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Preface

The theory of algebraic groups has chiefly been developed along two
distinct directions: linear (or, equivalently, affine) algebraic groups,
and abelian varieties (complete, connected algebraic groups). This
is made possible by a fundamental theorem of Chevalley: any con-
nected algebraic group over an algebraically closed field is an ex-
tension of an abelian variety by a connected linear algebraic group,
and these are unique.

In these notes, we first expose the above theorem and related
structure results about connected algebraic groups that are neither
affine nor complete. The class of anti-affine algebraic groups (those
having only constant global regular functions) features prominently
in these developments. We then present applications to some ques-
tions of algebraic geometry: the classification of complete homoge-
neous varieties, and the structure of homogeneous (or translation-
invariant) vector bundles and principal bundles over abelian vari-
eties.

While the structure theorems presented at the beginning of
these notes go back to the work of Barsotti, Chevalley and Rosen-
licht in the 1950’s, all the other results are quite recent; they are
mainly due to Sancho de Salas [Sal03, SS09] and the first-named
author [Bri09, Bri10a, Bri11, Bri12]. We hope that the present
exposition will stimulate further interest in this domain. In Chap-
ter 1, the reader will find a detailed overview of the contents of the
subsequent chapters as well as some open questions.

These notes originate in a series of lectures given at Chennai
Mathematical Institute in January 2011 by the first-named au-
thor. He warmly thanks all the attendants of the lectures, espe-
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cially V. Balaji, D. S. Nagaraj and C. S. Seshadri, for stimulating
questions and comments; the hospitality of the Institute of Math-
ematical Sciences, Chennai, is also gratefully acknowledged. The
three authors wish to thank Balaji for having prompted them to
write up notes of the lectures, and encouraged them along the way;
thanks are also due to T. Szamuely for his very helpful comments
and suggestions on a preliminary version of these notes.
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Chapter 1

Overview

Notation and conventions. Throughout these notes, we consider
algebraic varieties and schemes over a fixed algebraically closed base
field k. Unless otherwise stated, schemes are assumed to be of finite
type over k, and points are assumed to be closed, or equivalently
k-rational. For a scheme X, we denote by O(X) the algebra of
global sections of the structure sheaf OX . A variety is a separated
integral scheme.

A group scheme G is a scheme equipped with morphisms m :
G × G → G (the multiplication), i : G → G (the inverse) and
with a point eG (the neutral element) which satisfy the axioms of
a group. The neutral component of G is the connected component
containing eG, denoted as Go; this is a normal subgroup scheme of
G, and the quotient G/Go is a finite group scheme.

An algebraic group is a group scheme which is smooth, or equiv-
alently, reduced; by a subgroup (scheme) of G, we always mean
a closed subgroup (scheme). Any group scheme G contains a
largest algebraic subgroup, namely, the underlying reduced sub-
scheme Gred.

An abelian variety A is a complete connected algebraic group.
It is well-known that such an A is a projective variety, and its
group law is commutative; we denote that law additively, and the
neutral element as 0A. For any non-zero integer n, we denote as
nA the multiplication by n in A, and as An its scheme-theoretic
kernel; recall that nA is an isogeny of A, i.e., a finite surjective
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2 CHAPTER 1. OVERVIEW

homomorphism.
As standard references, we rely on the books [Har77] for alge-

braic geometry, [Spr09] for linear algebraic groups, and [Mum08]
for abelian varieties; for the latter, we also use the survey article
[Mil86]. We refer to [DG70] for group schemes.

1.1 Chevalley’s structure theorem

The following theorem was first stated by Chevalley in 1953. It
was proved in 1955 by Barsotti [Bar55] and in 1956 by Rosen-
licht [Ros56]; both used the language and methods of birational
geometry à la Weil.

Theorem 1.1.1 Let G be a connected algebraic group. Then G
has a largest connected affine normal subgroup Gaff. Further, the
quotient group G/Gaff is an abelian variety.

We shall present an updated version of Rosenlicht’s proof of the
above theorem in Chapter 2. That proof, and some further de-
velopments, have also been rewritten in terms of modern algebraic
geometry by Ngô and Polo [NP11], during the same period where
this book was completed.

In 1960, Chevalley himself gave a proof of his theorem, based
on ideas from the theory of Picard varieties. That proof was later
rewritten in the language of schemes by Conrad [Con02].

Chevalley’s theorem yields an exact sequence

1 → Gaff → G
α
→ A→ 1, (1.1)

where A is an abelian variety; both Gaff and A are uniquely deter-
mined by G. In fact, α is the Albanese morphism of G, i.e., the
universal morphism from G to an abelian variety, normalized so
that α(eG) = 0A. In particular, A is the Albanese variety of G, and
hence depends only on the variety G.

In general, the exact sequence (1.1) does not split, as shown by
the following examples. However, there exists a smallest lift of A
in G, as will be seen in the next section.
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Example 1.1.2 Let A be an abelian variety, p : L → A a line
bundle, and π : G → A the associated principal bundle under the
multiplicative group Gm (so that G is the complement of the zero
section in L). Then G has a structure of an algebraic group such
that π is a homomorphism with kernel Gm, if and only if L is alge-
braically trivial (see e.g. [Ser88, VII.16, Theorem 6]). Under that
assumption, G is commutative, and its group structure is uniquely
determined by the choice of the neutral element in the fibre of L at
0A. In particular, the resulting extension

0 → Gm → G→ A→ 0

is trivial if and only if so is the line bundle L. Recall that the
algebraically trivial line bundles onA are classified by Pico(A) =: Â,
the dual abelian variety. Thus, Â also classifies the extensions of A
by Gm.

Next, let q : H → A be a principal bundle under the additive
group Ga. ThenH always has a structure of an algebraic group such
that q is a homomorphism; the group structure is again commuta-
tive, and uniquely determined by the choice of a neutral element in
the fibre of q at 0A. This yields extensions

0 → Ga → H → A→ 0

classified by H1(A,OA); the latter is a k-vector space of the same
dimension as that of A (see [Ser88, VII.17, Theorem 7] for these
results).

Remark 1.1.3

(i) Chevalley’s Theorem still holds over any perfect field, by a
standard argument of Galois descent. Also, any connected
group scheme G over an arbitrary field has a smallest con-
nected affine normal subgroup scheme H such that G/H is
an abelian variety (see [BLR90, Theorem 9.2.1]; its proof pro-
ceeds by reduction to the case of a perfect field). In that
statement, the smoothness of G does not imply that of H; in
fact, Chevalley’s theorem fails over any non-perfect field as
shown by an example of Raynaud, see [SGA3, Exposé XVII,
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Corollaire C.5]. The preprint [Tot11] contains further devel-
opments on the structure of algebraic groups over non-perfect
fields.

(ii) It would be very interesting to extend Chevalley’s theorem
to the setting of a smooth, connected group scheme over a
smooth base of dimension 1, e.g., the spectrum of the power
series ring k[[t]]. Note that a direct generalization of that
theorem is incorrect, as there exist such group schemes with
generic fibre an abelian variety and special fibre a torus.

1.2 A dual structure theorem and the

Rosenlicht decomposition

The following dual statement to Chevalley’s theorem is due to
Rosenlicht, see [Ros56, Corollaries 3, p. 431 and 5, p. 440]). The
(rather easy) proof will be presented in Chapter 3.

Theorem 1.2.1 Let G be an algebraic group. Then there exists
a smallest normal subgroup scheme H of G such that the quotient
G/H is affine. Moreover, O(H) = k, and H is the largest subgroup
scheme of G satisfying that property; it is in fact a connected alge-
braic group, contained in the center of Go. Also, O(G/H) = O(G);
in particular, the algebra O(G) is finitely generated.

We say that a scheme Z is anti-affine if O(Z) = k. It is easy to
see that the above subgroup H is the largest anti-affine subgroup
of G; we denote it as Gant. Moreover, the quotient homomorphism
G → G/Gant is the canonical morphism G → Spec O(G), called
the affinization morphism. In particular, Gant depends only on the
variety G.

Remark 1.2.2

(i) The above theorem holds unchanged in the setting of group
schemes (of finite type) over an arbitrary field, see [DG70,
§III.3.8].
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(ii) Like for Chevalley’s theorem, it would be very interesting to
extend the above theorem to the setting of group schemes
over a smooth base of dimension 1. By [SGA3, Exposé VI
B, Proposition 12.10], the affinization morphism still satisfies
nice finiteness properties in this setting. But the fibres of this
morphism are not necessarily anti-affine, as shown again by
degenerations of abelian varieties to tori.

Example 1.2.3 As in Example 1.1.2, let 0 → Gm → G
α
→ A→ 0

be the extension associated to an algebraically trivial line bundle L.
Then G is anti-affine if and only if L has infinite order in Â. (This
follows from the facts that α∗(OG) ∼= ⊕n∈ZL

n, and that for any
M ∈ Â, H0(A,M) 6= 0 if and only if M is trivial. See Section 5.3
for details and further developments).

Next, let 0 → Ga → H → A → 0 be the extension associated
to a principal Ga-bundle over A. When char(k) = 0, this extension
is anti-affine if and only if it is non-trivial, as we shall show in
Section 5.4. In contrast, this extension is never anti-affine when
char(k) = p 6= 0. Indeed, multiplication by p on Ga is trivial so
Ext1(A,Ga) is killed by p, giving us the following pull-back diagram
(by the bilinearity of Ext1(A,Ga)):

0 // Ga
//

id
��

Ga × A //

��

A

pA

��

// 0

0 // Ga
// H // A // 0.

This readily gives O(H) ∼= O(Ga × A)Γ ∼= O(Ga)
Γ, where Γ is a

subgroup scheme of Ga×A, isomorphic to Ap (the kernel of pA) via
the second projection. Then Γ is finite; thus, there are non-constant
regular functions on H.

We shall present a complete classification of anti-affine groups
in Section 1.4.

The above theorems of Chevalley and Rosenlicht may be com-
bined to give a decomposition of any connected algebraic group,
also due to Rosenlicht (see [Ros56, pp. 440–441]):
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Theorem 1.2.4 Let G be a connected algebraic group, Gaff its
largest connected affine normal subgroup, and Gant its largest anti-
affine subgroup. Then G = GaffGant, and Gant is the smallest sub-
group scheme H of G such that G = GaffH, i.e., the restriction to H
of the quotient homomorphism α : G→ G/Gaff is surjective. More-
over, the scheme-theoretic intersection Gaff ∩Gant contains (Gant)aff

as a normal subgroup with finite quotient.

This result will be deduced in Chapter 3 from Theorems 1.1.1
and 1.2.1; we shall refer to the above decomposition as the Rosen-
licht decomposition.

1.3 Structure of complete homoge-

neous varieties

Theorem 1.3.1 Let X be a complete variety which is homogeneous
under the action of some algebraic group. Then X ∼= Y ×A, where
A is an abelian variety and Y is a complete homogeneous variety
under the action of an affine algebraic group. Moreover, the pro-
jections X → Y , X → A are unique, and Auto(X) ∼= Auto(Y )×A
where A acts by translations on itself, and Auto(X) denotes the
neutral component of the automorphism group scheme Aut(X).

This result was first proved by Borel and Remmert in the setting
of compact homogeneous Kähler manifolds (see [BR62]). The result
in the generality discussed above is due to Sancho de Salas ([Sal03,
Theorem 5.2]), who gave an explicit construction of the projections.
In Chapter 4 we shall present another proof, based on the structure
of algebraic groups.

In the above statement, one easily deduces from Borel’s fixed
point theorem that Y ∼= G/H for some semi-simple group G of
adjoint type and some subgroup scheme H of G. In characteristic
0, such an H is just a parabolic subgroup of G; in other words,
Y is a flag variety. In positive characteristics, however, there are
many more such H (non-reduced versions of parabolic subgroups);
the corresponding homogeneous spaces G/H are called varieties of
unseparated flags. Here is the simplest example of such a variety:
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Example 1.3.2 Let Y ⊂ P2 × P2 (two copies of projective plane)
be the hypersurface given by the equation xpx′ + ypy′ + zpz′ = 0,
where x, y, z (resp. x′, y′, z′) denote the homogeneous co-ordinates
on the first (resp. second) P2. We have an action of the group
G := GL3 on P2 × P2 via the usual action on the first P2 and via
the action

(aij) · [v] := [(apji)
−1 · v]

on the second P2. This action preserves Y , and one may check that
Y is homogeneous under G. The isotropy subgroup scheme H of
the point ([1 : 0 : 0], [0 : 0 : 1]) ∈ Y can be written as follows:

{



∗ ∗ ∗
0 ∗ ∗
0 x ∗


 : xp = 0

}
.

In particular, H is non-reduced, and the associated reduced scheme
is a Borel subgroup B of G.

Define a morphism π : Y −→ P2 × P2 by

([x, y, z], [x′, y′, z′]) 7−→ ([xp, yp, zp], [x′, y′, z′]).

Then the equation defining Y is sent to the incidence relation which
defines the flag variety, G/B, in P2×P2. So π is a purely inseparable
covering of this flag variety.

Also, Y is a hypersurface of bi-degree (p, 1) in P2 × P2, and
hence the canonical bundle of Y is OY (p − 3,−2) (by the usual
formula for canonical bundle of hypersurfaces). If p ≥ 3 then the
anti-canonical bundle is not ample, i.e., Y is not Fano. Hence Y is
not isomorphic to any flag variety G′/P ′.

Remark 1.3.3 In the above example, we have H = P1 ∩ G(1)P2

where P1 and P2 denote the standard maximal parabolic subgroups
of G, and G(1) stands for the kernel of the Frobenius endomorphism
F of G. So this construction yields similar examples for all simple
groups G of rank ≥ 2.

In fact, for p > 3, any subgroup scheme H of G such that G/H
is complete is of the form P1G(n1) ∩P2G(n2) ∩ · · · where P1, P2, . . .
are pairwise distinct maximal parabolic subgroups of G and n1,
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n2, . . . are non-negative integers; here G(n) denotes the kernel of
the iterated Frobenius morphism F n (see [Wen93, HL93] for this
result and further developments).

One may check that the family of all smooth hypersurfaces of
bi-degree (p, 1) in P2 × P2 yields a non-trivial deformation of Y .
In contrast, such deformations do not exist in the setting of flag
varieties; see [Dem77, Proposition 5].

Also, we shall see in Proposition 4.3.4 that some varieties of un-
separated flags have a non-reduced automorphism group scheme;
this contrasts again with flag varieties, whose automorphism group
scheme is a semi-simple algebraic group of adjoint type by the main
result of [Dem77]. It would be of interest to describe the automor-
phisms and deformations of all varieties of unseparated flags.

1.4 Structure of anti-affine algebraic

groups

Let G be an anti-affine algebraic group; then G is connected and
commutative in view of Theorem 1.2.1. By Chevalley’s theorem,
G is an extension (1.1) of an abelian variety A by a connected
commutative affine algebraic group Gaff.

By the structure of commutative affine algebraic groups (see
[Spr09, Theorem 3.3.1]), we know that Gaff

∼= T × U , where T is a
torus and U is a connected commutative unipotent algebraic group;
moreover, T and U are unique. Thus, we get two exact sequences
from the above exact sequence:

0 → T → Gs := G/U → A→ 0, (1.2)

0 → U → Gu := G/T → A→ 0. (1.3)

Further, one easily checks that

G ∼= Gs ×A Gu.

The groupGs in the first sequence (1.2) is an extension of an abelian
variety by a torus; such a group is called a semi-abelian variety, and
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the extension is classified by a homomorphism of abstract groups
c : T̂ → Â(k) given by χ 7→ Gχ, where T̂ denotes the group of

characters of T , and Â(k) denotes the group of k-valued points of
the dual abelian variety; Gχ stands for the push-out of (1.2) via the
character χ, given by the following commuting diagram

0 // T //

χ

��

Gs
//

��

A //

id

��

0

0 // Gm
// Gχ

// A // 0.

In characteristic 0, the connected commutative unipotent group
U is a vector group, i.e., a finite dimensional k-vector space regarded
as an additive group. For an abelian variety A, there exists a uni-
versal extension of A by a vector group (see [Ros58, Proposition
11], and also §5.4):

0 → H1(A, OA)∗ → E(A) → A→ 0. (1.4)

Thus, the extension (1.3) is obtained as the push-out of the univer-
sal extension (1.4) via a unique linear map γ : H1(A, OA)∗ → U :

0 // H1(A, OA)∗ //

γ

��

E(A) //

��

A //

id

��

0

0 // U // Gu
// A // 0.

Theorem 1.4.1 With notations as above, G is anti-affine if and
only if

(i) when char(k) > 0, c is injective and U is trivial;

(ii) when char(k) = 0, c is injective and γ is surjective.

This result is proved in Chapter 5. When k is the algebraic
closure of a finite field, it implies easily that every anti-affine group
is an abelian variety. Together with the Rosenlicht decomposition
(Theorem 1.2.4), it follows that every connected algebraic group G
is of the form (Gaff × A)/Γ, where A is an abelian variety and Γ is
a finite group scheme of Z(Gaff) × A. The latter result is due to
Arima [Ari60, Theorem 1], see also Rosenlicht [Ros61, Theorem 4].



10 CHAPTER 1. OVERVIEW

1.5 Homogeneous vector bundles over

abelian varieties

Let A be an abelian variety, and p : E → A a vector bundle. Then p
is said to be homogeneous (or translation-invariant) if, for all a ∈ A,
τ ∗a (E) ∼= E as vector bundles over A, where τa : A→ A denotes the
translation by a.

For example, the homogeneous line bundles are exactly those in
Â (see [Mil86, Proposition 10.1]).

The structure of homogeneous vector bundles is described by the
following result, due to Matsushima [Mat59] and Morimoto [Mor59]
in the setting of complex vector bundles over complex tori, and to
Miyanishi [Miy73] and Mukai [Muk78, Theorem 4.17] in the present
setting.

Theorem 1.5.1 Let E be a vector bundle over A. Then the fol-
lowing are equivalent:

(i) E is homogeneous.

(ii) E is an iterated extension of algebraically trivial line bundles.

(iii) E ∼= ⊕i Li ⊗ Ei where Li are pairwise non-isomorphic, al-
gebraically trivial line bundles, and Ei are unipotent vector
bundles.

Here a vector bundle of rank n is said to be unipotent if it
is an iterated extension of trivial line bundles; equivalently, the
associated principal GLn-bundle has a reduction of structure group
to the maximal unipotent subgroup




1 ∗ ∗ · · · ∗
0 1 ∗ · · · ∗
0 0 1 · · · ∗

. . .

0 0 0 · · · 1



.

In Chapter 6, we present a proof of the above theorem based
on algebraic group methods, also showing that unipotent vector
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bundles over A correspond to representations ρ : H1(A,OA)∗ →
GLn (up to conjugation), via the associated bundle construction
E(A) ×H1(A,OA)∗ kn. On the other hand, the Fourier-Mukai cor-
respondence yields an equivalence of categories between unipotent
vector bundles and coherent sheaves on Â with support at 0A (see
[Muk81, Theorem 2.2]); the above construction yields another ap-
proach to that result, presented in Section 6.5.

Remark 1.5.2 (i) If A is an elliptic curve then H1(A,OA) ∼= k.
In this case, the unipotent vector bundles of rank n (up to iso-
morphism) correspond to the nilpotent n× n matrices (up to con-
jugation); the latter are classified by their Jordan canonical form.
Thus, the indecomposable unipotent vector bundles correspond to
the nilpotent Jordan blocks of the form




0 1 0 · · · 0
0 0 1 · · · 0

. . .

0 0 0 · · · 1
0 0 0 · · · 0



.

In particular, such a bundle Un is uniquely determined by its rank
n. This result is due to Atiyah [Ati57b] who also showed that every
indecomposable (not necessarily homogeneous) vector bundle over
A, of degree d and rank r, is the tensor product of the indecompos-
able vector bundle Un and of a simple vector bundle Sd′,r′ of degree
d′ and rank r′, where n := g.c.d(d, r), d′ := d/n and r′ := r/n;
moreover, Sd′,r′ is uniquely determined by (d′, r′) up to tensoring
with a line bundle of degree 0.

(ii) For an arbitrary abelian variety A of dimension g, classi-
fying the unipotent vector bundles of rank n reduces similarly to
classifying the n-dimensional representations of the vector group
H1(A,OA)∗; the latter has dimension g as well. Choosing a basis
of H1(A,OA)∗, this amounts to classifying the g-tuples of nilpotent
n × n matrices up to simultaneous conjugation. The latter classi-
fication is a long-standing open question of representation theory,
already for g = 2.
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(iii) Given a connected algebraic group G with Albanese vari-
ety A, and a finite-dimensional representation ρ : Gaff → GL(V ),
the associated vector bundle EV := G ×Gaff V → G/Gaff = A is
clearly homogeneous. In fact, the assignment (ρ, V ) 7→ EV yields
a functor from the category of representations of Gaff to the cate-
gory of homogeneous vector bundles on A, which preserves exact
sequences, tensor products and duals. Can one reconstruct G from
this functor, by generalizing the classical Tannaka duality for affine
algebraic groups?

1.6 Homogeneous principal bundles

over an abelian variety

Given an algebraic group G and an abelian variety A, a principal
G-bundle π : X → A is said to be homogeneous if τ ∗a (X) ∼= X as
principal bundles over A, for all a ∈ A (see Section 6.1 for details
on principal bundles). In Chapter 7, we obtain a classification of
these bundles by adapting the approach of the previous chapter:

Theorem 1.6.1 Let G be a connected affine algebraic group. Then
there is a bijective correspondence between homogeneous G-bundles
π : X → A and pairs consisting of the following data:

(i) an exact sequence of commutative group schemes 0 → H →
G → A→ 0, where H is affine and G is anti-affine,

(ii) a faithful homomorphism ρ : H → G, uniquely determined up
to conjugacy in G.

This correspondence assigns to any pair as above, the associated
bundle π : G×H G → G/H = A, where H acts on G by multiplica-
tion, and on G via right multiplication through ρ.

Moreover, the group scheme of bundle automorphisms,
AutGA(X), is isomorphic to the centralizer CG(H) of the image of
H in G.
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Remark 1.6.2 An exact sequence 0 → H → G → A → 0 as in
(i) above (i.e., H is affine and G is anti-affine) is said to be an
anti-affine extension. These can be easily classified by adapting
the arguments of the classification of anti-affine groups; the result
is stated in Theorem 5.5.3.

However, classifying the data of (ii), i.e., the conjugacy classes
of faithful homomorphisms ρ : H → G where H is a prescribed
commutative group scheme and G a prescribed connected affine
algebraic group, is an open question (already when H = G2

a and
G = GLn, as we saw in Remark 1.5.2).

When G = GLn, one easily shows that a G-bundle π : X → A
is homogeneous if and only if so is the associated vector bundle
X ×G kn → A. Then Theorem 1.6.1 gives back the structure of
homogeneous vector bundles; for example, the decomposition in
Theorem 1.5.1(iii) follows from the fact that any representation
ρ : H → GLn of a commutative group scheme is the direct sum of
its generalized eigenspaces.

For an arbitrary group G, we obtain a characterization of ho-
mogeneity in terms of associated vector bundles:

Theorem 1.6.3 Let G be a connected affine algebraic group. Then
the following conditions are equivalent for a G-bundle π : X → A:

(i) π is homogeneous.

(ii) For any representation ρ : G → GL(V ), the associated vector
bundle p : EV = X ×G V → A is homogeneous.

(iii) For any irreducible representation ρ : G → GL(V ), the asso-
ciated vector bundle is homogeneous.

(iv) For some faithful representation ρ : G → GL(V ) such that
the variety GL(V )/ρ(G) is quasi-affine, the associated vector
bundle is homogeneous.

