 3.4] for a good survey. Some are invariants of link maps, i.e. maps sending disjointly
a union of two spheres (of various dimensions) to a sphere – these are the natural objects to consider when
working up to link-homotopy. In particular, the first example of a link map which is not link-homotopically
trivial was given in [9] using an appropriate generalization of the linking number.

Higher dimensional generalizations of Milnor invariants were extensively studied by U. Koschorke for
link maps with many components, see [16, 17] and references therein. Note also that Orr’s invariants, which
generalize Milnor invariants (see Section 4.1), are also defined in any dimensions. But there does not seem
to be nontrivial analogues of Milnor invariants for n–dimensional links (n ≥ 2), i.e. for embedded n–spheres
in codimension 2 ; in fact, the latter are all link-homotopically trivial [4]. However, Milnor invariants
generalize naturally to 2–string links, i.e. knotted annuli in the 4–ball bounded by a prescribed unlink in S 3,
and classify them up to link-homotopy [2], thus providing a higher dimensional version of [11].

4.3. Finite type invariants. The linking number is (up to scalar) the unique degree 1 finite type link in-
variant. This was generalized independently by D. Bar Natan [3] and X.S. Lin [24], who showed that any
Milnor string link invariant of length k is a finite type invariant of degree k − 1. As a consequence, Milnor
string link invariants can be, at least in principle, extracted from the Kontsevich integral, which is universal
among finite type invariants. This was made completely explicit by G. Masbaum and N. Habegger in [12].

Note that the finite type property does not make sense for higher order µ–invariants (of links), since the
indeterminacy ∆(I) is in general not the same for two links which differ by a crossing change. Nonetheless,
µ–invariants of length k are invariants of Ck–equivalence [13], a property shared by all degree k−1 invariants.

4.4. Relations with other invariants. Milnor invariants are not only natural generalizations of the linking
number, but are also directly related to this invariant. Indeed, K. Murasugi expressed Milnor µ–invariants
of a link as a linking number in certain branched coverings of S 3 along this link [35]. The Alexander
polynomial is also rather close in nature to Milnor invariants, being extracted from the fundamental group
of the complement. As a matter of fact, there are a number of results relating these two invariants: see for
example [7, 23, 26, 34, 44]. On the other hand, the relation to the Konstevich integral [12], mentioned in
§ 4.3, hints to potential connections to quantum invariants. Such relations were given with the HOMFLY-PT
polynomial [29] and the (colored) Jones polynomial [28]. Milnor string link invariants also satisfy a skein
relation [38], which is a typical feature of polynomial and quantum invariants.

There are also known relations outside knot theory. Milnor µ–invariants can be expressed in terms of
Massey products of the complement, which are higher order cohomological invariants generalizing the cup
product [39, 45]. Also, Milnor string link invariants are in natural correspondence with Johnson homo-
morphisms of homology cylinders, which are 3–dimensional extensions of certain abelian quotients of the
mapping class group [10]. Finaly, as part of the deep analogies he established between knots and primes,
M. Morishita defined and studied arithmetic analogues of Milnor invariants for prime numbers [32].

4.5. Virtual theory. There are two distinct extensions of the linking number for virtual 2–component links,
namely lk1,2 and lk2,1, where lki, j is the sum of signs of crossings where i passes over j. Notice that these
virtual linking numbers are actually invariants of welded links, i.e. are invariant under the forbidden move
allowing a strand to pass over a virtual crossing. Indeed, the linking number is extracted from (a quotient
of) the fundamental group, which is a welded invariant [15]. Likewise, extensions of Milnor invariants shall
be welded invariants. A general welded extension of Milnor string link invariants is given in [1], which
classifies welded string links up to self-virtualization, generalizing the classification of [11]. This extension
recovers and extends that of [18], which gives general Gauss diagram formulas for virtual Milnor invariants.
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Université Grenoble Alpes, IF, 38000 Grenoble, France
E-mail address: jean-baptiste.meilhan@univ-grenoble-alpes.fr


	1. Introduction
	2. The Linking Number
	2.1. Definitions
	2.2. Basic properties
	2.3. Two classification results

	3. Milnor invariants
	3.1. Definition of Milnor –invariants
	3.2. First examples
	3.3. Some properties

	4. Further properties
	4.1. Refinements and generalizations
	4.2. Link maps and higher dimensional links
	4.3. Finite type invariants
	4.4. Relations with other invariants
	4.5. Virtual theory

	References

