Exercice 1 :

- 1. Déterminer $[\mathbb{Q}(\sqrt{3}, \sqrt{7}) : \mathbb{Q}]$. Donner une base du \mathbb{Q} -espace vectoriel $\mathbb{Q}(\sqrt{3}, \sqrt{7})$.
- 2. Comparer $[\mathbb{Q}(\sqrt{3}, \sqrt{7}) : \mathbb{Q}]$ et $[\mathbb{Q}(\sqrt{3} + \sqrt{7}) : \mathbb{Q}]$.
- 3. Déterminer le polynôme minimal de $\sqrt{3} + \sqrt{7}$ sur \mathbb{Q} .
- 4. (a) Montrer qu'il existe un automorphisme du corps $\mathbb{Q}(\sqrt{3})$ qui envoie $\sqrt{3}$ sur $-\sqrt{3}$.
 - (b) Existe-t-il d'autres automorphismes du corps $\mathbb{Q}(\sqrt{3})$ distincts de l'identité?
- 5. On note $L = \mathbb{Q}(\sqrt{3}, \sqrt{7})$
 - (a) Montrer qu'il existe des automorphismes ϕ_3 et ϕ_7 du corps L qui vérifient $\phi_3(\sqrt{3}) = -\sqrt{3}$ et $\phi_3(\sqrt{7}) = \sqrt{7}$ d'une part et $\phi_7(\sqrt{3}) = \sqrt{3}$ et $\phi_7(\sqrt{7}) = -\sqrt{7}$ d'autre part.
 - (b) Montrer qu'il existe un automorphisme $\phi_{3,7}$ du corps L qui vérifie $\phi_{3,7}(\sqrt{3}) = -\sqrt{3}$ et $\phi_{3,7}(\sqrt{7}) = -\sqrt{7}$.
 - (c) Les automorphismes ϕ_3 , ϕ_7 et $\phi_{3,7}$ sont-ils les seuls automorphismes du corps L distincts de l'identité?
- 6. Quelles sont les racines de $Irr(\sqrt{3} + \sqrt{7}, \mathbb{Q})$ dans \mathbb{C} ?

Exercice 2:

- 1. Montrer que i et j sont algébriques sur \mathbb{Q} et déterminer $[\mathbb{Q}(j):\mathbb{Q}]$ et $[\mathbb{Q}(i):\mathbb{Q}]$.
- 2. Déterminer $[\mathbb{Q}(\sqrt{3},i):\mathbb{Q}]$, $[\mathbb{Q}(\sqrt{3},j)]$ et $[\mathbb{Q}(\sqrt{3},i,j):\mathbb{Q}]$.
- 3. Comparer $[\mathbb{Q}(\sqrt{3},i):\mathbb{Q}]$ et $[\mathbb{Q}(\sqrt{3}+i):\mathbb{Q}]$
- 4. Déterminer le polynôme minimal de $\sqrt{3} + i$ sur \mathbb{Q} .

Exercice 3:

- 1. Déterminer $[\mathbb{Q}(^3\sqrt{2},\sqrt{2}):\mathbb{Q}]$.
- 2. Quels sont les automorphismes du corps $\mathbb{Q}(\sqrt[3]{2}, \sqrt{2})$?

Exercice 4:

- 1. Soit $L = \mathbb{Q}(\sqrt[3]{2}, j)$. Montrer que L est le corps des racines de $X^3 2$.
- 2. Que vaut $[\mathbb{Q}(\sqrt[3]{2},j):\mathbb{Q}]$?
- 3. (a) Quels sont les automorphismes du corps $\mathbb{Q}(\sqrt[3]{2})$?
 - (b) Quels sont les automorphismes du corps $\mathbb{Q}(j)$?
- 4. (a) Pour $k \in \{1, 2\}$ et $l \in \{0, 1, 2\}$ montrer qu'il existe un automorphisme $\phi_{k,l}$ du corps L qui vérifient $\phi_{k,l}(\sqrt[3]{2}) = j^l \sqrt[3]{2}$ et $\phi_{k,l}(j) = j^k$.
 - (b) Les automorphismes $\phi_{k,l}$ sont-ils les seuls automorphismes du corps L?
- 5. Pour $k \in \{1, 2\}$ et $l \in \{0, 1, 2\}$, montrer que $\phi_{k, l}(\sqrt[3]{2} + j)$ est une racine de $Irr(\sqrt[3]{2} + j, \mathbb{Q})$.
- 6. Quel est le degré de $Irr(\sqrt[3]{2} + j, \mathbb{Q})$?

Exercice 5:

Les éléments non rationnels de $\mathbb{Q}(\sqrt{2})$ ont-ils tous le même polynôme minimal?

Exercice 6:

Soit $P = X^3 + 2X + 2$ et a une racine de P dans \mathbb{C} .

- 1. Que vaut $[\mathbb{Q}(a):\mathbb{Q}]$?
- 2. Exprimer $u=\frac{1}{a},\,v=a^6+3a^4+2a^3+a$, $w=(a^2+a+1)^{-1}$ en fonction de 1, a et a^2 .
- 3. Quel est le polynôme minimal de v sur \mathbb{Q} ?