A representation satisfying condition (iv) exists always (see
Lemma 7.2.3). If G is reductive, then this condition holds for any
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faithful representation; the resulting characterization of homoge-
neous principal bundles is analogous to that obtained by Biswas
and Trautmann ([BT10, Theorem 1.1]) in the setting of G-bundles
over flag varieties in characteristic 0.

By combining Theorems 1.6.1 and 1.6.3, it easily follows that
the characteristic classes of any homogeneous principal G-bundle
are algebraically trivial, where G is any connected affine algebraic
group. In fact, when G is reductive, the homogeneous G-bundles
over A are exactly the semi-stableG-bundles with algebraically triv-
ial characteristic classes, as shown by Mukai [Muk78] and Balaji-
Biswas [BB02].

Finally, we introduce a notion of simplicity for a G-bundle
π : X → Y over an arbitrary base, where G is a connected re-
ductive group and char(k) = 0. By analogy with Schur’s lemma
(a G-module is simple if and only if its equivariant automorphisms
are just the scalars), we say that π is simple if any bundle auto-
morphism is given by the action of a central element of G. When
G = GLn, this is equivalent to the condition that the associated
vector bundle p : E := X ×G kn → Y is simple, i.e., its vector
bundle endomorphisms are just scalars.

For an arbitrary G, a homogeneous G-bundle π : X → A is sim-
ple if and only if X is a semi-abelian variety (Proposition 7.3.3). In
particular, there are very few simple homogeneous bundles. Thus,
we introduce a weaker notion: we say that a G-bundle π : X → Y
is irreducible, if the center of G has finite index in the group of
bundle automorphisms. The irreducible homogeneous G-bundles
are characterized by the following:

Proposition 1.6.4 With the notation of Theorem 1.6.1, the fol-
lowing conditions are equivalent for a homogeneous bundle π : X →
A under a connected reductive group G:

(i) π is irreducible.

(ii) H is diagonalizable and not contained in any proper Levi sub-
group of G.

(iii) H is not contained in any proper parabolic subgroup of G.
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Remark 1.6.5 (i) Still assuming G to be connected and reductive,
the structure of an arbitrary homogeneous G-bundle π : X → A
may be somehow reduced to that of an irreducible homogeneous
bundle under a Levi subgroup of G, as follows. Let X = G ×H G
as in Theorem 1.6.1 and identify H to its image in G (uniquely
defined up to conjugation). SinceH is commutative, it has a unique
decomposition as H = D × U , where D is a diagonalizable group
and U a commutative unipotent group. By [BoTi71], there exists a
parabolic subgroup P ⊂ G and a Levi decomposition P = Ru(P )L
such that U ⊂ Ru(P ) and D ⊂ L; in particular, H ⊂ P . Moreover,
we may assume that P is minimal for these properties (note however
that they do not determine P uniquely). Then X has a reduction
of structure group to the homogeneous P -bundle

φ : Y := P ×H G → A.

Moreover, φ factors through a principal bundle

ψ : Z := Y/Ru(P ) → A

under the connected reductive group P/Ru(P ) = L, and this bundle
is easily seen to be homogeneous by Theorem 1.6.3. The subgroup
of L associated to ψ (via Theorem 1.6.1 again) is the image of H in
P/Ru(P ), and hence is isomorphic to D; moreover, D is not con-
tained in any proper parabolic subgroup of L, by our assumptions
on P . Hence ψ is an irreducible L-bundle.

Thus, we may view homogeneous irreducible bundles as the
‘building blocks’ of homogeneous bundles.

(ii) An arbitrary algebraic subgroup H of a connected reductive
algebraic group G is said to be G-irreducible, if H is not contained
in any proper parabolic subgroup of G. Equivalently, H is reductive
and not contained in any proper Levi subgroup of G.

For example, a subgroup H of G = GLn is G-irreducible if
and only if so is the representation of H in kn. Returning to an
arbitrary G, a subgroup H is G-irreducible if and only if its image
in the quotient of G by its center Z is G/Z-irreducible; thus, we
may assume that G is semi-simple. Then one easily shows that a
commutative subgroup H ⊂ G is G-irreducible if and only if CG(H)
is finite; in particular, H itself is finite.
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When G = SLn, any commutative G-irreducible subgroup is
trivial, and this also holds when G = Sp2n. By the arguments of (i)
above, it follows that any homogeneous bundle under SLn or Sp2n

has a reduction of structure group to a homogeneous bundle under
a Borel subgroup.

In contrast, when G is the projective linear group PGLn, there
are many commutative G-irreducible subgroups; in fact, they are
exactly the images of the Heisenberg subgroups of GLn acting via
their standard irreducible representation (see e.g. [Mum66]).

For an arbitrary connected reductive group G, the classification
of all commutative G-irreducible subgroups seems to be an open
question. It turns out to be closely related to the torsion primes of
G, as defined in [Ste75]. For example, if the order of a finite commu-
tative subgroup H of G is not divisible by any torsion prime, then
H is contained in a subtorus of G (see Corollary 2.25 in [loc. cit.])
and hence is not G-irreducible. The maximal elementary abelian
p-subgroups of G are described in [Gri91] for all primes p; by the
result quoted above, it suffices to consider the torsion primes.



Chapter 2

Proof of Chevalley’s
Theorem

In this chapter we shall present a proof of Chevalley’s structure
theorem (see Theorem 1.1.1) along the lines of Rosenlicht’s proof
in [Ros56].

We begin by proving several criteria for an algebraic group to
be affine, that will be used in the course of the proof and in the
next chapters. In particular, they imply that every connected alge-
braic group G has a largest connected normal affine subgroup Gaff

(Lemma 2.1.2), and that G/Zo
red is affine, where Z denotes the cen-

ter of G, and Zo
red its reduced neutral component (Corollary 2.1.7).

To prove Chevalley’s theorem, we may thus assume that Gaff is
trivial, and need to show that G is an abelian variety. But Zo

red is
nontrivial and contains no affine subgroup of positive dimension.
If Zo

red is an abelian variety, then the theorem follows almost im-
mediately from the fact that every abelian subvariety of G is an
almost direct factor (Corollary 2.2.4). We deduce this fact from a
structure result for the action of an abelian variety on a smooth
variety, which has independent interest (Theorem 2.2.2).

To complete the proof, it suffices to show that every non-
complete algebraic group G contains an affine subgroup H of posi-
tive dimension. For this, the idea is to consider a completion X of
G such that the G-action on itself by multiplication extends to an
action on X, and to take for H the isotropy group of a point of the

17



18 CHAPTER 2. PROOF OF CHEVALLEY’S THEOREM

boundary. It is yet not known how to obtain such a completion at
this stage (this will be done in Chapter 3, by using Chevalley’s the-
orem; see Proposition 3.1.1). So we construct an equivariant com-
pletion in a weaker sense, namely, a complete variety birationally
isomorphic to G, such that the induced rational action stabilizes
a divisor (see Proposition 2.3.4). For this, we present some basic
results on rational actions of algebraic groups.

2.1 Criteria for affineness

First, recall that an algebraic group is affine if and only if it is linear
(see [Spr09, Theorem 2.3.7]). We shall also need the following:

Lemma 2.1.1 Let G be an algebraic group and H a normal sub-
group. Then G is affine if and only if H and G/H are affine.

Proof: If G is affine, then obviously H is affine; moreover, G/H
is affine by [Spr09, Proposition 5.5.10]. To prove the converse,
we embed H as a subgroup of some GLn, and hence of SLn+1.
This realizes H as a closed subvariety of the affine space of m×m
matrices, Mm, where m := n+1. The group H acts naturally from
the left on Mm (given the embedding) and from the right on G (via
right multiplication). Then the associated bundle E := G×HMm is
a vector bundle over G/H (see Section 6.1 for details on associated
bundles). We have the following commuting diagram:

G ∼= G×H H
� �closed //

π

((PP
PPP

PPP
PPP

PP
G×H Mm

p

��

G/H

where π denotes the quotient morphism. As G/H is affine and
the morphism p : E → G/H is affine (see for example [Har77,
Exercise II.5.17]), E is affine. Hence G, being a closed subvariety
of E, is affine.

Alternatively, it suffices to show that the morphism π : G →
G/H is affine whenever H is affine. By arguing as in the proof of
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[Har77, Theorem III.3.7], we reduce to showing that the functor π∗
from the category of quasi-coherent sheaves on G to that of quasi-
coherent sheaves on G/H, is exact. For this, we use the cartesian
square

G×H
p1 //

m

��

G

π
��

G
π // G/H

where p1 denotes the projection, and m the multiplication. Then
p1 is clearly affine, and hence the functor (p1)∗ is exact. More-
over, π is faithfully flat; hence we have a natural isomorphism
π∗(π∗F) ∼= (p1)∗(m

∗F) for any quasi-coherent sheaf F on G, by
[loc. cit., Proposition III.9.3]. As m is faithfully flat, m∗ is exact; it
follows that (p1)∗m

∗ is exact. Using the exactness of π∗, this yields
that π∗ is exact, as required. �

The above alternative argument is an example of faithfully flat
descent; see, for example, [BLR90, Chapter 6] for further develop-
ments. We may now make a first step in the proof of Chevalley’s
theorem:

Lemma 2.1.2 Any algebraic group G admits a largest connected
affine normal subgroup Gaff. Moreover, (G/Gaff)aff is trivial.

Proof: Let G1 and G2 be connected affine normal subgroups of G.
Then G1G2 is closed in G (indeed, consider the action of G1×G2 on
G, where G1 acts on the left and G2 on the right. Then some orbit
G1gG2 is closed. But G1gG2 = G1G2g and hence G1G2 is closed).
Clearly G1G2 is connected. Also, it is affine by Lemma 2.1.1, since
G1G2/G2

∼= G1/G1 ∩ G2 is affine and G2 is affine. Thus, if H
is a connected affine normal subgroup of G of maximal possible
dimension and K is any connected affine normal subgroup of G
then by maximality of H we get H = HK, implying that K ⊂ H.
This shows the existence of Gaff. The triviality of (G/Gaff)aff follows
again from Lemma 2.1.1. �
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In the next chapter, we shall use the generalization of
Lemma 2.1.1 to the setting of an algebraic group G and a nor-
mal subgroup scheme H. This generalization follows readily from
that lemma in view of the next result.

Lemma 2.1.3 (i) For any group scheme H, we have

H is affine ⇔ Hred is affine ⇔ Ho
red is affine.

(ii) If H is a subgroup scheme of an algebraic group G, then

G/H is affine ⇔ G/Hred is affine ⇔ G/Ho
red is affine.

Proof: (i) The first equivalence holds for any scheme (see [Har77,
Exercise III.3.1]). The second equivalence follows from the fact that
Hred is the union of finitely many disjoint copies of Ho

red.
(ii) The quotient map π : G → G/H factors through a mor-

phism ϕ : G/Hred → G/H which is bijective, since its scheme-
theoretic fibres are isomorphic to H/Hred and the latter is a finite
scheme having a unique closed point. In fact, ϕ is also finite: in-
deed, we have a cartesian square as in the proof of Lemma 2.1.1:

G×H/Hred

p1 //

m1

��

G

π

��

G/Hred

ϕ
// G/H

where p1 denotes the projection, and m1 comes from the multipli-
cation G × H → G; since π is faithfully flat and p1 is finite, ϕ
is finite. In particular, ϕ is an affine morphism. Thus, if G/H is
affine, then so is G/Hred. The converse follows from a theorem of
Chevalley: if f : X → Y is a finite surjective morphism and if X is
affine, then Y is affine (see [Har77, Exercise III.4.2]). This proves
the first equivalence.

The second equivalence is checked similarly; here the morphism
G/Ho

red → G/Hred is the quotient by the finite group Hred/H
o
red act-

ing via right multiplication, and hence this morphism is finite and
surjective. �
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Definition 2.1.4 An action of an algebraic group G on a variety
X is set-theoretic faithful if every non-trivial g ∈ G acts non-
trivially. Equivalently, the set-theoretic kernel of the action is triv-
ial.

The action is scheme-theoretic faithful if every non-trivial sub-
group scheme of G acts non-trivially. Equivalently, the scheme-
theoretic kernel of the action is trivial.

A set-theoretic faithful action of G on X is scheme-theoretic
faithful if and only if the induced action of the Lie algebra of G
(by derivations of OX) is faithful. This condition always holds in
characteristic 0, but fails in characteristic p ≥ 1: the standard
example is the action of Gm on A1 by t · z = tpz.

We shall only consider set-theoretic faithful actions in this chap-
ter and the next one, and just call them faithful for simplicity.
Scheme-theoretic faithfulness occurs in Chapter 4 and the subse-
quent chapters.

Lemma 2.1.5 Let G be an algebraic group, and V a rational G-
module (not necessarily finite-dimensional), i.e., every v ∈ V sits in
some finite-dimensional G-stable subspace on which G acts linearly
and algebraically. If the G-action on V is faithful, then G is affine.

Proof: By assumption, V =
⋃
i∈I Vi, where the Vi are finite-

dimensional rational G-modules. Let Ki denote the set-theoretic
kernel of the G-action on Vi. Then Ki is a normal subgroup of G,
and the set-theoretic intersection

⋂
i∈I Ki is trivial. Since the un-

derlying topological space of G is noetherian, there exists a finite
subset J ⊂ I such that

⋂
j∈J Kj is trivial. Thus, G acts faithfully

on W :=
∑

j∈J Vj, a finite-dimensional submodule of V . Let H de-
note the scheme-theoretic kernel of the representationG→ GL(W ).
Then Hred is trivial, and hence the group scheme H is finite; more-
over, G/H is affine as a subgroup of GL(W ). Hence G is affine by
Lemmas 2.1.1 and 2.1.3. �

Proposition 2.1.6 Let G be an algebraic group acting faithfully
on a variety X with a fixed point x. Then G is affine.
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Proof: By Lemma 2.1.5, it suffices to construct a faithful rational
representation of G. Since G fixes x, it acts linearly (but not ratio-
nally) on the local ring OX,x, stabilizing the ideals m

n
x for all n > 0,

where mx denotes the maximal ideal in OX,x. Thus, G acts linearly
on the finite dimensional vector space OX,x/m

n
x for any n ≥ 1.

We now show that this representation is rational. Indeed, the
action morphism

α : G×X → X, (g, x) 7→ g · x

induces a homomorphism of local rings

α# : OX,x → OG×X,(g,x).

But OG×X,(g,x) is the localization of OG,g ⊗ OX,x at the maximal
ideal of (g, x), i.e., at mg ⊗OX,x + OG,g ⊗ mx. Moreover, we have

OG×X,(g,x)/m
n
xOG×X,(g,x)

∼= OG,g ⊗OX,x/m
n
x

since the right-hand side is already a local ring. Thus, for each
n ≥ 1 we obtain a homomorphism

α#
n : OX,x/m

n
x → OG,g ⊗OX,x/m

n
x.

This means that the matrix coefficients of the G-action on OX,x/m
n
x

lie in OG,g for any g ∈ G, and hence in O(G) as required.
Next, letKn denote the set-theoretic kernel of the representation

G→ GL(OX,x/m
n
x).

Clearly, Kn is contained in Kn−1. So we have the following decreas-
ing sequence of subgroups of G:

K1 ⊇ · · · ⊇ Kn ⊇ Kn+1 ⊇ · · ·

which must stabilize at some stage, say n0. Thus, Kn0 acts trivially
on OX,x/m

n
x for all n ≥ n0. We now show that Kn0 is trivial, giving

us the representation of G that we seek. By Krull’s intersection
theorem we know that ⋂

n≥1

m
n
x = 0.
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Hence Kn0 acts trivially also on OX,x, and on its field of fractions –
the function field k(X). As the local ring OX,y is contained in k(X)
for every y ∈ X, we get thatKn0 acts trivially on OX,y which implies
that Kn0 fixes all points in X. By the faithfulness assumption, we
see that Kn0 is trivial. �

As a direct consequence, we obtain:

Corollary 2.1.7 Let G be a connected algebraic group, and Z =
Z(G) its scheme-theoretic center. Then G/Z, G/Zred and G/Zo

red

are affine.

Proof: G acts by conjugation on itself, and the set-theoretic ker-
nel of this action is Zred. Hence G/Zred acts faithfully on the variety
G. The neutral element eG is a fixed point for this action. Hence,
applying Proposition 2.1.6 yields that G/Zred is affine. The affine-
ness of G/Z and of G/Zo

red follows in view of Lemma 2.1.3. �

Remark 2.1.8 The above statement does not extend to arbitrary
algebraic groups. For example, let E be an elliptic curve, and G
the semi-direct product of E with the group of order 2 generated
by the multiplication (−1)E. Then one checks that Z = E2 (the
kernel of 2E) and hence G/Z is not affine.

Another direct consequence of Lemma 2.1.3 and of Proposi-
tion 2.1.6 is the following:

Corollary 2.1.9 Let X be a variety equipped with a faithful action
of an algebraic group G. Then the isotropy subgroup scheme of any
x ∈ X is affine. �

2.2 Actions of abelian varieties

We first record the following observation:

Proposition 2.2.1 Let A be an abelian variety acting faithfully
on a variety X. Then the isotropy subgroup scheme Ax is finite for
every x ∈ X.
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(Indeed, Ax is proper, but also affine by Corollary 2.1.9). �

The next theorem is a variant of a result of Rosenlicht (see
[Ros56, Theorem 14]):

Theorem 2.2.2 Let A be an abelian variety acting faithfully on a
smooth variety X. Then there exists a morphism φ : X → A which
is equivariant in the following sense:

φ(ax) = φ(x) + na for all x ∈ X, a ∈ A,

where n is a positive integer.

Note that the action of A on itself via a · b := b + na is just
the action on the quotient A/An by translation, where An denotes
the n-torsion subgroup scheme of A. So the above theorem asserts
the existence of an equivariant morphism φ : X → A/An for some
n > 0; in other words, there is an equivariant isomorphism

X ∼= A×An Y

where Y is a closed subscheme of X, stable under An (the fibre of
φ at the origin of A).

A result of Nishi and Matsumura states more generally that,
if X is a smooth variety equipped with a faithful action of a con-
nected algebraic group G then there exists an equivariant mor-
phism φ : X → G/H, where H ⊂ G is the pre-image of some
An ⊂ A = G/Gaff. Equivalently, X = G ×H Y for some closed H-
stable subscheme Y ⊂ X; see [Mat63], and also [Bri10b] for another
proof and further developments.

Before proving Theorem 2.2.2, we show that the assumption of
smoothness cannot be suppressed by presenting an example due to
Raynaud ([Ray70, XIII 3.1]).

Example 2.2.3 Let E be an elliptic curve, and p0 ∈ E a point
of infinite order. Define an equivalence relation ∼ on E × P1 by
setting

(p, 0) ∼ (p+ p0,∞).
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LetX := E×P1/ ∼. Equivalently, X is obtained by gluing together
E × {0} and E × {∞} in E × P1 via the translation τp0 . Then X
is a variety (as follows e.g. from [Fer03, Theorem 5.4]); in fact, X
is a complete surface. Moreover, the natural map η : E × P1 → X
is the normalization. The elliptic curve E acts faithfully on X via
its action on E × P1 by translation on E. We claim that there
is no such morphism φ : X → E as in the theorem. For, if such
an E-equivariant morphism does exist, then it yields a morphism
ψ : E × P1 → E such that the following diagram commutes

E × P1

η

��

ψ

##H
HH

HH
HH

HH

X
φ

// E.

Then the morphism P1 → E, z 7→ ψ(p, z) must be constant for
any p ∈ E. By the rigidity lemma for complete varieties applied to
ψ (see e.g. [Mil86, Theorem 2.1]) we get ψ(p, z) = γ(p) for some
morphism γ : E → E. By the assumption on φ we obtain

γ(p+ p0) = γ(p) + np0 for all p ∈ E, z ∈ P1,

for some n > 0. Also, ψ(p, 0) = ψ(p + p0,∞) so that γ(p) =
γ(p+ p0). Thus, np0 = 0 thereby contradicting that p0 is of infinite
order. �

Proof of Theorem 2.2.2: Let x0 ∈ X and let Y := A · x0

be the orbit through x0. By Proposition 2.2.1, we have Y ∼= A/F
where F is a finite subgroup scheme of A. We now claim that there
exists a line bundle L on X such that L |Y is ample. Indeed, let
E ⊂ Y be an ample irreducible divisor (we can choose one such
because Y is an abelian variety). Then there exists an effective
divisor, D ⊂ X, such that D ∩ Y ⊇ E, and D does not contain Y .
(Indeed we can pick a local equation g of E at some point x, and lift
it to a rational function f on X which is defined at x. The closure
in X of the zero scheme of f is an effective Weil divisor D, and
hence a Cartier divisor since X is smooth. As E is irreducible, it is
contained in an irreducible component ofD. ThenD is the required
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effective divisor.) Let L := OX(D). Then L|Y = OY (E+F ) where
F is an effective divisor. Since A is an abelian variety, it follows
that F is numerically effective. (Indeed, given an irreducible curve
C in A, we may find x ∈ A such that τx(C) is not contained in
the support of D. Then the intersection number D · τx(C) is non-
negative. But D · τx(C) = D ·C as τx(C) is algebraically equivalent
to C. Hence D · C ≥ 0 as required). Thus, L |Y is ample.

Let L := α∗(L) ⊗ p∗2(L
−1) where α : A × X → X denotes the

action and p2 : A×X → X the projection. Then L0×X is the trivial
bundle. Hence L defines a morphism

ϕ : X → Pic(A), x 7→ L |A×x

(see [BLR90, §8.2], [Mum08, §III.13]).
For any x ∈ X, consider the orbit map αx : A → X, a 7→ a · x.

Then αx is finite by Proposition 2.2.1, and ϕ(x) is the class of
α∗
x(L) in Pic(A), since p∗2(L) |A×x is trivial. Thus, ϕ(x0) is ample.

Also, ϕ(X) is contained in a connected component of Pic(A), i.e.,
in a coset of Pico(A) = Â. It follows that ϕ(x) is ample for any
x ∈ X. Since αx is A-equivariant, we see that ϕ is also equivariant
with respect to the given action on X and the action on Pic(A)
by translation on A. The latter action is transitive on any ample
coset, by [Mil86, Proposition 10.1]. Thus we get a morphism

ϕ : X → A · ϕ(x0) ∼= A/K(α∗
x0

(L)),

where for any line bundle M on A, we denote by K(M) the scheme-
theoretic kernel of the polarization homomorphism

ϕM : A→ Â, a 7→ τ ∗a (M) ⊗M−1.

Since α∗
x0

(L) is ample, the group scheme K(α∗
x0

(L)) is finite (see
[Mil86, Proposition 9.1]), and hence is contained in An for some
n > 0. Thus, ϕ yields an A-equivariant morphism X → A/An, and
hence a morphism φ : X → A as in the statement. �

From the above theorem we arrive at a generalization of the
Poincaré complete reducibility theorem (see for example [Mil86,
Proposition 12.1]) to the setting of connected algebraic groups.
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Corollary 2.2.4 Let A be an abelian subvariety of a connected al-
gebraic group G. Then A is contained in the center of G, and there
exists a connected normal subgroup H of G such that G = AH and
A ∩H is finite.

Proof: The first assertion follows, for example, from Corol-
lary 2.1.7. Applying Theorem 2.2.2 to the action of A on G
by multiplication, we get a morphism φ : G → A such that
φ(ag) = φ(g) + na for some positive integer n. We may assume
without loss of generality that φ(eG) = 0A; then φ is a group ho-
momorphism (see [Mil86, Corollary 3.6]). As φ |A is just the multi-
plication nA, it is an isogeny. Thus, we get that G = A ker(φ) and
A ∩ ker(φ) = ker(nA) = An is finite. Now, let H := (kerφ)ored; then
we still have G = AH and H ∩ A is finite. �

The above corollary is due to Rosenlicht (see [Ros56, Corollary,
p. 434]); a subgroup H ⊂ G as in the statement shall be called a
quasi-complement to A in G.

