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Irrationality of The Square Root of Two 
-A Geometric Proof 

Tom M. Apostol 

This note presents a remarkably simple proof of the irrationality of 11 that is a 
variation of the classical Greek geometric proof. 

By the Pythagorean theorem, an isosceles right triangle of edge-length 1 has 
hypotenuse of length x/I. If 11 is rational, some positive integer multiple of this 
triangle must have three sides with integer lengths, and hence there must be a 
smallest isosceles right triangle with this property. But inside any isosceles right 
triangle whose three sides have integer lengths we can always construct a smaller 
one with the same property, as shown below. Therefore 11 cannot be rational. 

If this is an isosceles right triangle then there is a smaller one with 
with integer sides, the same property. 

Figure 1 

Construction. A circular arc with center at the uppermost vertex and radius equal 
to the vertical leg of the triangle intersects the hypotenuse at a point, from which a 
perpendicular to the hypotenuse is drawn to the horizontal leg. Each line segment 
in the diagram has integer length, and the three segments with double tick marks 
have equal lengths. (Two of them are tangents to the circle from the same point.) 
Therefore the smaller isosceles right triangle with hypotenuse on the horizontal 
base also has integer sides. 
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The reader can verify that similar arguments establish the irrationality of 
vn2 + 1 and n2 - 1 for any integer n > 1. For +n2 1 use a right triangle with 
legs of lengths 1 and n. For /n2 - 1 use a right triangle with hypotenuse n and 
one leg of length 1. 
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Fundamental Theorem of Algebra-Yet 
Another Proof 

Anindya Sen 

Theorem. The Fundamental Theorem of Algebra. Let 

P(z) = aoz + alz 1 + -- +akZn-k + + 

be a polynomial of degree n ? 1 with complex numbers ai as coefficients. Then P has a 
root, i.e., there is a c E C such that P(l) = 0. 

We prove the theorem by showing that Image(P) = C. 

We assume the standard result that a complex polynomial P: C -> C is a proper 
map, i.e., P-1(A) is compact whenever A c C is compact. (P is continuous, and 
IP(x)I -> oo as Ixl -> oo. Hence, if A c C is closed and bounded, so is P-1(A). 
Hence, P is proper.) 

Let f: U -* R2 be a differentiable map of an open set U c R2 to R2. A point 
x E U is said to be a regularpoint of f if Df(x): R2 -> R2 is invertible. Otherwise, 
x is said to be a criticalpoint of f. A point y c R2 is said to be a critical value of f 
if it is the image of a critical point. 

With this notation in mind, we first prove 

Lemma 1. Let K be the set of critical values of P. Then K and P' (K) are both finite 
subsets of C. 

Proof: The critical points of P are the points at which P'(z) = 0. Since P' is a 
polynomial of degree n - 1, there are at most n - 1 critical points. Since each 
critical value is the image of a critical point, K has at most n - 1 points. Now each 
critical value has at most n inverse images, hence, P-1(K) has at most n(n - 1) 
points. (We use the fact that a complex polynomial of degree k has at most k 
roots. The proof of this result does not use the fundamental theorem of algebra.) 
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