Exercice 7:

Soit $k \subset K \subset L$ une extension de corps et $a \in L$. Montrer que si K est une extension algébrique de k et a est algébrique sur K alors a est algébrique sur k.

Exercice 8:

Soit $k \subset K$ une extension de corps et a et b des éléments du corps K qui n'appartiennent pas à k. Le polynôme minimal de b sur k est-il nécessairement irréductible sur k(a)?

Exercice 9:

Deux extensions de corps de même degré sont-elles nécessairement isomorphes?

Exercice 10:

Soit k un corps et $F \in k(T) \setminus k$. On écrit $F = \frac{A}{B}$ où A et B sont des polynômes de k[T] premiers entre eux.

- 1. Montrer que P(X) = B(X)F A(X) est un polynôme non nul de k(F)[X] qui annule T.
- 2. En déduire que F est transcendant sur k.
- 3. Montrer que B(X)U A(X) est un polynôme irréductible de k[X, U].
- 4. En déduire que B(X)U A(X) est un polynôme irréductible de k(U)[X].
- 5. En déduire que P est le polynôme minimal de T sur k(F).
- 6. Quel est le degré de l'extension $k(F) \subset k(T)$?

Exercice 11:

Pour tout entier non nul n, on note $C_n = \{x \in \mathbb{C} | x^n = 1\}$ et C_n^* l'ensemble des générateurs du groupe cyclique C_n . Dans $\mathbb{C}[X]$, on définit le polynôme cyclotomique Φ_n par

$$\Phi_n = \prod_{\alpha \in C_n^*} (X - \alpha)$$

- 1. Soit $\omega \in C_n^*$, montrer que pour tout $\omega' \in C_n^*$, on a $\mathbb{Q}(\omega) = \mathbb{Q}(\omega')$.
- 2. Montrer que $\mathbb{Q}(\omega)$ est le corps des racines de $X^n 1$ sur \mathbb{Q} .
- 3. Quel est le degré de l'extension $[\mathbb{Q}(\omega):\mathbb{Q}]$?
- 4. On note $Gal(\mathbb{Q}(\omega)|\mathbb{Q})$ le groupe des automorphismes du corps $\mathbb{Q}(\omega)$ qui fixent \mathbb{Q} . On veut montrer que $Gal(\mathbb{Q}(\omega)|\mathbb{Q})$ est isomorphe à $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
 - (a) Soit $\omega \in C_n^*$, montrer que l'image de ω par un élément g de $Gal(\mathbb{Q}(\omega)|\mathbb{Q})$ est un élément de C_n^* . En déduire une application $f: Gal(\mathbb{Q}(\omega)|\mathbb{Q}) \to C_n^*$.
 - (b) Montrer que l'application f est injective
 - (c) Montrer que l'application f est surjective.
 - (d) En déduire une bijection h de $Gal(\mathbb{Q}(\omega)|\mathbb{Q})$ sur $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
 - (e) Montrer que h est un morphisme de groupes.

Exercice 12:

Soit K un corps et $L=K(\alpha)$ une extension de K de degré fini engendrée par un élément α . Le but de l'exercice est de montrer que L ne contient qu'un nombre fini de sous-corps F tels que $K\subset F$.

- 1. Soit F un sous-corps de L qui contient K et A l'ensemble des coefficients du polynôme $Irr(\alpha, F)$ de α sur F. Montrer que $Irr(\alpha, K(A)) = Irr(\alpha, F)$ et en déduire que K(A) = F.
- 2. Montrer que $Irr(\alpha, F)$ divise $Irr(\alpha, K)$ dans F[X].
- 3. En déduire une application injective de l'ensemble des sous-corps de L qui contiennent K dans l'ensemble des polynômes unitaires de L[X] qui divisent $Irr(\alpha, K)$ dans L[X].
- 4. Montrer que $Irr(\alpha, K)$ n'admet qu'un nombre fini de diviseurs unitaires dans L[X].
- 5. Conclure.
- 6. application : On prend $K=\mathbb{Q}$ et $L=\mathbb{Q}(i,\sqrt{2}).$
 - (a) Montrer que $L = \mathbb{Q}(i + \sqrt{2})$.
 - (b) Calculer $[L:\mathbb{Q}]$.
 - (c) Montrer que $Aut_{\mathbb{Q}}L$ contient au plus 4 éléments.
 - (d) Montrer qu'il existe un automorphisme σ de L tel que $\sigma(i) = -i$ et $\sigma(\sqrt{2}) = \sqrt{2}$ et un automorphisme ρ de L tel que $\rho(i) = i$ et $\rho(\sqrt{2}) = -\sqrt{2}$.
 - (e) Etablir la liste des éléments de $Aut_{\mathbb{Q}}L$.
 - (f) Quelles sont les racines de $Irr(i + \sqrt{2}, \mathbb{Q})$ dans L?
 - (g) Etablir la liste des sous-corps de L.