2.3 Rational actions of algebraic groups

Definition 2.3.1 We denote by Bir(X) the group of birational
automorphisms of a variety X; this is also the group of k-auto-
morphisms of the function field k(X).

A rational action of an algebraic group G on X is a group ho-
momorphism ρ : G→ Bir(X) such that the map α : G×X 99K X,
(g, x) 7→ ρ(g)x =: g ·x is defined and regular on a dense open subset
of X. We say that g · x is defined if the rational map α is defined
at (g, x) ∈ G×X.

A rational action ρ is faithful if its kernel is trivial.

A point x ∈ X is fixed by this action, if there exists a dense
open subset V ⊂ G such that g · x is defined and equals x for any
g ∈ V .

We now obtain a version of Proposition 2.1.6 for rational actions:
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Proposition 2.3.2 Let G be an algebraic group acting rationally
and faithfully on a variety X with a fixed point x. Then G is affine.

Proof: We adapt the argument of Proposition 2.1.6. We may
assume that G is connected. The dense open subset V of G (as
in Definition 2.3.1) stabilizes x, hence the local ring OX,x ⊂ k(X)
is also stabilized by V . Since V generates the group G, we see
that G itself stabilizes OX,x. Thus G stabilizes the unique maximal
ideal mx of OX,x, and its powers m

n
x; hence G acts linearly on the

quotients OX,x/m
n
x.

We show that the matrix coefficients of the action of G on
OX,x/m

n
x are in k(G). Indeed, the co-action map

α# : k(X) → k(G×X)

restricts to a homomorphism of local rings

α# : OX,x → OU,V×x = OG×X,G×x.

The right-hand side is the localization of k(G)⊗OX,x at the maximal
ideal k(G) ⊗ mx. Moreover, for the maximal ideal m of OG×X,G×x

we have
OG×X,G×x/m

n ∼= k(G) ⊗OX,x/m
n
x

for all n ≥ 1. Thus, we obtain homomorphisms

α#
n : OX,x/m

n
x → k(G) ⊗OX,x/m

n
x.

This is equivalent to giving a rational homomorphism

φ : G 99K GL(OX,x/m
n
x) =: GLN .

Therefore, there exists a dense open subset W of G on which φ is
regular. Let ΓW be the graph of this morphism and let Γ denote
the closure of ΓW in G×GLN . Then Γ is a subgroup of G×GLN ,
and we have a commuting diagram of group homomorphisms

Γ
p2 //

p1

��

GLn

G

φ

==z
z

z
z
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The map p1 : Γ → G is birational since φ is a rational map, hence
an isomorphism since it is a group homomorphism. Thus, from the
commutativity of the above diagram we conclude that the map φ
is regular. �

We also record a result of Rosenlicht (see [Ros56, Lemma,
p. 403]):

Lemma 2.3.3 Let X be a variety equipped with a birational action
of a connected algebraic group G, and let x ∈ X, g, h ∈ G. If
h · x and g · (h · x) are defined, then so is gh · x, and we have
gh · x = g · (h · x).

Proof: We shall use the following observation : let f : Y 99K Z
be a rational map of varieties, V the largest open subset of Y on
which f is defined, and Γ ⊂ Y ×Z the graph of f (i.e., the closure
of the graph of the morphism f |V ). Then f is defined at a point
y ∈ Y if and only if the projection p1 : Γ → Y is an isomorphism
above some neighborhood of y.

Now consider the graph of the rational map

G×G×X 99K X ×X ×X, (u, v, z) 7→ (v · z, u · (v · z), uv · z).

This graph Γ sits in G×G×X×X×X×X; actually, in G×G×X×
X×∆(X) where ∆(X) denotes the diagonal (as u·(v·z) = uv·z on a
dense open subset of G×G×X). Since the rational map (u, v, z) 7→
(v ·z, (u ·(v ·z)) is defined at (g, h, x), the projection Γ → G×G×X
to the first three factors is an isomorphism above a neighborhood
of (g, h, x). It follows that the rational map (u, v, z) 7→ uv · z is
defined at (g, h, x), with value g · (h · x) at that point. �

Next, we present another result of Rosenlicht, on “equivariant
completion” of rational actions (see [Ros56, Theorem 15]):

Proposition 2.3.4 Let X0 be a non-complete variety equipped with
a regular action of a connected algebraic group G. Then X0 is
equivariantly birationally isomorphic to a complete normal variety
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X equipped with a rational action α of G, and containing an irre-
ducible divisor D such that α restricts to a rational action of G on
D.

Proof: By a theorem of Nagata, we may embed X0 as an open
subset of a complete variety X. We may assume that X \X0 has
pure codimension 1 by blowing-up X along X \X0; then replacing
X with its normalization, we may also assume that X is normal.
Let α : G×X 99K X be the rational action arising from the given
action on X0, and choose an irreducible component E of X \ X0.
Then α is defined onG×E (since the latter is a divisor of the normal
variety G × X, and the target X is complete; apply the valuative
criterion of properness [Har77, Theorem II.4.7]). Moreover, the
restriction G × E 99K X is not dominant. For otherwise, g · x is
defined and lies in X0 for any general point (g, x) ∈ G × E; thus,
g−1 · (g ·x) is defined, and equals x by Lemma 2.3.3. Hence x ∈ X0,
a contradiction.

By Lemma 2.3.5 below, there exists a complete variety X ′ and
a birational morphism ϕ : X ′ → X such that the induced rational
map G×X 99K X ′ sends G×E to a divisor; we may further assume
that X ′ is normal. Then X ′ is equipped with a rational action
α′ : G×X ′

99K X ′ and with an irreducible divisor E ′ (birationally
isomorphic to E) such that α′ sends G×E ′ to an irreducible divisor
D′.

We claim that X ′, α′ and D′ satisfy the assertions of the propo-
sition. Indeed, g · x is defined for a general point (g, x) ∈ G ×D′.
We may further write x = h · y for general (h, y) ∈ G × E ′. Then
g · x = g · (h · y) equals gh · y by Lemma 2.3.3 again; Thus, g · x lies
in D′, that is, α′ sends G × D′ to D′. Clearly, the resulting map
G×D′

99K D′ is rational and yields a homomorphism G→ Bir(D′).
�

Lemma 2.3.5 Let X be a normal variety, D ⊂ X an irreducible
divisor, Y a complete variety, and f : X 99K Y a dominant rational
map. Then there exist a complete variety Y ′ and a birational mor-
phism ϕ : Y ′ → Y such that the induced rational map f ′ : X 99K Y ′
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restricts to a rational map f ′ |D: D 99K Y ′ with image Y ′ or a
divisor.

Proof: We may assume that f |D is not dominant. We shall view
the function field k(Y ) as a subfield of k(X) via the comorphism f#.
Let v denote the valuation of k(X) associated with the irreducible
divisor D, so that v(f) is the order of the zero or pole of f ∈ k(X)∗

along D. Then v is discrete and its residue field kv is the function
field of D. Next, let w denote the restriction of v to k(Y ). Then
w is also a discrete valuation, and is nontrivial since f |D is not
dominant. Its residue field kw is contained in kv, and we have the
inequality of transcendence degrees

tr.deg.kv/kw ≤ tr.deg.k(X)/k(Y ).

(Indeed, let g1, . . . , gt ∈ kv be algebraically independent over
kw, and choose representatives h1, . . . , ht of g1, . . . , gt in the val-
uation ring Ov. Then one easily checks that h1, . . . , ht are al-
gebraically independent over Ow, and hence over k(Y )). But
tr.deg.k(X)/k(Y ) = m− n, where m := dim(X) and n := dim(Y ).
Also, tr.deg.kv/k = m− 1. Thus,

tr.deg.kw/k = tr.deg.kv/k−tr.deg.kv/kw ≥ m−1−(m−n) = n−1.

So we may choose functions f1, . . . , fn−1 ∈ Ow (the local ring of w)
with algebraically independent images in kw. Let Y ′ be the graph
of the rational map

Y 99K Pn−1, y 7→ [1 : f1(y) : · · · : fn−1(y)].

Then Y ′ is a complete variety equipped with a birational morphism
p1 : Y ′ → Y and with a morphism p2 : Y ′ → Pn−1. Thus, f lifts to
a rational map f ′ : X 99K Y ′; moreover, the composition p2 ◦ f

′ :
X 99K Pn−1 restricts to a dominant rational map D 99K Pn−1,
by construction of f1, . . . , fn−1. Hence f ′ maps D to a divisor as
required. �

The final ingredient of the proof of Chevalley’s theorem is the
following lemma, also due to Rosenlicht (see [Ros56, Lemma 1,
p. 437]).
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Lemma 2.3.6 Any non-complete algebraic group has an affine
subgroup of positive dimension.

Proof: We may assume that G is connected. Applying Proposi-
tion 2.3.4 to the varietyG whereG acts by multiplication, we obtain
a complete normal variety X equipped with a rational action α and
with an irreducible divisor D, stable by this action.

We claim that there exists an open subset V of G and a point
x0 ∈ D such that g · x0 and g−1 · (g · x0) are defined for any g ∈ V .
Indeed, let U ⊂ G × X be the largest open subset on which α is
defined; then U contains a dense open subset of G×D, as seen in
the proof of Proposition 2.3.4. Since G acts rationally on D, the
morphism (G×D)∩U → G×D, (g, x) 7→ (g−1, g · x) is dominant,
and hence the subset {(g, x) ∈ G×D | (g, x) ∈ U, (g−1, g · x) ∈ U}
is open and dense in G×D. This implies our claim.

Choose g0 ∈ V and denote by F the (set-theoretic) fiber at g0

of the “orbit map” V → D, g 7→ g · x0. Then each irreducible
component of F has dimension ≥ 1, since dim(V ) = dim(G) =
dim(D) + 1. Note that g · x0 is defined and equals g0 · x0 for any
g ∈ F . Thus, g−1

o ·(g ·x0) = g−1
0 ·(g0 ·x0) is defined and equals x0. By

Lemma 2.3.3, it follows that g−1
0 g · x0 is defined and equals x0. In

other words, g−1
0 F fixes x0. Likewise, g−1·(g0·x0) = g−1·(g·x0) = x0

for any g ∈ F , i.e., Fg−1
0 fixes x0.

Next, choose an irreducible component C of F containing g0.
Then g−1

0 C is a locally closed subvariety of G containing eG. Thus,
the subgroup H of G generated by g−1

0 C is closed in G and of
positive dimension. Moreover, H fixes x0 in view of Lemma 2.3.3
again. So H is affine by Proposition 2.3.2. �

Remark 2.3.7 We present an alternative proof of the above
proposition, based on a theorem of Weil: any variety equipped with
a birational action of a connected algebraic group G is equivariantly
birationally isomorphic to a variety equipped with a regular action
of G.

By that theorem, there exists a variety E equivariantly bira-
tionally isomorphic to D and on which G acts regularly. If G fixes
E pointwise, then it has a fixed point in D, and hence is affine.
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Thus, we may assume that G acts non-trivially on E. Since the
isotropy group of each point of E has positive dimension, G strictly
contains a non-trivial connected subgroup H.

If H is non-complete, then we conclude by induction on the
dimension of G (the case where dim(G) = 1 is easy, since G is then
a non-complete irreducible curve and hence is affine). But if H is
complete, then it admits a quasi-complement K by Corollary 2.2.4.
Then K is non-complete (since so is G), and K 6= G. Thus, we
may again conclude by induction on dim(G).

Proof of Theorem 1.1.1: We provide details for the argu-
ment outlined at the beginning of this chapter. By Lemma 2.1.2,
it suffices to show that G/Gaff is an abelian variety. Thus, we may
assume that every connected normal affine subgroup of G is trivial.
We now show that G is complete.

Consider the center Z ofG. If Z is not complete, then it contains
a connected affine subgroup of positive dimension by Lemma 2.3.6;
such a subgroup being normal, this contradicts our assumption on
G. Hence Z is complete, and its reduced neutral component Zo

red

is an abelian variety. Let H ⊂ G be a quasi-complement to Zo
red in

G, as in Corollary 2.2.4. Then G = Zo
redH and Zo

red ∩ H is finite.
Also, H/(Zo

red ∩H) ∼= G/Zo
red is affine by Corollary 2.1.7. Thus, H

is affine as well (Lemma 2.1.1). So H is trivial by our assumption
on G, i.e., G = Z is complete.
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Chapter 3

Applications and
developments of
Chevalley’s theorem

We begin this chapter by deriving some applications of Cheval-
ley’s theorem (Theorem 1.1.1) and of the structure of actions of
abelian varieties on smooth varieties (Theorem 2.2.2). Then we
present a proof of the “dual” statement of Chevalley’s theorem
(Theorem 1.2.1). Finally, we combine both structure theorems to
obtain the Rosenlicht decomposition (Theorem 1.2.4) and some fur-
ther developments on the structure of algebraic groups.

3.1 Some applications

Proposition 3.1.1 Let G be a connected algebraic group. Then:

(i) Gaff is the largest connected affine subgroup of G.

(ii) G = Zo
redGaff = ZGaff where Z = Z(G) denotes the scheme-

theoretic center of G. Moreover, Z ∩ Gaff = Z(Gaff) (the
scheme-theoretic center of Gaff). In particular, G is commu-
tative if and only if Gaff is so.

35
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(iii) The quotient homomorphism

α : G→ G/Gaff =: A

is a Zariski locally trivial principal Gaff-bundle. Further, α is
the Albanese morphism of G.

(iv) G admits a G×G-equivariant completion by a normal projec-
tive variety.

Proof: (i) Let H be a connected affine subgroup of G. Then α(H)
is a connected affine subgroup of G/Gaff. Hence by the completeness
of G/Gaff, α(H) is trivial. Thus H ⊂ Gaff as required.

(ii) Since G/Gaff is complete, so also is its quotient G/Zo
redGaff.

However, G/Zo
red is affine by Corollary 2.1.7, so that the quotient

G/Zo
redGaff is also affine. Hence G/Zo

redGaff is trivial, that is, G =
Zo

redGaff. It follows that G = ZGaff, and hence Z(Gaff) ⊂ Z ∩ Gaff.
But the opposite inclusion is obvious; this completes the proof.

(iii) Let f : G→ B be a morphism to an abelian variety. Then
f is the composite of a group homomorphism ϕ : G → B and a
translation of B (see [Mil86, Corollary 3.6]). The group ϕ(Gaff)
is trivial (being both affine and complete), and hence ϕ factors
through a unique homomorphism A → B. Thus, f also factors
through a unique morphism A → B. This shows that α is the
Albanese morphism of G.

To show that the Gaff-bundle α is locally trivial, we reduce to the
case where Gaff is solvable, as follows. Let B be a Borel subgroup of
Gaff. Then ZB is a subgroup scheme of G. By (ii) above, we know
that α |Z is onto, hence so also is α |ZB. Clearly,

B ⊂ ker(α |ZB) = ZB ∩Gaff = (Z ∩Gaff)B = Z(Gaff)B.

Moreover, Z(Gaff) ⊂ B by Lemma 3.1.2 below. This yields the
equality

B = kerα |ZB= ZB ∩Gaff. (3.1)

Thus, α |ZB is a principal bundle under the connected solvable affine
algebraic group B. By [Ser01, Proposition 14], any such bundle has
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(Zariski) local sections. On the other hand, it follows from (3.1)
that

Gaff ×
B ZB = Gaff ×

Gaff∩ZB ZB ∼= GaffZB = G

and also that

ZB/B = ZB/ZB ∩Gaff = ZBGaff/Gaff = G/Gaff = A.

Thus, the extension of structure group of the principal B-bundle
α |ZB: ZB → ZB/B to Gaff, is just α : G→ A. In particular, each
local section of α |ZB yields a local section of α. Hence the latter
Gaff-bundle is locally trivial, as required.

(iv) We may view Gaff as a closed subgroup of some GLn. Then

Gaff ⊂ Mn ⊂ P(Mn ⊕ k).

Let Gaff be the closure of Gaff in P(Mn⊕k). The action of Gaff×Gaff

on Gaff by left and right multiplication extends to Gaff. Taking
the normalization of Gaff, we get a normal projective Gaff × Gaff-
equivariant completion X of Gaff. We have the following diagram

G ∼= G×Gaff Gaff

� �
//

α

��

G×Gaff Gaff

� �
//

uulll
lll

lll
lll

lll
l

G×Gaff P(Mn ⊕ k)

rreeeee
eeeee

eeeee
eeeee

eeeee
eeeee

e

A

Further, G ×Gaff P(Mn ⊕ k) is a projective variety (the projective
completion of the vector bundle G ×Gaff Mn over the projective
variety A); thus, so are G×GaffGaff and its normalization G×GaffX.

We now show that the map G →֒ G×GaffX is G×G-equivariant.
One easily checks that the map G → G × G, g 7→ (eG, g) induces
an isomorphism

G/Gaff → (G×G)/(Gaff ×Gaff)Z,

where Z is embedded in G×G via z 7→ (z, z). Moreover,

(Gaff ×Gaff)Z ∼= (Gaff ×Gaff × Z)/(Gaff ×Gaff) ∩ Z
∼= (Gaff ×Gaff × Z)/Z(Gaff),
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where Z(Gaff) is embedded in Gaff×Gaff×Z via z 7→ (z, z, z). Thus,

G×Gaff X ∼= G×G×(Gaff×Gaff)Z X,

where (Gaff ×Gaff)Z acts on G×G by right multiplication, and on
X via the given action of Gaff × Gaff and the trivial action of Z
(this defines an action of the product Gaff ×Gaff ×Z which restricts
to the trivial action of Z(Gaff); so this indeed defines an action of
(Gaff × Gaff)Z). Now it is easy to see that the right-hand side has
an action of G×G, extending the action on the open subset

G ∼= G×Gaff Gaff
∼= (G×G) ×(Gaff×Gaff)Z Gaff

by left and right multiplication on G. �

Lemma 3.1.2 Let G be a connected linear algebraic group, and
Z its scheme-theoretic center. Then Z is contained in any Borel
subgroup B of G.

Proof: Clearly, B contains the unipotent radical Ru(G). Thus,
B is the pre-image of a Borel subgroup of G/Ru(G). Also, Z(G) is
contained in the pre-image of Z(G/Ru(G)). Thus, we may replace
G with G/Ru(G), and hence assume that G is reductive. Now
choose a maximal torus T of B; then Z is contained in the scheme-
theoretic centralizer CG(T ). But the latter equals T , which yields
our assertion. �

Next, we note that Theorem 2.2.2 readily implies the following
version of a result of Serre (see [Ser01, Proposition 17]):

Corollary 3.1.3 Let A be an abelian variety, and π : X → B a
principal A-bundle over a smooth variety. Then π has a reduction
of structure group to a principal An-bundle Y → B for some integer
n > 0. �

We also deduce from Theorem 2.2.2 a result due to Serre in
characteristic 0 (see [Ser01, Corollaire 1, p. 131]).
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Corollary 3.1.4 Let A and B be abelian varieties, and π : X → B
a principal A-bundle. Then X has a structure of abelian variety
containing A such that π is the quotient by that subgroup.

Proof: By Corollary 3.1.3, we have X ∼= A ×An Y where Y is a
closed subscheme of X stable under An, and π restricts to a prin-
cipal An-bundle Y → B. Using a result of Nori (see [Nor83, Re-
mark 2]), we know that such a Y has to be equivariantly isomorphic
to An×

ΓZ, where Γ is a subgroup scheme of An and Z is an abelian
variety on which Γ acts by translation; then Z/Γ ∼= Y/An ∼= B.
Thus, X ∼= A ×An (An ×Γ Z) ∼= A ×Γ Z is the quotient of the
abelian variety A×Z by its subgroup scheme Γ, and π is identified
with the quotient morphism X → X/A = Z/Γ. �

The smoothness assumption in Corollary 3.1.3 cannot be sup-
pressed, as shown by the following example of Raynaud (see [Ray70,
XIII 3.1]):

Example 3.1.5 Let E, p0, τp0 X be as in Example 2.2.3. The
projection E × P1 → P1 yields a morphism π : X → C, where C
denotes the nodal curve obtained by identifying 0 and ∞ in P1. We
now show that π is a principal E-bundle for the fppf topology. (See
Section 6.1 for details on this notion).

Let C̃ be the curve obtained as a union of copies of P1 indexed
by Z, such that the point ∞ in each copy is identified with the
point 0 in the next copy, as shown in the picture below.

C̃

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

P1 P1 P1

Z
Z

Z
Z

Z
Z

Z

Z
Z

Z
Z

Z
Z

Z

Z
Z

Z
Z

Z
Z

Z

Then C̃ is a scheme locally of finite type. Let τ : C̃ → C̃ be the
translation that shifts each copy of P1 to the next copy. Then

C̃/τ ∼= P1/(0 ∼ ∞) ∼= C

and the morphism C̃ → C is a étale Galois covering with group
Z (generated by τ). We can now use a similar picture to get a
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covering X̃ of X. Here X̃ consists of copies of E×P1 indexed by Z

with successive copies glued to each other as shown in the picture.

X̃

E × P1 E × P1 E × P1

More specifically, each copy of E × P1 is mapped to the next
one via (p, z) 7→ (p+ p0, z

−1). Consider the map τp0 × τ : X̃ → X̃.
We have:

X̃/τp0 × τ ∼= X

and the resulting morphism X̃ → X is again a Z-cover. The pro-
jection E × P1 → P1 induces a morphism π̃ : X̃ → C̃ which is a
trivial E-bundle. Moreover, the diagram

X̃
eπ //

��

C̃

��
X

π // C

is cartesian, the vertical arrows being the quotients by the Z-action
via translations. Thus, π is a principal E-bundle for the fppf topol-
ogy.

Next, we show that the morphism π is not projective. For other-
wise, there is an ample line bundle L on X such that L is π-ample.
Then η∗(L) is a line bundle on E×P1 (where η : E×P1 → X denotes
the normalisation), and hence η∗(L) ∼= M(n) where M ∈ Pic(E)
and n ∈ Z. Since the pull-back of L to all fibres of π is ample, it
follows that M is ample. Also, we have η∗(L) |E×0

∼= η∗(L) |E×∞

via τp0 , i.e., M ∼= τ ∗p0(M). But since M is ample, any p ∈ E such
that M ∼= τ ∗p (M) must have finite order, a contradiction.

Finally, we show that the principal E-bundle π does not satisfy
the assertion of Corollary 3.1.3. For otherwise, there exists an E-
equivariant morphism φ : X → E/En; then (φ, π) : X → E/En×C
is finite, and hence φ∗(M) is π-ample for any ample line bundle M
on E/En. But this contradicts the fact that π is not projective.
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By the same arguments, one can show that the restriction
πV : π−1(V ) → V is not projective whenever V is an open neigh-
borhood of the singular point of C. Moreover, πV does not satisfy
the assertion of Corollary 3.1.3 either.

3.2 “Dual” of Chevalley’s theorem and

the Rosenlicht decomposition

Recall the statement of Theorem 1.2.1:

Theorem 3.2.1 Let G be an algebraic group. Then there exists
a smallest normal subgroup scheme H of G such that the quotient
G/H is affine. Moreover, O(H) = k, and H is the largest subgroup
scheme of G satisfying that property; it is in fact a connected alge-
braic group, contained in the center of Go. Also, O(G/H) = O(G);
in particular, the algebra O(G) is finitely generated.

Proof: Let H1 and H2 be normal subgroup schemes of G such
that G/H1 and G/H2 are affine. Consider the morphism

p1 × p2 : G/H1 ∩H2 → G/H1 ×G/H2,

where pi denotes the quotient morphism G/H1 ∩ H2 → G/Hi, for
i = 1, 2. Then p1 × p2 is a homomorphism of algebraic groups
with trivial scheme-theoretic kernel, and hence is a closed immer-
sion. Thus, G/H1 ∩ H2 is affine. Now choose H1 minimal among
the normal subgroup schemes with affine quotient (such a minimal
subgroup scheme exists since G is of finite type). Then we must
have H1 ∩ H2 = H1, i.e., H1 ⊂ H2 is the smallest such subgroup.
Thus, G has a smallest normal subgroup scheme H such that G/H
is affine.

Applying Lemma 2.1.3, we get that G/Ho
red is affine; hence

H = Ho
red. Thus, by the minimality of H, it is connected and

reduced. In other words, H is a connected algebraic group; in par-
ticular, H ⊂ Go. Also, since Go/Z(Go) is affine by Lemma 2.1.1
and Corollary 2.1.7, we see that H is contained in Z(Go).



42 CHAPTER 3. APPLICATIONS AND DEVELOPMENTS

The group H acts on itself by right multiplication, hence it acts
also on O(H). Let K denote the scheme-theoretic kernel for this
action. Then, as K is invariant under any automorphism of H, it is
a normal subgroup scheme of G. Also, H/K has a faithful rational
representation on O(H); hence H/K is affine by Lemma 2.1.5. So
we conclude using Lemma 2.1.1 that G/K is affine. By the choice
of H, therefore, we get H = K. This implies that H acts trivially
on O(H), so that O(H)H = O(H). However, the only regular func-
tions on H which are invariant under the H-action are constants,
i.e., O(H)H = k. Thus, O(H) = k, i.e., H is anti-affine.

We now show that O(G/H) = O(G). For this, note that
O(G/H) = O(G)H whereH acts on O(G) via the action induced by
the right multiplication on G. The matrix coefficients for the above
action give regular functions onH, and hence are constant. Thus we
conclude that H acts trivially on O(G); hence O(G/H) = O(G)H

equals O(G), as required.
It remains to show that H is the largest anti-affine subgroup

scheme of G. But for any anti-affine subgroup scheme K ⊂ G, the
quotient group scheme K/K ∩H is affine (as a subgroup scheme of
G/H) and anti-affine (since O(K/K ∩H) ⊂ O(K)), hence a point.
So K ⊂ H, as required. �

Remark 3.2.2 The subgroup H in Theorem 1.2.1 gives a mor-
phism π : G → G/H, where the quotient G/H being affine is
isomorphic to Spec O(G/H). As also was seen in the above theo-
rem, Spec O(G/H) ∼= Spec O(G). So π is the canonical morphism
G → Spec O(G), called the affinization morphism (the universal
morphism from G to an affine scheme).

Next, we recall the statement of Theorem 1.2.4:

Theorem 3.2.3 Let G be a connected algebraic group, Gaff its
largest connected affine normal subgroup, and Gant its largest anti-
affine subgroup. Then G = GaffGant, and Gant is the smallest sub-
group scheme H of G such that G = GaffH, i.e., the restriction to H
of the quotient homomorphism α : G→ G/Gaff is surjective. More-
over, the scheme-theoretic intersection Gaff ∩Gant contains (Gant)aff

as a normal subgroup with finite quotient.
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Proof: By definition, both Gaff and Gant are normal subgroups
of G, and thus, so is their product. Hence, on the one hand, con-
sidering the group G/GaffGant as a quotient of G/Gant by a normal
subgroup, it is affine; on the other hand, considering it as a quotient
of G/Gaff, it is complete. So G/GaffGant is trivial, i.e., G = GaffGant.

Next, let H be a subgroup scheme of G such that G = GaffH,
and let K := Ho

red. Then

G = GaffK = GaffKaffKant = GaffKant.

By Theorem 1.2.1, Kant is central in G. Moreover, G/Kant
∼=

Gaff/Gaff ∩ Kant and the latter quotient is affine. It follows that
Gant ⊂ Kant, so that Gant = Kant ⊂ H.

Finally, consider the connected algebraic group Ḡ = G/(Gant)aff.
Then Ḡ = ḠaffḠant. Further, the (scheme-theoretic) intersection
Ḡaff ∩ Ḡant is both affine and contained in a complete variety, hence
finite. Equivalently, the quotient (Gaff ∩Gant)/(Gant)aff is finite. �

The Rosenlicht decomposition

G = GaffGant
∼= (Gaff ×Gant)/(Gaff ∩Gant)

may be combined with known structure results for linear algebraic
groups, to obtain insight into the structure of an arbitrary con-
nected algebraic group G. For example, the properties of the rad-
ical and unipotent radical of a linear algebraic group immediately
yield the following:

Corollary 3.2.4

(i) G has a largest connected solvable normal subgroup, namely,
R(Gaff)Gant. This is also the smallest normal subgroup scheme H
of G such that G/H is semisimple.

(ii) Ru(Gaff)Gant is the smallest normal subgroup scheme H of G
such that G/H is reductive.

As another application, we describe the maximal connected
solvable subgroups of G:
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Corollary 3.2.5 Any maximal connected solvable subgroup H of
G satisfies H = BGant, where B := Gaff ∩ H is a Borel subgroup
of Gaff. Moreover, H is its own set-theoretic normalizer in G, and
G/H ∼= Gaff/B. In particular, any two maximal connected solvable
subgroups are conjugate in G, and these subgroups are parametrized
by the flag variety of Gaff.

Proof: Since Gant is central in G and connected, HGant is again a
connected solvable subgroup of G. By maximality of H, we see that
H ⊃ Gant, and H/Gant is a Borel subgroup of the linear algebraic
group G/Gant

∼= Gaff/Gaff ∩ Gant. Also, Gaff ∩ Gant is central in Gaff,
and hence contained in any Borel subgroup of Gaff by Lemma 3.1.2.
Thus, H = BGant for some Borel subgroup B of Gaff. Then we
have Gaff ∩ H = B(Gaff ∩ Gant) = B. Therefore, the set-theoretic
normalizer NG(H) satisfies

NG(H) = NGaff
(H)Gant = NGaff

(Gaff ∩H)Gant = BGant = H,

since NGaff
(B) = B. Finally, G/H ∼= Gaff/Gaff ∩H = Gaff/B. �

Finally, for B as above, we show that G/B is the product of the
Albanese variety of G and the flag variety of Gaff:

Corollary 3.2.6 Let H be a subgroup scheme of G. Then the va-
riety G/H is complete if and only if H contains a Borel subgroup
of Gaff. Moreover,

G/B ∼= A×Gaff/B (3.2)

for any such Borel subgroup B, where A denotes the abelian variety
G/Gaff.

Proof: If G/H is complete, then it contains a fixed point of B
by Borel’s fixed point theorem, i.e., H contains a conjugate of B.
For the converse, it suffices to prove the isomorphism (3.2): indeed,
this isomorphism implies that G/B is complete, and hence so is its
image G/H under the natural morphism G/H → G/B. Now

Gaff/B = Gaff/Gaff ∩BGant
∼= G/BGant
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where the equality follows from Corollary 3.2.5, and the isomor-
phism, from the Rosenlicht decomposition. Thus,

G/B ∼= G×Gaff Gaff/B ∼= G×Gaff G/BGant
∼= G/Gaff ×G/BGant

∼= A×Gaff/B,

where the third isomorphism follows from the isomorphism

G×H X ∼= G/H ×X, (g, x)H 7→ (gH, gx),

for any subgroup scheme H of G and for any G-scheme X. �

This corollary is the starting point for the investigation of the
Chow ring of G; in particular, of its Picard group (see [Bri11, Sec-
tions 2.2, 2.3]). The product structure of G/B will be generalized
to all complete homogeneous varieties in the next chapter.
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Chapter 4

Structure and
automorphisms of complete
homogeneous varieties

In this chapter we shall prove the structure Theorem 1.3.1 for
complete homogeneous varieties and their automorphism group
schemes, along the lines of the proof in [Bri10a]. We begin by
decomposing any complete homogeneous variety as the product
of an abelian variety and a homogeneous variety under an affine
group (Theorem 4.1.1). Then we turn to automorphisms: we show,
quite generally, that the connected automorphism group scheme of
a product of complete varieties is the product of their connected au-
tomorphism group schemes (Corollary 4.2.7). We also prove that
the connected automorphism group scheme of an abelian variety
is just its group of translations (Proposition 4.3.2). Putting these
results together completes the proof of Theorem 1.3.1.

We conclude this chapter with some considerations on the au-
tomorphism group schemes of complete varieties that are homoge-
neous under an affine group. We show by an example that these
group schemes may be non-reduced for varieties of unseparated flags
(Proposition 4.3.4).

47
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4.1 Structure

The following result is the first step in the proof of Theorem 1.3.1:

Theorem 4.1.1 Let X be a complete variety, homogeneous under
a scheme-theoretic faithful action of a connected algebraic group G.
Then there exist canonical isomorphisms

G ∼= A×Gaff (4.1)

of algebraic groups and

X ∼= A× Y (4.2)

of G-varieties, where A is an abelian variety, Gaff a semisimple
group of adjoint type, and Y a complete homogeneous Gaff-variety;
moreover, G acts on X via the action of A on itself by translation,
and the given action of Gaff on Y .

Proof: We first show (4.1). Let B be a Borel subgroup of Gaff.
Since X is complete, B fixes some point x ∈ X. The subgroup
scheme Gaff ∩ Gant is central in G, and hence contained in B by
Lemma 3.1.2; thus, Gaff ∩ Gant fixes x. However, being a normal
subgroup scheme of G and X being G-homogeneous, Gaff ∩Gant also
fixes every point of X. The action of G being faithful, this can
happen only if the subgroup scheme is trivial (†). Thus, along with
the Rosenlicht decomposition (Theorem 1.2.4), we see that G ∼=
Gant×Gaff. Moreover, (Gant)aff is a subgroup of Gaff∩Gant and hence
trivial; thus Gant is an abelian variety, which we denote by A. This
establishes (4.1).

The radical R(Gaff) is contained in the Borel subgroup B so it
fixes x. By an argument as in (†) above, applied to R(Gaff), we con-
clude that R(Gaff) is trivial. Thus, Gaff is semi-simple. Next, con-
sider the scheme-theoretic center Z(Gaff). Since Z(Gaff) is contained
in B (by Lemma 3.1.2 again), it fixes x; by the above argument,
Z(Gaff) must be trivial, i.e., Gaff is of adjoint type.

We now show (4.2). Let H denote the isotropy subgroup scheme
Gx. By an argument as in (†) above applied to the scheme-theoretic
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intersection A ∩H = Ax, we conclude that A ∩H is trivial. Hence
the projection p2 : G → Gaff when restricted to H is (scheme-
theoretic) faithful. Now note that H contains B, and is affine by
Proposition 2.1.6. Thus, B ⊂ Ho

red ⊂ Gaff; in particular, Ho
red is a

parabolic subgroup of Gaff, denoted as P . Since P is its own set-
theoretic normalizer in Gaff, we have p2(H)red = P ; as p2 |Hred

is
faithful, it follows that Hred = P .

In characteristic 0, we even have H = P and hence

G/H ∼= G/P ∼= A×Gaff/P,

as required. When char(k) = p > 0, we may have H 6= P (see
Example 1.3.2) but we shall show that H ⊂ Gaff and hence G/H ∼=
A×Gaff/H.

Let P− ⊂ Gaff be a parabolic subgroup opposite to P , i.e., P−

is a parabolic subgroup such that P−∩P is a Levi subgroup of both
P− and P . Then the multiplication of G yields an open immersion

Ru(P
−) × P → Gaff.

In particular, Ru(P
−)P is an open neighbourhood of P in Gaff.

Hence A×Ru(P
−)P is an open neighbourhood of Hred in A×Gaff

∼=
G. This is also an open neighbourhood of H in G, isomorphic to
A × Ru(P

−) × P . Since Hred = P , this yields the decomposition
H = ΓP , where Γ := (A×Ru(P

−))∩H is a finite subgroup scheme
of G. Now choose a maximal torus T of P ∩ P−; then T acts on
A × Ru(P

−) by conjugation, and the categorical quotient is the
projection

p2 : Ru(P
−) × A→ A

with image the T -fixed point subscheme. Thus, for the closed T -
stable subscheme Γ ⊂ A × Ru(P

−), the quotient is the restriction
of p2 to Γ with image ΓT = A ∩ Γ. But the latter is a closed
subscheme of A ∩ H, which is just the origin of A (viewed as a
reduced subscheme). Hence Γ is contained in Ru(P

−), and H = ΓP
is contained in Gaff as required.

As the isotropy subgroup scheme of any point of X is contained
in Gaff, the uniqueness of the decomposition (4.2) follows from the
uniqueness of the decomposition (4.1). �
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4.2 Blanchard’s lemma for group schemes

The following proposition is a version of a result of Blanchard
about holomorphic transformation groups (see [Bla56, §I.1] and also
[Akh95, §2.4]) in the setting of actions of group schemes.

Proposition 4.2.1 Let f : X → Y be a proper morphism of
schemes such that f∗(OX) = OY . Let G be a connected group
scheme acting on X. Then there exists a unique G-action on Y
such that f is G-equivariant.

Proof: As schemes are assumed to be finite type over the alge-
braically closed field k, we shall consider them as ringed spaces;
specifically, the scheme X shall be considered as the set X(k)
equipped with the Zariski topology and with the structure sheaf
OX ([DG70, §I.3.6]).

Step 1: the group G(k) acts on Y (k) (viewed as an ab-
stract set) such that f is equivariant. We first show that
G(k) permutes the fibres of f . The conditions that f is proper and
f∗(OX) = OY imply that the set-theoretic fibre of f at any y ∈ Y (k)
is non-empty, complete, and connected (if f is projective, the latter
property follows from [Har77, Corollary III.11.3]; the general case
reduces to that one by Chow’s lemma, see [Har77, Exercise II.4.10]).
Let Fy denote that fibre considered as a reduced subscheme of X.
The map φ : Gred×Fy → Y given by (g, x) 7→ f(g.x) sends {eG}×Fy
to {y}. As Fy is complete and Gred is a variety, we apply the rigid-
ity lemma ([Mil86, Theorem 2.1]) to φ in order to conclude that
φ(g×Fy) is a single point. Thus, g.Fy is contained in the fibre over
a single point, for each g ∈ Gred(k); denote this point as g.y. Then
g−1.Fg.y ⊂ Fy and hence g.Fy = Fg.y. It is straightforward to check
that the map (g, y) 7→ g.y indeed gives an action of the abstract
group G(k) = Gred(k) on the set Y (k).

The above claim gives the commutativity of the following dia-
gram (as sets)

G(k) ×X(k) α //

id×f

��

X(k)

f
��

G(k) × Y (k)
β

// Y (k)
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where α, β are the action maps of G(k) on X(k) and Y (k) respec-
tively.

Step 2: The map β is continuous. It suffices to check
that β−1(Z) is closed for any closed subset Z of Y (k). By the
commutativity of the above diagram, we have

(id × f)−1β−1(Z) = α−1f−1(Z).

As α, f are morphisms of schemes, in particular continuous, the
subset (id × f)−1β−1(Z) of G(k)×X(k) is closed. The map id× f
being surjective and proper, we therefore get that β−1(Z) is closed.

We have shown, so far, that the map β is an action of the
topological group G(k) on the topological space Y (k).

Step 3: Construction of the morphism of sheaves β# :
OY → β∗(OG×Y ). Let V be an open subset of Y (k). We have to
define a map

β#(V ) : OY (V ) → OG×Y (β−1(V )).

By assumption the left hand side is (f∗OX)(V ) = OX(f−1(V ))
while the right hand side is (id × f)∗OG×X(β−1(V )), which
by the commutativity of the above diagram is the same as
OG×X(α−1f−1(V )). Hence, we define β#(V ) to be α#(f−1(V )).
It is obvious that β# is indeed a morphism of sheaves.

All the axioms to be satisfied by β for it to define an action of
the group scheme G on Y can also be verified similarly. �

Remark 4.2.2 In the above statement, the assumption that
f∗(OX) = OY cannot be omitted. For example, if E is an ellip-
tic curve and f : E → P1 the quotient by the involution (−1)E,
then the action of E on itself by translation does not descend to an
action on P1.

We now apply this result to automorphisms group schemes;
these schemes are defined as follows. For a scheme X we have
a contravariant functor

S 7→ AutS(X × S)
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denoted as Aut(X), from the category of schemes to the category
of groups; here AutS(X × S) denotes the group of automorphisms
of X × S viewed as a scheme over S. If X is proper (in particu-
lar, if X is a complete variety) then Aut(X) is represented by a
group scheme, Aut(X), locally of finite type over k; in particular,
the neutral component Auto(X) is of finite type (see [MO67, Theo-
rem 3.7]). The Lie algebra of Aut(X), or equivalently of Auto(X),
is identified with the Lie algebra of derivations of OX ; in other
words, of global vector fields on X. If X is smooth, then

Lie Aut(X) ∼= H0(X,TX)

(the Lie algebra of global sections of the tangent sheaf); see [DG70,
§II.4.2] for details.

Example 4.2.3 Let C be a smooth projective curve, and g its
genus. If g = 0, i.e., X ∼= P1, then Aut(C) ∼= PGL2. If g = 1,
i.e., C is an elliptic curve, then Aut(C) is the semi-direct product
of C (acting on itself by translations) and of Autgp(C) (the group
of automorphisms of X as an algebraic group), where Autgp(C) is
viewed as a constant group scheme; this result holds in fact for
all abelian varieties, see Proposition 4.3.2 below. Moreover, the
group Autgp(C) is finite by [Har77, Corollary IV.4.7]. Finally, if
g ≥ 2 then Aut(C) is finite and reduced, since H0(C, TC) = 0 by
the Riemann-Roch theorem.

Example 4.2.4 The automorphism group schemes of smooth pro-
jective surfaces yield examples of non-trivial anti-affine groups.
Specifically, let p : E → C be a vector bundle of rank 2 over an
elliptic curve, and π : S = P(E) → C the associated ruled surface.

Assume that E ∼= L ⊕ OC , where L is a line bundle of degree
0 and OC denotes the trivial line bundle. Then one can show that
Auto(S) is a commutative algebraic group, and sits in an exact
sequence

0 → Gm → Auto(S)
π∗→ C → 0.

Moreover, Auto(S) acts on S with 3 orbits: the two sections C1,
C2 of π associated to the sub-bundles L, OC of E, and the open
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subset S \ (C1∪C2), isomorphic to Auto(S). In particular, Auto(S)
is isomorphic to the principal Gm-bundle associated to L; it is anti-
affine if and only if L has infinite order in Pico(C) ∼= C.

Next, assume that E is indecomposable and sits in an exact
sequence 0 → OC → E → OC → 0 (such a bundle exists since
H1(C,OC) ∼= k). Then one can show that Auto(S) is again a com-
mutative algebraic group, and sits in an exact sequence

0 → Ga → Auto(S)
π∗→ C → 0.

Moreover, Auto(S) acts on S with 2 orbits: the section C1 asso-
ciated to the sub-bundle OC of E, and the open subset S \ C1

isomorphic to Auto(S). It follows that Auto(S) is the universal
vector extension of C; it is anti-affine if and only if char(k) = 0.

These results follow from [Mar71, Theorem 3], which describes
the automorphism group schemes of all ruled surfaces; refer to Ex-
ample 1.2.3 for the claim about the anti-affineness.

Remark 4.2.5 The group scheme Aut(X) is generally non-
reduced in positive characteristics. This already happens for cer-
tain smooth complete surfaces, see [MO67, Example 6]; we shall
see in Proposition 4.3.4 that this also happens for certain com-
plete homogeneous varieties. Also, for a non-proper scheme X, the
group functor Aut(X) is generally not representable, already for
the affine space An; then Aut(X) can be given the structure of an
ind-algebraic group, see [Kam79, Theorem 1.1].

The category of schemes is a fully faithful subcategory of the
category of functors from schemes to sets, such that group schemes
correspond, under this identification, to functors from schemes to
groups (see [DG70, §II.1.1] for more details); further, an isomor-
phism of schemes corresponds to an isomorphism of the associ-
ated functors. In particular, when X and Y are proper schemes,
Aut(X) ∼= Aut(Y ) if and only if Aut(X) ∼= Aut(Y ). We use this
approach to prove the following:

Corollary 4.2.6 Let f : X → Y be a proper morphism of schemes
such that f∗(OX) = OY . Then f induces a homomorphism of group
schemes

f∗ : Auto(X) → Auto(Y ).
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Proof: Let G := Auto(X). By the above proposition, we have a
G-action on Y and hence an automorphism of Y × G as a scheme
over G, namely, the morphism (y, g) 7→ (g · y, g). This yields in
turn a morphism of schemes f∗ : G → Aut(Y ), that sends eG to
the identity. Since G is connected, it follows that the image of f∗ is
contained in Auto(Y ). Also, since f∗ corresponds to the G-action
on Y , it is a homomorphism of group functors, and hence of group
schemes. �

Note that when X and Y are smooth, the morphism of Lie alge-
bras induced by f∗ is just the map H0(X,TX) → H0(Y, TY ) induced
by the differential df : TX → f ∗(TY ) and by the isomorphisms

H0(X, f∗TY ) = H0(Y, f∗(f
∗TY )) ∼= H0(Y, TY ⊗ f∗OX) ∼= H0(Y, TY ).

We may now describe the connected automorphism group
scheme of a product of complete varieties:

Corollary 4.2.7 For any complete varieties X and Y , we have a
canonical isomorphism

Auto(X × Y ) ∼= Auto(X) × Auto(Y ).

Proof: Denote by p1 : X × Y → X and p2 : X × Y → Y
the projections. Then (p1)∗(OX×Y ) = OX ⊗ O(Y ) = OX as Y is
complete; similarly, (p2)∗(OX×Y ) = OY . So, applying the above
corollary, we get a homomorphism of group schemes

(p1)∗ × (p2)∗ : Auto(X × Y ) → Auto(X) × Auto(Y ).

This has an inverse given by the natural homomorphism that sends
(φ, ψ) ∈ Auto(X) × Auto(Y ) to the automorphism of X × Y given
by (x, y) 7→ (φ(x), ψ(y)), thus proving the claim. �

Remark 4.2.8 The above corollary does not extend to (say)
proper schemes. Consider for example a smooth complete vari-
ety X, and let Y = Spec(k[t]/(t2)). Then Aut(Y ) = Gm, and
Auto(X×Y ) contains the vector group H0(X,TX) that fixes point-
wise X ∼= X × Spec(k[t]/(t)). Thus, H0(X,TX) intersects trivially
with the subgroup scheme Auto(X) × Auto(Y ) of Auto(X × Y ).
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4.3 Automorphisms of complete homo-

geneous varieties

We begin this section by describing the automorphism group
schemes of abelian varieties; the result is well-known and may be
found e.g. in [MO67, Example 1].

Let A be an abelian variety, and denote as Autgp(A) the au-
tomorphism group of the algebraic group A; then Autgp(A) is a
subgroup of GLN(Z) for some N (as follows from [Mil86, Theorem
12.5]). Also, recall that each automorphism of the variety A is of
the form τa ◦f for a unique point a ∈ A and a unique f ∈ Autgp(A)
(see [Mil86, Corollary 2.2]). Since f−1 ◦ τa ◦ f = τf(a) for all a ∈ A
and f ∈ Autgp(A), we see that

Aut(A) ∼= A⋊ Autgp(A)

as abstract groups. We shall obtain a scheme-theoretic version of
that isomorphism. For this, we need a generalization of the clas-
sical rigidity lemma, due to C. and F. Sancho de Salas (see [SS09,
Theorem 1.7]) and which will also be used in the next chapter.

Proposition 4.3.1 Let X, Y and Z be schemes. Assume that X is
anti-affine, Y is connected, and Z is separated. Let f : X×Y → Z
be a morphism such that there exist y0 ∈ Y and z0 ∈ Z satisfying
f(X × y0) = z0. Then there exists a unique morphism g : Y → Z
such that f = g ◦ p2, where p2 : X ×Y → Y denotes the projection.

Proof: Choose x0 ∈ X and let g := f(x0,−) : Y → Z. We claim
that f = g ◦ p2.

Step 1: the claim holds if Z is affine. Then f corresponds
to a homomorphism of algebras

f# : O(Z) → O(X × Y ).

Moreover, O(X × Y ) ∼= O(X) ⊗ O(Y ) ∼= O(Y ) via p#
2 and hence

f = h◦p2 for a unique morphism h : Y → Z. Then h = f(x0,−) =
g.
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Step 2: it suffices to show that f is constant on all set-
theoretic fibres of p2. Let V be an open affine subset of Z,
and U := g−1(V ). Then U is open in Y , and f−1(V ) = X × U as
sets, assuming that f is constant on set-theoretic fibres of p2. It
follows that f restricts to a morphism fU : X×U → V . By Step 1,
we have fU = gU ◦ p2 with an obvious notation. Since Y is covered
by open subsets of the form g−1(V ) where V is as above, this yields
the statement.

Step 3: it suffices to show the claim when Y is irre-
ducible. Assume that the claim holds for all irreducible com-
ponents of Y , and let Y0 be an irreducible component containing
y0. If Y = Y0, then there is nothing to prove; otherwise, we may
choose another irreducible component Y1 that meets Y0 (since Y
is connected). Then f is constant on all set-theoretic fibres of p2

over Y0 ∩ Y1, and hence over Y1 by the assumption. Arguing by
induction, it follows that f is constant on all set-theoretic fibres of
p2. We conclude by Step 2.

Step 4: completion of the proof. We may assume that
Y is irreducible. Let

W := {(x, y) ∈ X × Y | f(x, y) = g(y)}.

Then W is the pre-image of the diagonal in Z × Z under the mor-
phism Y → Z × Z, (x, y) 7→ (f(x, y), g(y)). Hence W is a closed
subscheme of X × Y . Also, W contains X × y0 by assumption.
Consider the local ring OY,y0 and its maximal ideal my0 . For any
integer n ≥ 1, denote by

Yn := Spec(OY,y0/m
n
y0

)

the n-th infinitesimal neighborhood of y0 in Y (in particular, Y1 is
the reduced point y0); similarly define Zn, n ≥ 1. Then f restricts
to a morphism

fn : X × Yn → Zn.

But Zn is affine, and hence fn = gn ◦ p2 for some morphism gn :
Yn → Zn. Then gn(y) = fn(x0, y) = f(x0, y) = g(y), so that
f = g ◦ p2 on X × Yn; in other words, W contains X × Yn for all n.
Now the union of all the Yn is dense in a neighborhood of y0 in Y ,
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since
⋂
n≥1 m

n
y = 0. Thus, W contains a neighborhood of X × y0.

Since W is closed and Y is irreducible, this completes the proof of
the claim, and hence of the proposition. �

Proposition 4.3.2 Let A be an abelian variety. Then we have an
isomorphism of group schemes

Aut(A) = A⋊ Autgp(A)

where A is viewed as the group scheme of translations, and
Autgp(A) as a constant group scheme. In particular, Auto(A) = A.

Proof: Let S be a scheme, f : A×S → A×S an S-automorphism,
and ϕ := p1 ◦f where p1 : A×S → A denotes the projection. Then
we have f(a, s) = (ϕ(a, s), s). Choose a point s0 ∈ S and denote
by T the connected component of s0 in S. Then the morphism

ψ : A× T → A, (a, s) 7→ ϕ(a, s) − ϕ(a, s0)

satisfies the assumptions of the above rigidity result. Thus, there
exists a morphism g : T → A such that ϕ(a, s) = g(s) + ϕ(a, s0).
Moreover, the morphism a 7→ ϕ(a, s0) is an automorphism of the
variety A, and hence a 7→ ϕ(a, s0)−ϕ(0, s0) yields an automorphism
of the group A. Replacing g with g + ϕ(0, s0), we thus have

ϕ(a, s) = g(s) + h(a)

where g ∈ A(T ) and h ∈ Autgp(A). Then g = ϕ(0, s) and hence g,
h are uniquely determined by ϕ. �

We may now complete the proof of Theorem 1.3.1.

Proposition 4.3.3 With notation and assumptions as in Theo-
rem 4.1.1, we have a canonical isomorphism of group schemes

Auto(X) ∼= A× Auto(Y ).
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Proof: This follows by combining Theorem 4.1.1, Corollary 4.2.7
and Proposition 4.3.2. �

This reduces the description of the connected automorphism
group scheme of a complete homogeneous variety X to the case
that the acting group G is affine. Then G is semisimple of adjoint
type by Theorem 4.1.1; moreover, by Borel’s fixed point theorem,
X ∼= G/H where Hred is a parabolic subgroup of G.

If H is reduced (for example, in characteristic 0), then Aut(X)
is an affine algebraic group; moreover, Auto(X) is semisimple of
adjoint type, and the natural homomorphism G → Auto(X) is an
isomorphism when X is “non-exceptional”, the exceptional cases
being explicitly described (see [Dem77] for these results). An ex-
ample of an exceptional variety is any odd-dimensional projective
space P2n−1 equipped with the action of the projective symplectic
group PSp2n, where n ≥ 2.

For an arbitrary isotropy subgroup scheme H, the connected
algebraic group Auto(X)red is still semisimple of adjoint type, by
Theorem 4.1.1 again. But Auto(X) may be non-reduced, as shown
by the following example.

Assume that char(k) = p ≥ 3. Let G = PSp2n and let P1 be the
stabilizer of a line V1 in the standard representation k2n of G; then
P1 is a maximal parabolic subgroup of G, and G/P1

∼= P2n−1. Let
P2 denote the stabilizer of a 2-dimensional subspace V2 of k2n, such
that V2 contains V1 and is isotropic relative to the symplectic form
defining PSp2n. Then P2 is also a maximal parabolic subgroup of
G, and G/P2 parametrizes the isotropic planes in k2n. Denote by
G(1) the kernel of the Frobenius homomorphism F : G → G, and
consider X := G/H where H := P1 ∩G(1)P2. Then Hred = P1 ∩ P2

contains a Borel subgroup B of G, and hence X is complete.
We may view X as the variety of pairs (E1, E2) of subspaces of

k2n such that E1 is a line, E2 is an isotropic plane, and E2 contains
F (E1); here F denotes the Frobenius endomorphism of P2n−1 that
raises homogeneous coordinates to their p-th powers. Then G acts
on X via g · (E1, E2) = (g(E1), F (g)(E2)).
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Proposition 4.3.4 With the above notation, the natural homo-
morphism G → Auto(X) yields an isomorphism G ∼= Auto(X)red,
but the induced homomorphism of Lie algebras Lie(G) → H0(X,TX)
is not surjective. In particular, Auto(X) is not reduced.

Proof: Denote by

p1 : X → G/P1, p2 : X → G/G(1)P2

the natural morphisms. Then p1, p2 are equivariant, and the prod-
uct p1 × p2 is a closed immersion. Moreover, p1 is a locally triv-
ial fibration for the Zariski topology, with fibre P1/(P1 ∩ G(1)P2).
This fibre is isomorphic to P2n−3 where P1 acts through the natu-
ral action of its quotient PSp2n−2 twisted by the Frobenius F . In
particular, (p1)∗(OX) = OG/P1 ; by Proposition 4.2.1, this yields a
homomorphism of group schemes

(p1)∗ : Auto(X) → Auto(G/P1) = PGL2n. (4.3)

The induced homomorphism of Lie algebras is the differential

dp1 : H0(X,TX) → H0(G/P1, TG/P1) = Lie(PGL2n) (4.4)

arising from the exact sequence of tangent sheaves

0 → Tp1 → TX → p∗1(TG/P1) → 0 (4.5)

where Tp1 denotes the relative tangent bundle.
We claim that the exact sequence (4.5) is split. To see this,

consider the subsheaf F of TX generated by the Lie algebra Lie(G),
acting on X by global vector fields. Then the restriction F →
p∗1(TG/P1) is surjective, since TG/P1 is generated by Lie(G). More-
over, p2 : X → G/G(1)P2 being G(1)-invariant, its differential is
Lie(G)-invariant; thus, F is contained in the relative tangent sheaf
Tp2 . But Tp2 ∩ Tp1 = 0 since p1 × p2 is an immersion; thus, the
restriction F → p∗1(TG/P1) is injective as well. So F yields the
required splitting.

By the claim, the map dp1 is surjective. We now claim
that it is injective, i.e., H0(X,Tp1) = 0. Indeed, H0(X,Tp1) =
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H0(G/P1, (p1)∗(Tp1)) and (p1)∗(Tp1) is the homogeneous vector bun-
dle on G/P1 associated to the P1-module H0(P1/P1 ∩ G(1)P2, Tp1).
This P1-module is isomorphic to Lie(PGL2n−2) on which P1 acts
via conjugation by its quotient PSp2n−2, twisted by F . Moreover,
we have isomorphisms of PGL2n-modules

Lie(PGL2n) ∼= M2n−2/k id ∼= ((k2n−2)∗ ⊗ k2n−2)/k

and (k2n−2)∗ ∼= k2n−2 as PSp2n−2-modules, via the symplectic form.
It follows that

Lie(PGL2n) ∼= (k2n−2 ⊗ k2n−2)/k ∼= S2(k2n−2) ⊕ (Λ2(k2n−2)/k),

where S2 (resp. Λ2) denotes the symmetric (resp. alternating)
square, so that the PSp2n−2-module Λ2(k2n−2) contains the trivial
module k. This decomposes the P1-module H0(P1/P1 ∩G(1)P2, Tp1)
into the direct sum of two simple modules, H0(P1/B,Lχ) and
H0(P1/B,Lχ′), where χ, χ′ are characters of B, dominant for P1,
and Lχ, Lχ′ denote the associated homogeneous line bundles. So

H0(X,Tp1) = H0(G/B,Lχ) ⊕ H0(G/B,Lχ′).

But one checks that neither χ nor χ′ are dominant for G, which
yields the second claim.

Combining both claims, we see that dp1 is an isomorphism,
and hence the scheme-theoretic kernel of (p1)∗ is trivial; it follows
that PSp2n ⊂ Auto(X)red ⊂ PGL2n. Since PSp2n is a maximal
subgroup of PGL2n, the proof will be completed if we show that
Auto(X)red 6= PGL2n. But otherwise, PGL2n acts on X, compat-
ibly with its action on P2n−1 in view of Theorem 4.2.1. Let P
denote the maximal parabolic subgroup of PGL2n that stabilizes
V1, so that P2n−1 ∼= PGL2n/P . Then X ∼= PGL2n×

P Y , where Y is
a P -variety (the fibre of p1 at V1). Then Y must be homogeneous
under the action of P , and hence under an action of PGL2n−1 (the
largest semisimple quotient of adjoint type of P ). But Y ∼= P2n−3

which yields a contradiction, since PGL2n−1 contains no parabolic
subgroup of codimension 2n− 3. �



Chapter 5

Anti-affine groups

Recall that a scheme X is said to be anti-affine if O(X) = k. In this
chapter, we obtain characterizations of anti-affine group schemes,
and we describe their structure and classification. The results that
we present were obtained in [Bri09] and in [SS09], via two different
approaches that are both valid over any base field. Here we mostly
follow the former approach, with some simplifications.

5.1 Characterizations

Lemma 5.1.1 Let G be an anti-affine group scheme. Then G is
a connected commutative algebraic group. Moreover, G/H is anti-
affine for any subgroup scheme H of G.

Proof: Clearly, G is connected. Also, since the scheme G/Gred

is finite and O(G/Gred) ⊂ O(G) = k, we see that G = Gred. The
commutativity of G follows from Theorem 1.2.1. For the final as-
sertion, just note that O(G/H) = O(G)H ⊂ O(G). �

Proposition 5.1.2 The following conditions are equivalent for an
algebraic group G:

(i) G is anti-affine.

61
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(ii) Any rational finite-dimensional representation ρ : G → GLn
is trivial.

(iii) Any non-trivial action of G on a variety has no fixed points.

Proof: (i)⇒(ii) The matrix coefficients of ρ are global regular
functions on G. As G is anti-affine these functions are just scalars,
which implies that ρ is trivial.

(ii)⇒(i) By Theorem 1.2.1, there exists a largest anti-affine sub-
group Gant of G, and G/Gant is affine. The quotient morphism
G→ G/Gant then gives a representation of G. By assumption, this
representation has to be trivial, so by surjectivity of the quotient
morphism we get that G/Gant is trivial as required.

(i)⇒(iii) Let G act on a variety X and suppose this action α has
a fixed point. Then the quotient of G by the kernel of α is affine
by Proposition 2.1.6. But this quotient is also anti-affine, since G
is so; hence α must be trivial.

(iii)⇒(ii) This is easy to see, since a rational representation
ρ : G→ GLn yields a G-action on the affine space An that fixes the
origin. Hence this action has to be trivial. �

Since the rigidity lemma for complete varieties extends to anti-
affine schemes (Proposition 4.3.1), the classical properties of abelian
varieties derived from that lemma also hold for anti-affine groups.
Specifically, we have the following:

Lemma 5.1.3 Let G be an anti-affine group, H a connected alge-
braic group and f : G → H a morphism (of varieties) such that
f(eG) = eH . Then f is a group homomorphism and its image is
contained in the center of H. Moreover, f is uniquely determined
by the induced homomorphism of abelian varieties f̄ : G/Gaff →
H/Haff.

Proof: The morphism

ϕ : G×G→ H, (x, y) 7→ f(xy)f(x)−1f(y)−1

sends G× eG to eH . By Proposition 4.3.1, it follows that ϕ(x, y) =
ψ(y) for a unique morphism ψ : G → H. In particular, ψ(y) =
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ϕ(eG, y) = eH . Thus, ϕ(x, y) = eH , i.e., f is a group homomor-
phism. Its image is an anti-affine subgroup of H, and hence is cen-
tral by Theorem 1.2.1. Finally, if f ′ : G→ H is another morphism
such that f ′(eG) = eH and f̄ = f̄ ′, then the morphism G → H,
g 7→ f(g)f ′(g)−1 has its image contained in Haff. Since G is anti-
affine, this morphism must be constant; hence f = f ′ as required.
�

We shall see that these rigidity properties characterize anti-
affine groups among connected algebraic groups. For this, we need
some preliminaries on functors of morphisms; these are defined as
follows (see [DG70, §I.2.7]).

Given two schemes X, Y , we assign to any scheme S the set

Hom(X,Y )(S) := HomS(X × S, Y × S) ∼= Hom(X × S, Y ).

This yields a contravariant functor from schemes to sets, that
we denote by Hom(X,Y ); note that Aut(X) is a subfunctor of
Hom(X,X). If Y is a group scheme, then each Hom(X ×S, Y ) has
a group structure with operations being pointwise multiplication,
resp. inverse; the neutral element is the constant morphism to eY .
Moreover, Hom(X × S, Y ) contains Hom(S, Y ) = Y (S) as a sub-
group. One easily checks that Hom(X,Y ) is a group functor which
contains Y as the subfunctor of “constant” morphisms; further, the
tangent space to Hom(X,Y ) at the neutral element is isomorphic
to O(X) ⊗ Lie(Y ).

We may now state:

Proposition 5.1.4 Let G and H be non-trivial connected alge-
braic groups. Then G is anti-affine if and only if the group functor
Hom(G,H) is representable by a scheme, locally of finite type. Un-
der this assumption, we have Hom(G,H) = H × Homgp(G,H),
where Homgp(G,H) is viewed as a constant group scheme.

Proof: Assume thatG is anti-affine. Let S be a connected scheme,
and f : G× S → H a morphism. Choose a point s0 ∈ S. Then the
morphism

G× S → H, (g, s) 7→ f(g, s)f(g, s0)
−1
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sends G×s0 to eH . By Proposition 4.3.1, it follows that there exists
a unique morphism ϕ : S → H such that f(g, s) = ϕ(s)f(g, s0).
Further, the morphism

ψ : G→ H, g 7→ f(eG, s0)
−1f(g, s0)

satisfies the assumptions of Lemma 5.1.3, and hence is a
group homomorphism with central image. Since f(g, s) =
ϕ(s)f(eG, s0)ψ(g), we see that Hom(G,H) = HHomgp(G,H).
Moreover, this product is direct since the scheme-theoretic inter-
section H ∩ Homgp(G,H) is trivial.

Conversely, assume that the functor Hom(G,H) is representable
by a scheme locally of finite type. Then its tangent space at the
neutral element must be a finite dimensional k-vector space, and
hence so is O(G). Since G is connected, we get O(G) = k as
required. �

5.2 Structure

Let G be a connected commutative algebraic group. Recall from
Chapter 1 that we get two exact sequences arising from Chevalley’s
theorem along with the structure of commutative linear algebraic
groups:

0 → U → Gu := G/T → A→ 0, (5.1)

0 → T → Gs := G/U → A→ 0, (5.2)

where T is the torus and U is the connected commutative unipotent
group such that Gaff = T × U .

Lemma 5.2.1 With notation as above we have:

(i) G ∼= Gs ×A Gu.

(ii) G is anti-affine if and only if Gs and Gu are so.
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Proof: (i) The homomorphisms G → Gs and G → Gu sit in a
commutative square of group homomorphisms

G //

��

Gs

��
Gu

// A

where the vertical arrows are principal T -bundles. Hence this
square is cartesian.

(ii) If G is anti-affine, then so are its quotients Gs and Gu.
To prove the converse, we show condition (ii) of Proposition 5.1.2,
i.e., given a rational representation ρ : G → GLn, we show that
ρ is trivial. Being a closed subgroup of GLn, the image ρ(G) is
affine; since G is affine it follows that the quotient ρ(G)/ρ(U) is
also affine. By the definition of Gs, we get that the surjective map
ρs : G→ ρ(G)/ρ(U) induced by ρ, factors throughGs. However, Gs

being anti-affine, its image under ρs has to be trivial, implying that
ρ(G) = ρ(U). Similarly, one can deduce from the anti-affineness of
Gu that ρ(G) = ρ(T ). Thus, ρ(G) being simultaneously unipotent
and diagonalizable it has to be trivial, proving our claim. �

The point of the above lemma is that to study anti-affine groups
it suffices to separately study those that are of the form Gs or Gu,
i.e., extensions of an abelian variety by a torus or by a connected
commutative unipotent group.

5.3 Semi-abelian varieties

In this section, we assume that G is a connected algebraic group
such that Gaff is a torus, denoted as T (then G is commutative
by Proposition 3.1.1). In other words, we have an extension of
commutative algebraic groups

0 → T → G
α
→ A→ 0. (5.3)

Our aims in this section are to classify such an extension by a
homomorphism of abstract groups c : T̂ → Â(k), where T̂ denotes
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the character group of T and Â denotes the dual abelian variety,
and to show that G is anti-affine if and only if c is injective. In
order to define the map c we shall need a few observations.

Let R := α∗(OG); this is a sheaf of algebras over A equipped
with a T -action. This we may see as follows. Since α : G → A is
a principal T -bundle, it is locally trivial for the Zariski topology.
Let {Vi} be an open covering of A such that α−1(Vi) ∼= T × Vi as a
T -bundle over Vi. Then

H0(Vi,R) = H0(Vi, α∗(OG)) = H0(α−1(Vi),OG) ∼= O(T × Vi)
∼= O(T ) ⊗O(Vi)

(5.4)

and the action of T on O(T ) via multiplication yields an action on
H0(Vi,R); these actions can be glued to give the desired action on
R.

Recall that
O(T ) =

⊕

λ∈T̂

kλ (5.5)

is the decomposition into T -weight spaces. This yields the decom-
position of R into T -weight spaces,

R =
⊕

λ∈T̂

Rλ. (5.6)

We then note that

(i) Each Rλ is an invertible sheaf of OA-modules, hence defines
a point of Pic(A).

(ii) The decomposition (5.6) is a grading of the sheaf of OA-
algebras R, i.e., RλRµ ⊂ Rλ+µ for all λ, µ ∈ T̂ ,

(iii) Each Rλ is invariant under translations by A, i.e., it defines
a point of Pico(A) by [Mil86, Proposition 10.1].

Indeed, (i) and (ii) follow from the isomorphisms (5.4) and the
decomposition (5.5). For (iii), let g ∈ G. Then we have a canonical
isomorphism (see [Har77, §III.9.3])

τ ∗α(g)α∗(OG) ∼= α∗τ
∗
g (OG),
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since τg is flat and we have a cartesian square

G τg
//

α

��

G

α

��
A

τα(g) // A

Thus, τ ∗α(g)(R) ∼= R and this isomorphism commutes with the T -
action. Taking λ-weight spaces we get the translation invariance of
the Rλ’s.

The above observations put together gives us a homomorphism
c : T̂ → Â(k) which sends λ ∈ T̂ to the class of Rλ. We then have:

Proposition 5.3.1 The map c as defined above classifies the ex-
tension (5.3).

Proof: In the case when T = Gm the statement follows from the
isomorphism (see [Ser88, VII.16 Theorem 6])

Ext1(A,Gm)
∼= // Â(k)

that assigns to each extension (5.3) the class of the line bundle as-
sociated with the principal Gm-bundle α. Indeed, via this isomor-
phism (called the Barsotti-Weil formula), the image of 1 ∈ Z ∼= T̂ ,
under the map c, determines the extension.

In the general case, we have a canonical isomorphism T ∼=
Homgp(T̂ ,Gm) which yields the desired isomorphism

Ext1(A, T ) ∼= Homgp(T̂ , Â(k)).

�

Proposition 5.3.2 With notations as above, G is anti-affine if
and only if the map c is injective.

Proof: We have

O(G) = H0(A,α∗(OG)) = H0(A,R) =
⊕

λ∈T̂

H0(A,Rλ). (5.7)
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We claim that

Rλ
∼= OA ⇔ H0(A,Rλ) 6= 0.

Indeed, the implication ⇒ is obvious. On the other hand, if Rλ is
not isomorphic to OA but H0(A,Rλ) 6= 0, then Rλ

∼= OA(D) for a
nonzero effective divisor D on A. We may then find an irreducible
curve C in A such that C meets the support of D, but C is not
contained in that support. Then D · C > 0, which contradicts the
fact that Rλ is algebraically trivial and hence has degree 0 on each
curve. This completes the proof of the claim.

Now by (5.7), G is anti-affine if and only H0(A,Rλ) = 0 for all
λ 6= 0. In view of the claim, this is equivalent to c(λ) 6= 0 for all
λ 6= 0. �

5.4 Extensions of abelian varieties by

vector groups

In this section, G denotes a connected commutative algebraic group
with Gaff a (connected) unipotent group denoted as U ; in other
words, we have an extension of connected commutative algebraic
groups

0 → U → G
α
→ A→ 0. (5.8)

If char(k) > 0 then the structure of U is rather complicated (see
[Ser88, §VII.2]). However, in the light of the following proposition
this does not pose a problem in the study of anti-affine groups.

Proposition 5.4.1 Let char(k) be p > 0. Then G is anti-affine if
and only if U = 0.

Proof: Since U is unipotent, we have pnU = 0 for n ≫ 0. So the
push-out of the extension (5.8) by the multiplication map pnU : U →
U has to be trivial, i.e., we get the following commuting diagram
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of extensions

0 // U //

pn

��

G //

��

A //

id
��

0

0 // U // U × A // A // 0.

Thus, we have shown that pnExt1(A,U) = 0. By bilinearity of
Ext1(A,U), it follows also that the pull-back extension via pnA is
trivial, giving the following commuting diagram of extensions

0 // U //

id
��

U × A //

��

A //

pn

��

0

0 // U // G // A // 0.

The morphism U × A → G is finite and surjective, since pnA is
so. Thus, O(U × A) is a finite O(G)-module. But O(U × A) ∼=
O(U) ⊗ O(A) ∼= O(U). Hence if G is anti-affine, then O(U) is a
finite dimensional k-vector space, and hence U = 0. The other way
implication is obvious. �

If char(k) = 0, then U is a vector group, i.e., a finite dimensional
k-vector space regarded as an additive group. Moreover, in this
case there exists a universal extension by a vector group, i.e., an
extension

0 → H1(A,OA)∗ → E(A) → A→ 0 (5.9)

such that every extension (5.8) is the push-out of (5.9) by a unique
classifying map

γ : H1(A,OA)∗ → U.

In other words, we have a commuting diagram of extensions

0 // H1(A,OA)∗ //

γ

��

E(A) //

δ

��

A //

id

��

0

0 // U // G // A // 0,

(5.10)
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where γ is a linear map, and δ a group homomorphism. This results
from the isomorphisms

Ext1(A,U) ∼= H1(A,OA ⊗ U) ∼= H1(A,OA) ⊗ U
∼= Hom(H1(A,OA)∗, U),

where the first isomorphism follows from [Ser88, VII.17 Theorem 7].
We refer to [MM74, Chap. 1] for details and further developments
on universal extensions of abelian varieties by vector groups.

Proposition 5.4.2 Let char(k) = 0. Then G is anti-affine if and
only if the classifying map γ corresponding to the extension (5.8)
is surjective.

Proof: The diagram (5.10) yields an isomorphism

coker(γ) ∼= coker(δ)

in view of the five-lemma. In particular, coker(δ) is affine. If G
is anti-affine, then the morphism G → coker(δ) must be constant,
i.e., δ is surjective; hence so is γ.

To prove the other way implication, it suffices to check that
E(A) (as described above) is anti-affine: indeed, δ : E(A) → G is
surjective since γ is so. By the Rosenlicht decomposition, we have

E(A) = H1(A,OA)∗E(A)ant,

i.e., the map γ0 : H1(A,OA)∗ → E(A)/E(A)ant is surjective. We
may view γ0 as the classifying map for some extension G of A by
the vector group E(A)/E(A)ant. However, this extension has to be
trivial since the quotient map E(A) → E(A)/E(A)ant fits into a
commuting diagram of extensions

0 // H1(A,OA)∗ //

γ0

��

E(A) //

��xxxxp p p p p p
A //

id

��

0

0 // E(A)/E(A)ant
// G // A // 0.

This in turn implies that the extension G is trivial; equivalently,
the classifying map, γ0, is zero. But γ0 is also surjective. Thus,
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E(A) = E(A)ant as required. �

To emphasize the analogy with semi-abelian varieties, we may
also classify the extensions of A by a vector group U in terms of
the transpose of the classifying map,

γt : U∗ → H1(A,OA).

Then the extension is anti-affine if and only if the linear map γt is
injective. Note that H1(A,OA) is canonically isomorphic to the Lie
algebra of Â (see [BLR90, Theorem 8.4.1]).

5.5 Classification

Let A be an abelian variety. A connected algebraic group G

equipped with an isomorphism G/Gaff

∼=
→ A will be called a group

over A.

From the discussions in the previous two sections, we have es-
tablished the following.

Theorem 5.5.1 (i) When char(k) > 0, the anti-affine groups G
over A are classified by the subgroups Λ of Â(k) which are free
of finite rank.

(ii) When char(k) = 0, such groups are classified by the pairs
(Λ, V ) where Λ is as above and V is a linear subspace of
H1(A,OA). �

Corollary 5.5.2 Assume that k is the algebraic closure of a finite
field. Then every anti-affine group is an abelian variety. Further,
every connected algebraic group G is isomorphic to (H × A)/Γ,
where H is a connected affine algebraic group, A an abelian variety,
and Γ a finite group scheme equipped with faithful homomorphisms
Γ →֒ Z(H) and Γ →֒ A; then H, A and Γ are uniquely determined
by G.
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Proof: Since k is the union of its finite subfields, the group Â(k) is
torsion. Together with the above theorem, this proves the first as-
sertion. The second assertion follows from the Rosenlicht decompo-
sition (Theorem 1.2.4): here H = Gaff, A = Gant and Γ = Gaff∩Gant.
�

In the next two chapters, we shall need to slightly generalize the
setting of anti-affine groups over an abelian variety A; namely, we
shall encounter exact sequences of algebraic groups

0 → H → G→ A→ 0, (5.11)

where G is an anti-affine group, and H an affine subgroup scheme.
Such an exact sequence will be called an anti-affine extension of A.

We now see how to reduce the classification of anti-affine exten-
sions to that of anti-affine groups over abelian varieties B equipped
with an isogeny B → A. Given an exact sequence (5.11), one easily
checks that Gaff = Ho

red; in particular, the quotient N := H/Gaff

is finite. Thus, the abelian variety A(G) := G/Gaff (the Albanese
variety of G) is equipped with an isogeny A(G) ։ A with kernel
N , and G is of course an anti-affine group over A(G). By dual-
ity for abelian varieties (see [Mil86, Theorem 11.1]), the isogenies
B → A with (scheme-theoretic) kernel N , where B is an abelian
variety, are classified by the homomorphisms N̂ → Â with a trivial
kernel, where N̂ denotes the Cartier dual of the finite commutative
group scheme N . It follows that the anti-affine extensions of A are
classified by the pairs consisting of a finite subgroup scheme Γ ⊂ Â,
and an anti-affine group over the abelian variety dual to Â/Γ.

To classify anti-affine extensions of A, one may also adapt the
arguments of Sections 5.3 and 5.4. We now state the result obtained
in this way, referring to [Bri12, Section 3.3] for details:

Theorem 5.5.3 (i) When char(k) > 0, the anti-affine exten-
sions of A are classified by the pairs (Λ,Γ), where Λ is a
finitely generated subgroup of Â(k), and Γ ⊂ Â is a subgroup
scheme supported at the origin.
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(ii) When char(k) = 0, such extensions are classified by the triples
(Λ,Γ, V ), where Λ, Γ are as above and V is a linear subspace
of H1(A,OA). �

The commutative affine group scheme H can be recovered from
the data in the above theorem: write H = D×U where D denotes
the diagonalizable part of H, and U the unipotent part. In case (i),
U must be finite, and Γ is its Cartier dual; in case (ii), U is a vector
group, and V is the dual of the vector space U . In both cases, Λ is
the character group of the diagonalizable group scheme D.

Finally, we present a geometric application of the classification
of anti-affine groups, to be used in the next chapter.

Proposition 5.5.4 Let X be a variety. Then X has a largest anti-
affine group of automorphisms, that we denote as Autant(X). More-
over, Autant(X) centralizes every connected group scheme of auto-
morphisms of X.

Proof: Let G be an anti-affine subgroup of Aut(X), and H be a
connected subgroup scheme of Aut(X). Consider the morphism

ϕ : G×H ×X, (g, h, x) 7→ ghg−1h−1x.

Then ϕ(G × eH × x) = x for any x ∈ X. By Proposition 4.3.1, it
follows that ϕ(g, h, x) = ψ(h, x) for some morphism ψ : H ×X →
X. Thus, ψ(h, x) = ϕ(eg, h, x) = x, and hence G centralizes H.

Now, suppose H is an anti-affine group of automorphisms of
X. Then we just saw that the direct product G × H acts on X;
moreover, the product GH ⊂ Aut(X) (the quotient of G × H by
the scheme-theoretic kernel of the action) is an anti-affine group of
automorphisms; in particular, GH is connected. Thus, to show the
existence of Aut(X)ant, it suffices to bound the dimension of any
such group G. Let Gaff = T × U and G/Gaff = A as above. Then
T acts on the variety X with a trivial scheme-theoretic kernel, and
hence by Lemma 5.5.5 the isotropy group Tx of a general point
x ∈ X is trivial as well. Thus, dim(T ) = dim(T · x) ≤ dim(X).
Also, Gx is affine by Corollary 2.1.9, and hence (Gx)

o
red is contained
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in Gaff. Thus,

dim(A) = dim(G) − dim(Gaff) ≤ dim(G) − dim(Gx)

= dim(G · x) ≤ dim(X).

Finally, dim(U) ≤ dim(A) by Proposition 5.4.2. Thus, dim(G) =
dim(T ) + dim(U) + dim(A) ≤ 3 dim(X). �

Lemma 5.5.5 Let T be a torus of automorphisms of a variety X.
Then there exists a dense open subset U of X such that the isotropy
subgroup scheme Tx is trivial for any x ∈ U .

Proof: Replacing X with a T -stable open subset, we may as-
sume that X is normal. Then, by a classical theorem of Sumi-
hiro [Sum74], X is covered by affine T -stable open subsets; thus,
we may assume that X itself is affine. Then, since the action of T
is scheme-theoretic faithful, so is the action on O(X); equivalently,
the weights of T on O(X) generate the character group T̂ . Thus, we
may choose finitely many such weights, say λ1, . . . , λn, that gener-
ate T̂ . Next, choose fi ∈ O(X)λi

for i = 1, . . . , n, and let U denote
the open subset of X where fi 6= 0 for all i. Then U is clearly
T -stable and non-empty. Moreover, for any x ∈ U , each fi restricts
to a non-zero gi ∈ O(T.x)λi

, and hence the scheme-theoretic kernel
of the T -action on T.x is trivial. It follows that the group scheme
Tx is trivial as well. �

Remark 5.5.6 (i) IfX is affine, then Autant(X) is trivial. (Indeed,
this group acts faithfully on O(X), so that the assertion follows
from Proposition 5.1.2).
(ii) If G is a connected algebraic group (viewed as a variety), then
Autant(G) = Gant. (Indeed, Autant(G) centralizes G acting by right
multiplication, and hence Autant(G) is identified with a subgroup
of G acting by left multiplication).



Chapter 6

Homogeneous vector
bundles over abelian
varieties

In this chapter, we present a proof of the results of Matsushima,
Morimoto, Miyanishi and Mukai stated in Theorem 1.5.1. For this,
we follow the approach of [Bri12], based on techniques of algebraic
groups.

We begin by recalling some general notions and results on prin-
cipalG-bundles over arbitrary schemes, whereG stands for an affine
algebraic group. Then we show that the equivariant automorphisms
of a principal bundle over any proper scheme form a group scheme,
locally of finite type (Theorem 6.2.1); moreover, the bundle auto-
morphisms form an affine subgroup scheme of finite type (Proposi-
tion 6.2.3).

When G is the general linear group GLn, the principal G-
bundles are in one-to-one correspondence with the vector bundles
of rank n; we describe the induced isomorphisms of equivariant au-
tomorphism groups. For line bundles, we obtain another view of
Mumford’s Theta group.

Next, we obtain a classification of homogeneous vector bundles
over an abelian variety A, in terms of anti-affine extensions and
associated vector bundles (Theorem 6.4.1). From this, we derive the
announced proof of Theorem 1.5.1, and also an alternative approach

75
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to the Mukai correspondence between homogeneous vector bundles
on A and coherent sheaves with finite support on Â.

6.1 Principal bundles

Throughout this chapter, we denote by G an affine algebraic group.

Definition 6.1.1 A principal bundle (also known as a torsor) un-
der G is a morphism of schemes π : X → Y which satisfies the
following conditions:

(i) X is equipped with an action α of G such that π is G-
invariant.

(ii) π is faithfully flat.

(iii) The diagram

G×X
p2 //

α

��

X

π

��
X

π // Y

is cartesian, where α denotes the action, and p2 the projection.

Under these assumptions, we say for simplicity that π is a G-
bundle. Then π is smooth and its fibres are isomorphic to G; also,
π is a geometric quotient by G, and hence a categorical quotient
(see [MFK94, Proposition 0.1]).

In the above definition, conditions (ii) and (iii) may be replaced
with:

(iv) For any point y ∈ Y , there exist an open subset V of Y con-
taining y and a faithfully flat morphism f : U → V such that
the pull-back morphism X ×Y V → V is isomorphic to the
trivial bundle pU : G× U → U as a G-scheme over U .

The morphism π is also said to be a locally trivial bundle for
the fppf topology (under our standing assumption of finiteness for
schemes). Since G is assumed to be affine, any such bundle is also
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locally trivial for the étale topology, i.e., we may replace ‘faithfully
flat’ with ‘étale’ in condition (iv). In fact, π is locally isotrivial, i.e.,
we may take f to be a finite étale covering (see [Gro60, pp. 27–28],
[Ray70, Lemme XIV 1.4]). This does not extend to an arbitrary
group G, as shown by the following:

Example 6.1.2 Let E be an elliptic curve, and π : X → C the
E-bundle over a nodal curve constructed in Example 3.1.5. Let
V be an open neighborhood of the singular point of C. We show
that there exists no finite étale covering f : U → V such that the
pull-back bundle X ×V U is trivial.

We may assume that f is a Galois covering. Then its Galois
group Γ acts onX×V U by automorphisms which commute with the
action of E. IfX×V U ∼= E×U as E-bundles over U , then we get an
action of Γ onE×U which lifts the given action on U , and commutes
with the action of E by translations on itself. Such an action must
be of the form γ · (p, u) = (p + ρ(γ), γ · u) with obvious notations,
where ρ : Γ → E(k) is a group homomorphism. Thus, ρ(Γ) is
contained in the n-torsion subgroup scheme En for some n. But
then the projection E × U → E yields an E-equivariant morphism
(E×U)/Γ → E/ρ(Γ) → E/En. Since (E×U)/Γ ∼= (X×V U)/Γ ∼=
π−1(V ), we get an equivariant morphism π−1(V ) → E/En. But
such a morphism does not exist, as seen in Example 3.1.5.

Given a G-bundle π : X → Y and a scheme Z equipped with
a G-action, the associated bundle is a scheme W equipped with
morphisms q : X × Z → W , πZ : W → Y such that the square

X × Z
p1 //

q

��

X

π

��
W

πZ // Y

is cartesian, where p1 denotes the projection. Then q is a G-bundle
relative to the diagonal action of G on X × Z, and hence W is
uniquely defined; we denote it as X ×G Z. Moreover, πZ is locally
trivial for the fppf (or étale) topology, with fibre Z.

The associated bundle need not exist in general. We now present
a simple criterion for its existence, and describe its sections:
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Lemma 6.1.3 Let π : X → Y be a G-bundle, and Z a scheme
equipped with an action of G.

(i) The associated bundle πZ : X ×G Z → Y exists if Z admits a
G-equivariant embedding into the projectivization of a finite-
dimensional G-module.

(ii) Given a subgroup H ⊂ G, the morphism π factors as X
φ
→

Z
ψ
→ Y where φ is an H-bundle (obtained from π by reduc-

tion of structure group), and ψ a smooth morphism with fibres
isomorphic to G/H. If H is a normal subgroup, then ψ is a
G/H-bundle.

(iii) The set of sections of πZ may be identified with HomG(X,Z)
(the G-equivariant morphisms from X to Z).

Proof: (i) follows from a descent argument; specifically, from
[MFK94, Proposition 7.1] applied to the morphism p1.

(ii) By a theorem of Chevalley (see [Spr09, Theorem 5.5.3]), the
homogeneous G-variety Z := G/H admits a G-equivariant embed-
ding into the projectivization of a G-module; thus, the associated
bundle πZ exists. We now take for φ the morphism X → X ×G Z
induced by the morphism X → X × Z, x 7→ (x,H), and take
ψ = πZ . Then φ is H-invariant, ψ is smooth with fibres isomorphic
to Z, and ψ ◦φ = π. Moreover, after the faithfully flat base change
π : X → Y , the morphism φ is identified with G×X → G/H ×X,
(g, x) 7→ (gH, x) which clearly is an H-bundle. Thus, φ is an H-
bundle as well. The final assertion is proved along similar lines.

(iii) Let s : Y → X ×G Z be a section of πZ . We may view s
as a G-invariant morphism X → X ×G Z such that the morphism
id × s : X → X × (X ×G Z) factors through a morphism X →
X ×Y (X ×G Z). In view of the above cartesian square, this yields
a section σ : X → X × Z of p1, i.e., a morphism f : X → Z,
which must be equivariant since s is G-invariant. Conversely, any
f ∈ HomG(X,Z) yields a G-invariant morphism qo(id × f) : X →
X ×G Z and hence a morphism s : Y → X ×G Z; one checks that
the assignments s 7→ f and f 7→ s are inverses to each other. �
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In particular, X ×G Z exists whenever Z is affine. For instance,
if Z is a rational finite-dimensional G-module, denoted as V , then
the associated bundle

πV : EV := X ×G V → Y

exists, and is actually a vector bundle on Y (since it becomes the
trivial vector bundle after pull-back by the faithfully flat morphism
π : X → Y ).

The adjoint bundle is the associated bundle πG : X ×G G→ Y ,
where G acts on itself by conjugation. By the above lemma and the
assumption that G is affine, this bundle exists; its set of sections
is identified with HomG(X,G). The latter has a group structure
given by pointwise multiplication. We now identify this group with
the group AutGY (X) of bundle automorphisms, i.e., of G-equivariant
automorphisms φ of X such that the following diagram commutes:

X
φ

//

π

��

X

π

��
Y

id // Y.

For this, note that each f ∈ HomG(X,G) defines a morphism

φ : X → X, given by x 7→ f(x) · x,

which is readily seen to be a bundle automorphism. Moreover, the
assignment f 7→ φ defines a group homomorphism

θ : HomG(X,G) → AutGY (X). (6.1)

Lemma 6.1.4 With the notations as above, θ is an isomorphism.

Proof: Clearly, θ is injective. To show the surjectivity, just
note that every bundle automorphism φ may be viewed as a G-
equivariant section of the projection p2 : X ×Y X → X, where G
acts diagonally on X×Y X. But p2 is identified with the projection
p1 : G × X → X in view of condition (ii) of Definition 6.1.1, and
this identifies the above G-action with the action on G × X via
conjugation on G and the given action on X. Thus, an equivariant
section of p2 is an equivariant morphism X → G. �
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Remark 6.1.5 The center Z of G acts on X by bundle automor-
phisms; in fact, this identifies Z to a central subgroup scheme of
AutGY (X). The pre-image under θ of this subgroup scheme consists
of the constant morphisms from X to Z.

If G is commutative, i.e., G = Z, then the adjoint bundle is
trivial, and HomG(X,G) is identified with Hom(Y,G), the group of
Y -points of G. In concrete words, every bundle automorphism is of
the form x 7→ f(π(x)) · x for a unique morphism f : Y → G.

6.2 Equivariant automorphisms

Let π : X → Y be a G-bundle. Denote by AutG(X) the group
of G-equivariant automorphisms of the G-variety X. (Note that
these are not necessarily bundle automorphisms). If f ∈ AutG(X)
then πof : X → Y is a G-invariant morphism, hence factors via the
categorical quotient X//G = Y ; the resulting morphism φ : Y → Y
is readily seen to be an isomorphism. So there exists a natural
homomorphism π∗ : AutG(X) → Aut(Y ) which sits in the following
exact sequence of groups:

1 → AutGY (X) → AutG(X)
π∗→ Aut(Y ). (6.2)

The image of π∗ consists of those automorphisms ψ of Y such that
ψ∗(X) ∼= X as G-bundles over Y .

As was mentioned in Chapter 4, the group functor Aut(Y ) given
by S 7→ AutS(Y × S) is represented by a group scheme which is
locally of finite type, whenever Y is proper. In particular, the group
functor Auto(Y ) is an honest group scheme of finite type. We now
consider the group functor AutG(X) given by S 7→ AutGS (X × S)
where G acts on X by the given action and acts trivially on S.

Theorem 6.2.1 With notations as above, assume that Y is proper.
Then AutG(X) is represented by a group scheme, locally of finite
type.

Proof: The idea of the proof is to compactify X in an equivariant
way such that all the G-automorphisms of X will extend to the
compactification.
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In order to compactify X, we first compactify G. Let Ḡ denote
a G × G-equivariant compactification of G constructed as in the
proof of Proposition 3.1.1(iv): we embed G as a subgroup of GLn
which in turn embeds into the projective space P(Mn⊕k), and then
take the closure of G in P(Mn⊕k). Since Mn⊕k is a G×G-module,
we may apply Lemma 6.1.3 and form the associated bundle

π̄ : X ×G Ḡ→ Y

with fibre Ḡ. Note that X ×G Ḡ contains X ×G G as an open
subscheme, isomorphic to X via the morphism (x, g) 7→ g · x; this
isomorphism is equivariant relative to the action of G on X ×G G
via right multiplication on G, and the given action on X. We thus
get the following commuting diagram

X ∼= X ×G G

π

��

� �
// X ×G Ḡ

π̄
vvnnn

nnn
nnn

nnn
nn

Y

The morphism π̄ is projective, since Ḡ →֒ P(Mn ⊕ k) and the map
X ×G P(Mn ⊕ k) → Y is the projectivization of a vector bundle
over Y . Now, since Y is proper the scheme X̄ = X ×G Ḡ also is
proper. Further, X is open and dense in X̄, since G is open and
dense in Ḡ. Also, the right action of G on Ḡ yields an action on X̄
which extends the given G-action. With respect to this G-action
on X̄, any G-automorphism of X can be extended uniquely to a
G-automorphism of X̄. This is done as follows.

Let φ ∈ AutG(X). Consider the morphism

φ× id : X × Ḡ→ X × Ḡ.

This is a G × G-equivariant automorphism, for the ac-
tion on X×Ḡ given by (g, h)(x, y) = (gx, (g, h)·y. Since
the left action of G was used to construct the associated
bundle X̄, the automorphism φ × id being equivariant
for this action descends to an automorphism φ̄ on X̄.
Moreover, φ̄ is G-equivariant with respect to the above
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action of G on the right. Also, note that φ × id pre-
serves X × G; thus φ̄ preserves X. Once again, using
the isomorphism X ×G G ∼= X, we see that φ̄ |X= φ.

Any automorphism of X̄ constructed as above stabilizes X and
hence also the boundary ∂X̄ = X̄\X. Thus, we get a homomor-
phism

ρ : AutG(X) → AutG(X̄, ∂X̄).

Moreover, any automorphism of X̄ that stabilizes ∂X̄, stabilizes
X. Hence the restriction to X gives the inverse of ρ. Thus, ρ is an
isomorphism of groups.

Using the same argument it can proved that ρ extends to an
isomorphism of group functors. Here the functor AutG(X̄, ∂X̄) is
given by

S 7→ AutGS (X̄ × S, ∂X̄ × S),

where G acts trivially on S; the functor AutG(X) is defined simi-
larly; since the conditions of G-equivariance and of preservation of
∂X̄ are closed conditions, AutG(X̄, ∂X̄) is a closed subfunctor of
Aut(X̄). That is, we have

AutG(X)
ρ

// AutG(X̄, ∂X̄)
� �

// Aut(X̄) ,

an exact sequence of group functors. The rightmost term is repre-
sentable by a group scheme, locally of finite type since X̄ is com-
plete. The functor AutG(X̄, ∂X̄), being a closed subfunctor of a
representable functor, is itself representable; so is AutG(X). �

Remark 6.2.2 We can also define the group functor of bundle
automorphisms AutGY (X), by assigning to each scheme S the group
AutGY×S(X×S). Then the exact sequence (6.2) extends to an exact
sequence of group functors

1 → AutGY (X) → AutG(X) → Aut(Y ).

In view of the above theorem, this yields an exact sequence of group
schemes.
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In fact, the functor AutGY (X) is represented by not just any group
scheme but an affine group scheme of finite type. A fact that we
shall see next.

With notations as above, consider the group functor
HomG(X,G) given by S 7→ HomG

S (X×S,G×S) = HomG(X×S,G).
We can define a morphism of group functors θ : HomG(X,G) →
AutGY (X) analogous to the homomorphism (6.1).

Proposition 6.2.3 With notations as above, θ is an isomorphism.
If Y is proper, then AutGY (X) is represented by an affine group
scheme of finite type.

Proof: The first assertion is proved by the argument of
Lemma 6.1.4. To show the second assertion, we may view G as a
closed subgroup of some SLm (as in the proof of Lemma 2.1.1) and
hence as a closed subvariety of the affine space Mm, such that the
conjugation action of G on itself extends to an action of Mm. Then
HomG(X,G) is a closed subfunctor of HomG(X,Mm). The latter
can be identified with the functor of points of the vector space of
global sections of the associated vector bundle E := X×GMm → Y ,
where this vector space, H0(Y,E), is viewed as an affine scheme.
But H0(Y,E) is finite dimensional, since Y is proper. Thus,
HomG(X,G) is represented by an affine scheme of finite type. �

6.3 Automorphisms of vector bundles

We now replace principal bundles with vector bundles.
Let Y be a scheme and p : E → Y a vector bundle. The

multiplicative group Gm acts by scalars on the fibres of p, thus
giving an action on E. Then, Y is the categorical quotient for
this action, since this is true locally. Thus, any Gm-equivariant
automorphism of the scheme E induces an automorphism of Y and
we get the following exact sequence

1 → AutGm

Y (E) → AutGm(E)
p∗
→ Aut(Y ), (6.3)
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where AutGm

Y (E) denotes the group of Gm-equivariant automor-
phisms of E which induces the identity on Y .

Lemma 6.3.1 With the above notation, AutGm

Y (E) consists of the
vector bundle automorphisms of E. Moreover, the image of p∗ con-
sists of those ψ ∈ Aut(Y ) such that ψ∗(E) ∼= E as vector bundles
over Y .

Proof: Let ϕ ∈ AutGm

Y (E). Let V ⊂ Y be an open subscheme
such that p−1(V ) ∼= V ×kn as vector bundles over V . Then ϕ|p−1(V )

is given by (y, z) 7→ (y,Φ(y, z)), where Φ : V × kn → kn satisfies

Φ(y, tz) = tΦ(y, z) (⋆)

for y ∈ V , z ∈ kn, t ∈ k∗. Since O(V × kn) = O(V ) ⊗k O(kn) =
O(V )[x1, . . . , xn], we have

Φ(y, z) =
n∑

i=1

∑

a1,...,an

Φa1,...,an,i(y)z
a1
1 · · · zan

n ei,

where (e1, . . . , en) denotes the standard basis of kn. The homogene-
ity condition (⋆) forces Φa1,...,an,i = 0 unless a1 + · · ·+an = 1, i.e., Φ
is linear in z. Thus, ϕ is a vector bundle automorphism. Conversely,
every vector bundle automorphism is obviously in AutGm

Y (E).
Next, let ψ = p∗(ϕ), where ϕ ∈ AutGm(E). Then ϕ factors as

an isomorphism γ : E → ψ∗(E) of schemes over Y , followed by
the isomorphism ψ∗(E) → E induced by ψ. Moreover, γ is Gm-
equivariant. Arguing as above, we get that γ is an isomorphism of
vector bundles. Conversely, every such isomorphism γ : E → ψ∗(E)
yields a Gm-equivariant automorphism of E lifting ψ. �

A vector bundle endomorphism of E may be viewed as a
global section of End(E), the sheaf of endomorphisms of E.
Under this identification, the set of vector bundle automor-
phisms of E corresponds to a subset, H0(Y,GL(E)), of the vec-
tor space H0(Y,End(E)); the latter is an associative algebra,
and H0(Y,GL(E)) is its group of invertible elements. If Y is
proper, then H0(Y,End(E)) is finite dimensional and we note that
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H0(Y,GL(E)) is a principal open subset of this affine space, hence
is itself affine.

We know that vector bundles of rank n over Y are in one-to-
one correspondence with GLn-bundles over Y . For G = GLn and
a G-bundle π : X → Y , we have the exact sequence (6.2). The
corresponding vector bundle p : E → Y yields the exact sequence
(6.3). We shall now see that these two sequences can be identified
with each other.

Under the above correspondence, E is the associated vector bun-
dle X ×G kn so that we have a natural homomorphism

γ : AutG(X) → AutGm(E).

Indeed, if φ ∈ AutG(X), the G-automorphism φ × id on X × kn

descends to an automorphism γ(φ) of E. Under γ, the group of
bundle automorphisms AutGY (X) maps to the group of vector bun-
dle automorphisms AutGm

Y (E), in view of Lemma 6.3.1. In fact, γ
is an isomorphism of groups since we have

AutGY (X) ∼= HomG(Y,G) →֒ HomG(Y,Mn) ∼= H0(Y,End(E))

where the first isomorphism is given by Lemma 6.1.4, the inclu-
sion arises from the inclusion G →֒ Mn and the last isomorphism
from the identification of End(E) with the associated vector bundle
X×GMm; further, AutGY (X) is sent isomorphically to H0(Y,GL(E))
under the above morphism.

We thus have the following commuting diagram:

1 // AutGY (X) //

≀≀

��

AutG(X)
π∗ //

γ

��

Aut(Y )

1 // AutGm

Y (E) // AutGm(E)
p∗ // Aut(Y ).

(6.4)

Also, the maps π∗ and p∗ have the same image, since for any
ψ ∈ Aut(Y ), we have that ψ∗(E) ∼= E as vector bundles if and only
if ψ∗(X) ∼= X as G-bundles. Applying five-lemma to the above
diagram we hence conclude that γ is an isomorphism. Thus we can
identify both the automorphism groups AutG(X) and AutGm(E);
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the same holds for the corresponding group schemes by similar ar-
guments. In view of Theorem 6.2.1 and of the above description of
bundle automorphisms, this yields:

Proposition 6.3.2 Let p : E → Y be a vector bundle over a proper
scheme. Then the group functor of equivariant automorphisms,
AutGm(E), is represented by a group scheme, locally of finite type.
Moreover, the group functor of bundle automorphisms, AutGm

Y (E),
is represented by a connected affine algebraic group. �

Let us specialize to the case of line bundles (i.e., vector bundles
of rank 1). Then G = Gm, and the group of bundle automorphisms
is

HomGm(X,Gm) = Hom(Y,Gm) = Gm(Y ) = O(Y )∗,

the group of invertible elements of O(Y ). If Y is a complete variety,
then O(Y )∗ = k∗; thus, for a line bundle L, the exact sequence (6.3)
gives

1 → Gm → AutGm(L) → Aut(Y ).

Let H be a group scheme acting on the scheme Y ; so we have
a homomorphism ρ : H → Aut(Y ). Let G(H) denote the fibre
product of H and AutGm(L) over Aut(Y ), i.e., we have a cartesian
diagram:

1 // Gm
// G(H) //

��

H

ρ

��

1 // Gm
// AutGm(L) // Aut(Y ).

The closed points of G(H) are the pairs (h, φ) such that h ∈ H and
φ ∈ AutGm(L) lifts h. This is the same as the pairs (h, ψ) such that
h ∈ H and ψ : L → h∗(L) is an isomorphism of line bundles. In
particular, the homomorphism G(H) → H is surjective if and only
if L is H-invariant in the sense that h∗(L) ∼= L for all h ∈ H; then
G(H) is a central extension of H by Gm.

The Theta groups constructed by Mumford can easily be
checked to match this construction. Following [Mum08], let Y be
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an abelian variety, L a line bundle on Y , and K(L) the scheme-
theoretic kernel of the polarization homomorphism

ϕL : Y → Ŷ , y 7→ τ ∗y (L) ⊗ L−1.

Then K(L) acts on Y by translations, and this action leaves L
invariant. The corresponding central extension

1 → Gm → G(L) → K(L) → 1

where G(L) := G(K(L)), is just Mumford’s Theta group.

6.4 Homogeneous vector bundles over

an abelian variety

From now on we fix A to be an abelian variety; and by a vector
bundle we mean a vector bundle over A, unless otherwise stated.

We say that the vector bundle p : E → A is homogeneous if, for
each a ∈ A, τ ∗a (E) ∼= E as vector bundles over A. This is equivalent
to the condition that the image of the induced map

p∗ : AutGm(E) → Aut(A)

contains all translations τa, a ∈ A; these form the neutral compo-
nent of Aut(A) by Proposition 4.3.2. Since AutGm(E) is a group
scheme, locally of finite type, the above condition is in turn equiv-
alent to the surjectivity of the restriction

AutGm(E)ored → Auto(A) = A.

Now recall that E has a largest anti-affine group of automorphisms,

G := Autant(E),

which is contained in AutGm(E) (see Proposition 5.5.4). It follows
that G is the largest anti-affine subgroup of AutGm(E)ored. Also,
any connected affine subgroup of AutGm(E)ored is mapped to a point
under the homomorphism p∗ to the abelian variety A. In view of
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the Rosenlicht decomposition, it follows that the surjectivity of the
above homomorphism is equivalent to the surjectivity of

p∗ : G → A.

Note that we have the following commuting diagram by the
definition of G:

G
� �

//

p∗

��

AutGm(E)

��

A
� �

// Aut(A).

In particular, the action of G on A by translations arises from an
action on E such that the above diagram commutes, which precisely
means that E is G-linearized.

Thus, a homogeneous vector bundle p : E → A yields a short
exact sequence of commutative group schemes

0 → H → G → A→ 0

and a G-linearized vector bundle E over the homogeneous space
G/H ∼= A, such that G = Autant(E). The subgroup scheme H is
affine since it sits in the group of bundle automorphisms AutGm

Y (E).
As G is anti-affine, we get an anti-affine extension of A in the sense
of Section 5.5. Moreover, identifying the fibre E0 over 0 ∈ A with
kn and noticing that H acts by linear automorphisms on the fibre
E0, we get a representation ρ : H → GLn. In fact, ρ is uniquely
defined up to conjugacy in GLn (which corresponds to choosing an
isomorphism E0

∼= kn).
Conversely, given such a short exact sequence and representa-

tion, we can get a homogeneous bundle by taking the associated
bundle over the homogeneous space G/H. Thus we have proved:

Theorem 6.4.1 There is a bijective correspondence between ho-
mogeneous vector bundles over A of rank n and pairs consisting
of:

(i) an anti-affine extension 0 → H → G → A→ 0, and
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(ii) a scheme-theoretic faithful representation ρ : H → GLn de-
termined up to conjugacy.

A vector bundle E of rank n is said to be unipotent if one of the
following equivalent conditions holds:

(i) E admits a reduction of structure group to the maximal unipo-
tent subgroup of GLn consisting of upper triangular n × n
matrices with diagonal entries 1.

(ii) E is obtained by iterated extensions of trivial bundles, i.e.,
it has a filtration by sub-bundles each of the subsequent quo-
tients being trivial.

We may now prove part of Theorem 1.5.1; specifically, the fol-
lowing:

Theorem 6.4.2 (i) Every homogeneous vector bundle is an it-
erated extension of line bundles Li ∈ Â.

(ii) Every homogeneous vector bundle has a unique decomposition
E = ⊕iLi ⊗ Ei where Li’s are pairwise distinct line bundles
in Â and Ei’s are unipotent vector bundles.

Proof: (i) By Theorem 6.4.1, we have E ∼= G ×H kn for some rep-
resentation ρ : H → GLn. Since H is commutative, by conjugating
suitably we may assume that ρ(H) ⊂ Bn, where Bn denotes the
group of upper triangular invertible matrices. This immediately
gives a filtration of E by sub-bundles, each subsequent quotient
L = (G ×H k → A) being given by a character χ of H. We have
the following commuting diagram of extensions

0 // H //

χ

��

G //

��

A //

id

��

0

0 // Gm
// Gχ // A // 0

which shows that the Gm-bundle associated with L is a group. Thus
L ∈ Â.
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(ii) Since H is a commutative affine group scheme, we have H =
D × U where D denotes the diagonalizable part of H, and U the
unipotent part (see [DG70, §IV.2.4]). We can decompose the rep-
resentation kn of H as a direct sum of weight spaces with respect
to D (or eigen spaces), say kn = ⊕iVi, each Vi being stable by H.
This decomposition naturally gives a decomposition of the associ-
ated vector bundle E, say E = ⊕iEi. Let χi be the character (eigen
value) of H corresponding to the weight space Vi. Denote the asso-
ciated line bundle over A corresponding to the character χi by Li
(as constructed above). Observe that D acts trivially on Ei ⊗ L−1

i

thereby giving a representation of the quotient H/D ∼= U . Since
U is unipotent, any such representation is an iterated extension of
trivial representations; hence the vector bundle Ei ⊗ L−1

i is unipo-
tent. Thus, we have proved (ii). �

To complete the proof of Theorem 1.5.1, it remains to show that
any vector bundle obtained as an iterated extension of algebraically
trivial line bundles is homogeneous. This is a consequence of the
following:

Proposition 6.4.3 Any extension of homogeneous vector bundles
is homogeneous.

Proof: Let 0 → E1 → E → E2 → 0 be a short-exact sequence
of vector bundles such that E1, E2 are both homogeneous. By the
discussion before Theorem 6.4.1, we have anti-affine groups G1 =
Autant(E1) and G2 = Autant(E2) such that Gi ։ A, and Ei is Gi-
linearized for i = 1, 2. We now construct an anti-affine group
G ։ A for which the vector bundle E is G-linearized. Set G :=
G1×AG2. Then G is a commutative group scheme, equipped with a
surjective homomorphism to A. Moreover, G acts (via Gi) on Ei for
i = 1, 2 hence it acts linearly on Ext1

A(E2, E1), a finite dimensional
k-vector space. Let G be the largest anti-affine subgroup of G (or
equivalently of Go

red). Then the representation of G on Ext1
A(E1, E2)

is trivial by Proposition 5.1.2; in particular, G fixes the extension
giving E. Hence G acts on E. Moreover, G ։ A as can be proved
by the argument before Theorem 6.4.1. �
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Our methods also yield a description of unipotent vector bundles
in terms of algebraic groups:

Proposition 6.4.4 Every unipotent vector bundle is homogeneous.
Moreover, under the correspondence of Theorem 6.4.1, the unipo-
tent vector bundles correspond to the anti-affine extensions of A by
a unipotent group scheme H, and to arbitrary (faithful) represen-
tations of H.

Proof: The first assertion follows from Proposition 6.4.3. For the
second assertion, let E be a non-trivial unipotent vector bundle.
Observe that H0(A,E ⊗ L) = 0 for any non-zero L ∈ Â, since
H0(A,L) = 0 (as seen in the proof of Proposition 5.3.2) and since
E is an iterated extension of trivial line bundles. Let E = G ×H V
as given by Theorem 6.4.1; write H = U × D and V = ⊕Vi as
in the proof of Theorem 6.4.2. Then as shown in that proof, E =
⊕Li ⊗ Ei where Li ∈ Â are pairwise distinct and Ei are non-zero
homogeneous vector bundles associated to representations of U .
Since Ei contains a trivial sub-bundle, we have H0(A,Ei) 6= 0, and
hence H0(A,E ⊗ L−1

i ) 6= 0. Thus, Li is trivial, and E = Ei so that
H = U is unipotent. The converse has been noticed in the proof of
Theorem 6.4.2. �

Remark 6.4.5 When char(k) = 0, the anti-affine extensions of
A by a unipotent group scheme are exactly the quotients of the
universal vector extension

0 → H1(A,OA)∗ → E(A) → A→ 0

by subspaces of H1(A,OA)∗ (as follows from Proposition 5.4.2).
When char(k) > 0, such extensions correspond to the local sub-

group schemes of Â (as follows from the discussion before Theo-
rem 5.5.3).

6.5 Mukai correspondence

Let A be an abelian variety. By [Muk78, Theorems 4.12, 4.19],
there are equivalences of categories as follows:
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



Homogeneous
vector bundles
over A



 ↔

{
Coherent sheaves on

Â with finite support

}





Unipotent
vector bundles
over A



 ↔

{
Coherent sheaves on

Â supported at 0

}

To construct these equivalences, one uses the projections from
A× Â as below:

A× Â
p1

||zz
zz
zz
zz
z p2

""E
EE

EE
EE

EE

A Â

To a coherent sheaf F on Â, one associates the sheaf

(p1)∗(P ⊗ p∗2(F))

on Â. Here P is the the Poincaré line bundle on A × Â, which is
the universal line bundle over A × Â (see [Mil86, §9.3]). The first
equivalence extends to an equivalence between the bounded derived
categories of coherent sheaves on A and Â (see [Muk81, Theorem
2.2]).

We present an alternative construction of such equivalences,
which may be viewed as more elementary, but is non-canonical
and only valid in characteristic zero (whereas Mukai’s approach is
canonical and characteristic-free).

Let F be a coherent sheaf on Â with support at 0. Then F is just
a module of finite length over the local ring OÂ,0 or equivalently,

over its completion ÔÂ,0. The latter is the ring of formal power
series k[[t1, . . . , tg]], where t1, . . . , tg denote local co-ordinates at 0.
So F is a finitely generated module over k[[t1, . . . , tg]], killed by
some power (t1, . . . , tg)

n of the maximal ideal. In other words, F
is a finite-dimensional k-vector space V equipped with g nilpotent
endomorphisms t1, . . . , tg which commute pairwise. This is in turn
equivalent to giving a rational representation

ρ : Gg
a → GL(V )
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of the vector group of dimension g, given by

ρ(x1, . . . , xg) = exp(t1x1 + · · · + tgxg).

Further, t1, . . . , tg yield an isomorphism from kg to the tangent

space T0(Â). Recall that the latter is canonically isomorphic to
H1(A,OA); this yields an isomorphism Gg

a
∼= H1(A,OA)∗.

Clearly, the assignment F 7→ ρ induces isomorphisms

HomÂ(F1,F2) ∼= Hom(ρ1, ρ2)

(the space of morphisms of representations). So the category of
coherent sheaves on Â with support at 0 is equivalent to that of
finite-dimensional representations of the vector group H1(A,OA)∗.
But the latter category is equivalent to that of unipotent vector
bundles over A, via the assignment ρ 7→ Eρ := E(A) ×H1(A,OA)∗ V ,
where E(A) denotes the universal extension of A (see Section 5.4;
recall that E(A) is anti-affine). Indeed, every unipotent vector bun-
dle is isomorphic to a unique Eρ in view of Proposition 6.4.4 and of
Remark 6.4.5. Moreover, for any representations ρi : H1(A,OA)∗ →
GL(Vi), i = 1, 2, we have

HomA(Eρ1 , Eρ2) = H0(A,E∗
ρ1
⊗ Eρ2)

= (O(E(A)) ⊗ V ∗
1 ⊗ V2)

H1(A,OA)∗

= (V ∗
1 ⊗ V2)

H1(A,OA)∗ = Hom(ρ1, ρ2).

This yields the second equivalence of categories; one can obtain
similarly an equivalence between the category of vector bundles of
the form L⊗ U , where L is a prescribed line bundle in Â and U a
unipotent vector bundle, and the category of coherent sheaves on
Â supported at L. The first equivalence follows from this, in view
of Theorem 6.4.2(ii) and of the vanishing of HomA(Li⊗Ei, Lj⊗Ej)

for all distinct Li, Lj in Â and all unipotent vector bundles Ei, Ej.
(This vanishing follows in turn from that of HomA(Li, Lj), shown
for example in the proof of Proposition 5.3.2). �
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Chapter 7

Homogeneous principal
bundles over an abelian
variety

In this chapter, we obtain structure and classification results for
those homogeneous principal bundles over an abelian variety that
are homogeneous, and for special classes of such bundles as well.
For this, we follow the approach developed in [Bri12].

We begin by extending the classification of homogeneous vector
bundles to the setting of principal bundles under a connected affine
algebraic group G (Theorem 7.1.3), and we describe their bundle
automorphisms (Proposition 7.1.4), thereby proving Theorem 1.6.1.

Then we show that a G-bundle over an abelian variety is ho-
mogeneous if and only if so are all associated vector bundles (The-
orem 7.2.2). If G is reductive, then it suffices to check the homo-
geneity of the vector bundle associated to a faithful representation
(Corollary 7.2.4). On the other hand, all homogeneous bundles un-
der a connected unipotent group are homogeneous (Corollary 7.2.5).

Next, we obtain a characterization of those homogeneous G-
bundles that are indecomposable in the sense of Balaji, Biswas and
Nagaraj [BBN05], i.e., that admit no reduction of structure group
to a proper Levi subgroup (Proposition 7.3.1); here G is assumed
to be reductive, and char(k) = 0. We also introduce notions of
simple, resp. irreducible G-bundles, and investigate these notions

95
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in the setting of homogeneous bundles. In particular, we show
that when G is semi-simple, a G-bundle over an abelian variety is
homogeneous and irreducible if and only if its adjoint vector bundle
has vanishing cohomology in all degrees (Theorem 7.3.5).

7.1 Structure

As in the previous Chapter, we fix an affine algebraic group G and
an abelian variety A. Let π : X → A be a G-bundle. We say that
π is homogeneous if τ ∗a (X) ∼= X as G-bundles, for any a ∈ A. Like
for vector bundles, homogeneity is equivalent to the condition that
the image of the induced homomorphism

π∗ : AutG(X) → Aut(A)

contains the subgroup A of translations.

Example 7.1.1 Let G = GLn and p : E := X ×G kn → A be the
vector bundle of rank n associated to the G-bundle π. Then π is
homogeneous if and only if so is p (as follows from the isomorphism
AutG(X) ∼= AutGm(E) obtained in Section 6.3.

To study homogeneous G-bundles, one can easily reduce to the
case where G is connected (see [Bri12] for details). So we shall
assume throughout that G is connected; then X is a smooth variety.
By an argument as in Section 6.4, one obtains the following:

Proposition 7.1.2 A G-bundle π : X → A is homogeneous if and
only if π∗ restricts to a surjective homomorphism Autant(X) → A.

The arguments of Section 6.4 also adapt readily to yield:

Theorem 7.1.3 There is a bijective correspondence between ho-
mogeneous G-bundles over A and pairs consisting of the following
data:

(i) an anti-affine extension 0 → H → G → A→ 0,
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(ii) a scheme-theoretic faithful homomorphism ρ : H → G deter-
mined upto conjugacy.

This correspondence assigns to any pair as above, the associated
bundle π : G×H G → G/H = A, where H acts on G by multiplica-
tion, and on G via right multiplication through ρ.

We now describe the group scheme of bundle automorphisms,
AutGA(X), of any homogeneous G-bundle:

Proposition 7.1.4 With the notations of the above Theorem, de-
note by CG(H) the scheme-theoretic centralizer of the image of H in
G. Then the action of CG(H) on G by right multiplication induces
an action on X = G ×H G by bundle automorphisms. Moreover,
the resulting morphism

ϕ : CG(H) → AutGA(X)

is an isomorphism of group schemes. The pre-image of A un-
der the homomorphism π∗ : AutG(X) → Aut(A) is isomorphic
to the quotient (CG(H) × G)/H, where H is embedded diagonally
in CG(H) × G.

Proof: Let CG(H) act on G × G by z · (g, γ) := (gz−1, γ). This
action commutes with the G-action by left multiplication on itself,
and with the H-action by h · (g, γ) := (gρ(h)−1, hγ). Thus, the
action of CG(H) descends to an action on G ×H G which lifts the
trivial action on A = G/H. This proves the first assertion.

For the second assertion, recall that for any scheme S, the group

AutGA(X)(S) = AutGA×S(X × S)

is isomorphic to HomG(X ×S,G), the group of G-equivariant mor-
phisms f : X ×S → G where G acts on X ×S via the given action
on X and the trivial action on S, and G acts on itself by conju-
gation. This isomorphism, θ, assigns to any such f the morphism
(x, s) 7→ (f(x, s) · x, s).

Since X is the categorical quotient of G× G by H, we obtain

HomG(X × S,G) ∼= HomG×H(G× G × S,G)
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where G acts on G× G × S via left multiplication on itself. Thus,

HomG(X × S,G) ∼= HomH(G × S,G).

Now G being affine, we have

HomH(G × S,G) ∼= HomH(O(G),O(G × S))

where the right-hand side denotes the homomorphisms of H-
algebras. But O(G × S) ∼= O(S) since G is anti-affine; this yields

HomH(O(G),O(G × S) ∼= HomH(O(G),O(S)) ∼= HomH(S,G).

Moreover, HomH(S,G) ∼= Hom(S,CG(H)), sinceH acts trivially on
S. Putting these isomorphisms together, we obtain an isomorphism

HomG(X × S,G) ∼= Hom(S,CG(H))

which assigns to any φ : S → CG(H) the morphism (g, γ, s) 7→
gφ(s)g−1. This isomorphism composed with θ is our morphism ϕ;
hence ϕ is an isomorphism as required.

To show the final assertion, recall that π∗(G) = A, so that
π−1
∗ (A) = ker(π∗)G = CG(H)G where the product is taken in

AutG(X). Moreover, CG(H)G ∼= (CG(H) × G)/(CG(H) ∩ G), and
the scheme-theoretic intersection CG(H) ∩ G is the kernel of the
restriction of π∗ to G. But this kernel is just H; this completes the
proof. �

Remark 7.1.5 For any G-bundle π : X → A, the map π is the Al-
banese morphism of X. Indeed, since G is affine and connected, any
morphism (of varieties) from G to an abelian variety B is constant
(see [Mil86, Corollary 3.9]), and hence any morphism f : X → B is
G-invariant. Thus, f factors through π, as required. In particular,
π has an intrinsic description.

If in addition π is homogeneous, then we obtain another mor-
phism

φ : X = G×H G → G/ρ(H)
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which is a G-bundle since H is identified to a subgroup of G via ρ.
In fact, φ is the affinization morphism, i.e., the canonical morphism
X → Spec O(X). To see this, note that

O(X) ∼= (O(G) ⊗O(G))H ∼= O(G)H ∼= O(G/ρ(H)).

Here, the first isomorphism holds by the identification of X as
G ×H G, the second follows from anti-affineness of G, and the
third is classical. Also, since G is affine and H is commutative,
then G/ρ(H) is quasi-affine, i.e., the natural morphism G/H →
Spec O(G/H) is an open immersion (this follows from a result of
Grosshans, [Gro97, Theorem 2.1], whenH is an algebraic group; the
general case of a group scheme is an easy consequence, see [Bri12]
for details). In particular, the morphism φ is also intrinsic.

Example 7.1.6 (i) Homogeneous bundle with non-connected
group of automorphisms. Let char(k) 6= 2 and let G be
the special orthogonal group associated to the quadratic form
x2 + y2 + z2; then G = SO3

∼= PGL2. Let H be the sub-
group of diagonal matrices in G, then H ∼= Z/2Z × Z/2Z.
Finally, let E be an elliptic curve. Then the 2-torsion sub-
group scheme E2 is isomorphic to H in view of our assump-
tion on char(k). Thus, we may form the associated bundle
π : X := G ×H E → E/H over the elliptic curve E/H =: A.
Then X is the homogeneous G-bundle over A associated to
the extension 0 → H → E → A → 0 and to the inclusion of
H into E. Hence by Proposition 7.1.4, the group of bundle
automorphisms is isomorphic to CG(H). Now CG(H) = H
is a non-trivial finite group. In particular, AutGA(X) is non-
connected.

In fact, the full automorphism group scheme, AutG(X), is
also non-connected. To see this, it suffices to show that the
image of that group scheme under π∗ contains (−1)A. But
the automorphism id × (−1)G of G × G being G-equivariant
and H-invariant (since −h = h for all h ∈ H), it descends to
a G-automorphism of X which lifts (−1)A.
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(ii) Homogeneous bundle with non-reduced automorphism group
scheme: Let char(k) = 2 and G = SL2. Let H be the sub-
group of G generated by the matrix ( 1 1

0 1 ). Then H ∼= Z/2Z

and CG(H) ∼= µ2 × Ga, where µ2 (the scheme-theoretic ker-
nel of the square map of Gm) is identified with the scheme-
theoretic center of G, and Ga is viewed as the subgroup of
matrices ( 1 t

0 1 ). Next, choose an ordinary elliptic curve E,
i.e., E has a point of order 2; then this point is unique. This
yields an embedding of H into E and, in turn, a homogeneous
G-bundle X := G×H E over A := E/H, as in the above Ex-
ample. Then AutGA(X) = CG(H) by Proposition 7.1.4 again.
Hence AutGA(X) is non-reduced. It follows that AutG(X) is
non-reduced as well: indeed, the group scheme

π−1
∗ (A) ∼= CG(H) ×H E ∼= µ2 × (Ga ×

Z/2Z E)

is connected, and hence is the neutral component of AutG(X).
Also, π−1

∗ (A) is non-reduced, since so is µ2.

7.2 Characterizations

The following proposition gives a characterization of homogeneous
principal bundles in terms of algebraic groups:

Proposition 7.2.1 A G-bundle π : X → A is homogeneous if and
only if π is trivialized by an anti-affine extension G ։ A.

Proof: Let X be a homogeneous G-bundle. From Theorem 7.1.3
we know that X ∼= G×H G and A ∼= G/H, with notations as given
there. Let ψ be the composition of the projection p2 : G × G → G
followed by the quotient morphism φ : G → A. Then ψ is invariant
under the H-action on G × G given by h · (g, x) := (gh−1, hx). So
ψ factors through X. This yields a commutative square

G× G
p2 //

q

��

G

φ
��

X
π // A,

(7.1)
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where q denotes the quotient morphism by H. Since both the ver-
tical arrows are H-bundles, the square is cartesian. Thus, π is
trivialized by the anti-affine extension φ : G → A.

To prove the converse, let φ : G → A be an anti-affine extension
which trivializes π. Then we have a similar cartesian square as
in (7.1). Thus, H acts on G × G ∼= X ×A G by G-equivariant
automorphisms, so that p2 is H-equivariant. So this action is given
by h·(g, γ) = (f(g, h, γ), hγ) for some morphism f : G×H×G → G.
As G is affine and G is anti-affine, so f(g, h, γ) = ψ(g, h) for some
ψ : G × H → G. The G-equivariance condition yields ψ(g, h) =
gψ(eG, h). Thus, H acts on G via right multiplication through a
homomorphism

ρ : H → G, h 7→ ψ(eG, h).

Hence X ∼= G×H G which is clearly homogeneous. �

Theorem 7.2.2 The following conditions are equivalent for a G-
bundle π : X → A:

(i) π is homogeneous.

(ii) For any representation ρ : G → GL(V ), the associated vector
bundle p : EV = X ×G V → A is homogeneous.

(iii) For any irreducible representation ρ : G → GL(V ), the asso-
ciated vector bundle is homogeneous.

(iv) For a faithful representation ρ : G → GL(V ) such that
GL(V )/ρ(G) is a quasi-affine variety, the associated vector
bundle is homogeneous. (Such a representation always exists,
see Lemma 7.2.3).

Proof: (i) =⇒ (ii): We adapt the argument in Section 6.3.
Note that any automorphism ϕ ∈ AutG(X) gives rise to a G-
automorphism ϕ × id of X × V . This in turn induces an auto-
morphism ϕ′ of EV . We therefore have a natural homomorphism
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Φ : AutG(X) → AutGm(EV ) which sends ϕ to ϕ′. Moreover, we
have a commuting diagram:

AutG(X)
π∗ //

Φ
��

Aut(A)

id
��

AutGm(EV ) // Aut(A)

.

Since the image of π∗ contains A, so does the image of p∗. Thus, p
is homogeneous.

(ii) =⇒ (iii) is immediate.
(iii) =⇒ (iv) Every representation of G is an iterated extension

of irreducible representations. Hence every associated vector bundle
is an iterated extension of vector bundles associated to irreducible
representations. Now, any extension of homogeneous bundles is
homogeneous (see Proposition 6.4.3). Thus, extending the bundle
from irreducible representations gives a homogeneous one.

(iv) =⇒ (i) By Example 7.1.1 (or the above commuting dia-
gram), the GL(V )-bundle X×GGL(V ) → A is homogeneous. This
is equivalent to the surjectivity of the homomorphism

G := Autant(X ×G GL(V )) → A

in view of Proposition 7.1.2. We now claim that the natural map

f : X ×G GL(V ) → GL(V )/ρ(G)

is G-invariant. To see this, observe that the anti-affine group G acts
trivially on the algebra O(X ×G GL(V )) = (O(X)⊗O(GL(V )))G,
by Proposition 5.1.2. Thus, G acts trivially on the subalgebra
O(GL(V )/ρ(G)) = O(GL(V ))G. Since GL(V )/ρ(G) is quasi-affine,
its points are separated by regular functions, which implies the
claim.

By the claim, the fibre f−1(ρ(G)) ≃ X over the identity coset
is stable under the action of G. This gives a homomorphism G →
AutG(X) such that the following diagram commutes,

G //

����

AutG(X)

��

A
� �

// Aut(A).
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This immediately yields the homogeneity of π : X → A. �

Lemma 7.2.3 Let G be an affine algebraic group. Then there ex-
ists a faithful finite-dimensional representation ρ : G → GL(V )
such that the variety GL(V )/ρ(G) is quasi-affine.

Proof: This is a consequence of a theorem of Chevalley that real-
izes any homogeneous space under an affine algebraic group as an
orbit in the projectivization of a representation (see [Spr09, The-
orem 5.5.3]). Specifically, we may assume that G ⊂ GLn. By
Chevalley’s theorem, there exist a representation ρ : GLn → GLN
and a line ℓ ⊂ kN such that the isotropy subgroup scheme of ℓ in
GLn is just G. Then G acts on ℓ via a character χ : G→ Gm. The
group GLn × Gm acts linearly on kN via (g, t) · v := t−1ρ(g)v, and
the isotropy subgroup scheme of any non-zero point of ℓ is

{(g, t) | g ∈ G, t = χ(G)} ∼= G.

Thus, for the embedding of G into GLn × Gm via the homomor-
phism g 7→ (g, χ(g)), the variety (GLn × Gm)/G may be regarded
as an orbit in the GLn ×Gm-module kN , and hence is quasi-affine.
Next, embed GLn × Gm into GLn+1 via (g, t) 7→

(
g 0
0 t

)
. Then the

variety GLn+1/(GLn × Gm) is affine (it may be viewed as the vari-
ety of tensors v ⊗ f ∈ kn+1 ⊗ (kn+1)∗, where f(v) = 1). Moreover,
GLN+1/G is a GLn+1-orbit in GLn+1 ×

GLn×Gm kN . The latter vari-
ety is the total space of a vector bundle over GLn+1/(GLn × Gm),
and hence is affine. We conclude that GLN+1/G is quasi-affine. �

Corollary 7.2.4 Let G be a connected reductive subgroup of GLn.
Then a G-bundle π : X → A is homogeneous if and only if so is
the associated vector bundle X ×G kn → A.

Proof: Since the variety GLn/G is affine (see for instance,
[Ric77]), the assertion follows from the equivalence of statements
(i) and (iv) of Theorem 7.2.2. �
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Corollary 7.2.5 Let π : X → A be a G-bundle, U a connected

unipotent normal subgroup of G, and X
φ
→ Y

ψ
→ A the factoriza-

tion of π into a U-bundle followed by a G/U-bundle. Then π is
homogeneous if and only if so is ψ.

In particular, any principal bundle under a connected unipotent
group is homogeneous.

Proof: Note that the homomorphism π∗ : AutG(X) → Aut(A)
factors as

AutG(X)
φ∗
→ AutG/U(Y )

ψ∗

→ Aut(A).

Thus, if π is homogeneous, then so is ψ.
To show the converse, we use the equivalence of statements (i)

and (iii) of Theorem 7.2.2. Let ρ : G → GL(V ) be an irreducible
representation. Then ρ factors through an irreducible representa-
tion σ : G/U → GL(V ), and hence EV = X ×G V is isomorphic to
Y ×G/U V as vector bundles over A, where G/U acts on V via σ.
But the latter vector bundle is homogeneous, since so is ψ. �

To state our next corollary, we recall the notion of characteristic
classes in algebraic geometry, after [Vis89]. Given an algebraic
group G, a characteristic class for G-bundles is a function c that
associates to every such bundle π : X → Y a class c(π) ∈ CH∗(Y )
(the Chow cohomology ring of X with rational coefficients), such
that f is contravariant in the following sense: for any morphism f :
Y ′ → Y , we have c(π′) = f ∗c(π), where π′ : X ×Y Y

′ → Y ′ denotes
the pull-back bundle, and f ∗ : CH∗(Y ) → CH∗(Y ′) the pull-back
morphism. Characteristic classes form a graded Q-algebra denoted
by C(G); it was shown by Edidin-Graham (see [EG97, EG98]) and
Totaro (see [Tot99]) that C(G) is generated by the Chern classes of
associated vector bundles.

Corollary 7.2.6 All characteristic classes of homogeneous G-
bundles over an abelian variety are algebraically trivial.

Proof: It suffices to show that all the Chern classes of the vec-
tor bundle p : EV → A, associated to a homogeneous G-bundle
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π : X → A and a G-module V , are algebraically trivial. By Theo-
rem 1.5.1, EV has a filtration with successive quotients being alge-
braically trivial line bundles Li. Hence the Chern classes of EV are
the elementary symmetric functions in the classes c1(Li), and thus
are algebraically trivial. �

7.3 Special classes of principal bundles

Throughout this section, we assume that char(k) = 0 and G is a
connected reductive algebraic group. Recall that a Levi subgroup
of G is the centralizer of a subtorus; then the Levi subgroups are
exactly the maximal connected reductive subgroups of the parabolic
subgroups of G.

For example, when G = GLn, the Levi subgroups are just the
conjugates of the subgroups GLn1×· · ·×GLnr

, where n1+· · ·+nr =
n.

Let π : X → Y be a G-bundle over an arbitrary base. Following
[BBN05], we say that π is indecomposable if it has no reduction of
structure group to a proper Levi subgroup of G. For example, when
G = GLn, the indecomposability of π is equivalent to that of the
associated vector bundle p : X ×G kn → Y .

We now characterize those homogeneous bundles over an abelian
variety that are indecomposable, in terms of the data of their clas-
sification:

Proposition 7.3.1 With the notation of Theorem 7.1.3, the fol-
lowing are equivalent for a homogeneous G-bundle π : X → A:

(i) π is indecomposable.

(ii) H is not contained in a proper Levi subgroup of G.

(iii) Every subtorus of CG(H) is contained in the center Z of G.

(iv) The neutral component (CG(H)/Z)o is unipotent.
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Proof: (i) =⇒ (ii) Let L ⊂ G be a Levi subgroup. If H ⊂ L,
then X ∼= G ×L Y , where Y := L ×H G. So π has a reduction of
structure group to the L-bundle π |Y : Y → A.

(ii) =⇒ (i) Let L be as above. Assume that π has a reduction of
structure group to L and denote by ϕ : X → G/L the corresponding
G-equivariant morphism. Since G/L is affine, ϕ factors through a
G-equivariant morphism G/H → G/L by Remark 7.1.5. Hence H
is contained in some conjugate of L.

(ii)⇔(iii) Let T be a subtorus of G, then H ⊂ CG(T ) if and
only if T ⊂ CG(H). Moreover, CG(T ) = G if and only if T ⊂ Z.
This yields the required equivalence.

Finally, (iii)⇔(iv) follows from the characterization of the con-
nected unipotent algebraic groups as those connected affine alge-
braic groups that contain no non-trivial torus. �

Remark 7.3.2 The equivalence of (i), (iii) and (iv) also follows
from a result in [BBN05]: a G-bundle π : X → Y (over an arbi-
trary base) is indecomposable if and only if AutGY (X)/Z contains
no non-trivial torus. It is also proved there that every G-bundle
has a reduction of structure group to a smallest (up to conjugacy)
Levi subgroup LX ; moreover, the corresponding LX-bundle is inde-
composable.

For a homogeneous bundle π : X → A, we have LX = CG(T )
where T is a maximal torus of CG(H), as can be proved along the
lines of the above proof.

Next, we introduce a notion of simplicity for a G-bundle π :
X → Y , namely, we say that π is simple if AutGY (X) = Z. Here Z
is identified to a subgroup scheme of AutGY (X) as in Remark 6.1.5.
When G = GLn, this is equivalent to the condition that the associ-
ated vector bundle p : E := X ×G kn → Y is simple, i.e., its vector
bundle endomorphisms are just scalars.

The structure of simple homogeneous bundles is easily de-
scribed:

Proposition 7.3.3 A homogeneous G-bundle π : X → A is simple
if and only if G is a torus; then X is a semi-abelian variety over
A.
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Proof: By Proposition 7.1.4, π is simple if and only if we have the
equality CG(H) = Z. Since H is commutative, this equality implies
that H ⊂ Z, and hence CG(H) = G. Thus, G is commutative, and
therefore a torus. So X = G ×H G is a connected commutative
algebraic group, extension of A by G. Conversely, if X is a semi-
abelian variety over A, then CG(H) = G = Z. �

In particular, there are very few simple bundles; we thus in-
troduce a weaker notion. We say that a G-bundle π : X → Y is
irreducible if the quotient AutGY (X)/Z is finite. For instance, the
SO3-bundle constructed in Example 7.1.6(i) is irreducible but not
simple. We now obtain group-theoretical characterizations of those
homogeneous bundles that are irreducible:

Proposition 7.3.4 With the notation of Theorem 7.1.3, the fol-
lowing conditions are equivalent for a homogeneous G-bundle π :
X → A:

(i) π is irreducible.

(ii) H is diagonalizable and not contained in any proper Levi sub-
group of G.

(iii) H is not contained in any proper parabolic subgroup of G.

Proof: (i) =⇒ (ii) Let U denote the unipotent part of H. Then
U is a connected unipotent subgroup of CG(H), and hence must be
trivial. Thus H is diagonalizable. Also, H is not contained in any
proper Levi subgroup of G by Proposition 7.3.1.

(ii) =⇒ (iii) Assume that H ⊂ P for some parabolic subgroup
P of G. Then, H being reductive, it is contained in a Levi subgroup
of P .

(iii) =⇒ (i) The assumption implies that H is reductive; hence
so is CG(H). Let T be a subtorus of CG(H); then H is contained
in CG(T ), a Levi subgroup of G. Thus, CG(T ) = G, i.e., T ⊂ Z.
It follows that CG(H)/Z is a reductive group containing no non-
trivial torus, and hence is finite. �
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Finally, we characterize those G-bundles π : X → A that are ir-
reducible and homogeneous, in terms of their adjoint vector bundle
ad(π), i.e., the associated vector bundle to the adjoint representa-
tion of G in Lie(G):

Theorem 7.3.5 The following conditions are equivalent for a prin-
cipal bundle π : X → A under a semi-simple algebraic group G:

(i) π is homogeneous and irreducible.

(ii) Hi(A, ad(π)) = 0 for all i ≥ 0.

(iii) H0(A, ad(π)) = H1(A, ad(π)) = 0.

Proof: (i) =⇒ (ii) We have

ad(π) ∼= X ×G Lie(G) = (G×H G) ×G Lie(G) ∼= G ×H Lie(G).

Moreover, H being a finite commutative group, there is an isomor-
phism of H-modules

Lie(G) ∼=
⊕

λ∈Ĥ

Lie(G)λ,

where Ĥ denotes the character group of H, and Lie(G)λ the λ-
weight space. This yields an isomorphism of vector bundles

ad(π) ∼=
⊕

λ∈Ĥ

mλLλ,

where Lλ denotes the line bundle over A = G/H associated to
the one-dimensional H-module kλ with weight λ, and mλ :=
dim Lie(G)λ.

We claim that Lλ is non-trivial for every λ such that Lie(G)λ 6=
0. Indeed, any such λ is non-zero, since Lie(G)H = Lie(CG(H)) = 0.
Also, note that

H0(A,Lλ) ∼= (O(G) ⊗ kλ)
H ∼= O(G)−λ.

Since O(G) is the trivial H-module k, we see that H0(A,Lλ) = 0
and hence Lλ is non-trivial, proving the claim.
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By that claim and [Mum08, §III.16], we obtain that Hi(A,Lλ) =
0 for all i ≥ 0. This yields the required vanishing.

(ii) =⇒ (iii) is obvious.
(iii) =⇒ (i) The smooth morphism π : X → A yields an exact

sequence of tangent sheaves

0 → Tπ → TX → π∗(TA) → 0

where Tπ denotes the relative tangent sheaf. Since π is a G-bundle,
Tπ is isomorphic to OX ⊗ Lie(G) via the action of Lie(G) on OX

by vector fields. Moreover, TA ∼= OA ⊗ Lie(A), and hence we get
an exact sequence

0 → OX ⊗ Lie(G) → TX → OX ⊗ Lie(A) → 0.

Also, note that all these sheaves are G-linearized (where G acts
trivially on Lie(A)), and the morphisms are compatible with the
linearizations. So the associated long exact sequence of cohomology
begins with an exact sequence of G-modules

0 → O(X) ⊗ Lie(G) → H0(X,TX) →O(X) ⊗ Lie(A)

→ H1(X,OX) ⊗ Lie(G).

Taking G-invariants yields the exact sequence

0 → (O(X) ⊗ Lie(G))G →H0(X,TX)G → Lie(A)

→ (H1(X,OX) ⊗ Lie(G))G,

since G is reductive and O(X)G ∼= O(A) = k. But we have isomor-
phisms

(Hi(X,OX) ⊗ Lie(G))G ∼= Hi(A, ad(π))

for all i ≥ 0, as π : X → A is affine and (π∗(OX) ⊗ Lie(G))G is
the sheaf of local sections of the adjoint vector bundle ad(π). Since
Hi(A, ad(π)) = 0 for i = 0, 1, it follows that the map

π∗ : H0(X,TX)G → Lie(A)

is an isomorphism. Thus, the image of π∗ : AutG(X) → Aut(A)
contains Auto(A) = A, i.e., π is homogeneous. Also, the kernel of
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π has dimension 0, i.e., AutGA(X) is finite; hence π is irreducible. �

Note that the assumption of semi-simplicity cannot be omitted
in the above statement. Indeed, for any Gm-bundle π : X → A,
the adjoint vector bundle is just the trivial line bundle, and hence
has non-zero cohomology groups in all degrees 0, . . . , dim(A). But
π is homogeneous and irreducible if (and only if) the corresponding
line bundle is algebraically trivial.
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Généralités. Descente par morphismes fidèlement plats,
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