Devoir 6

- 5) Soit $v = (a, b) \neq (0, 0) \in \mathbf{R}^2$ un vecteur non nul du plan. a) Prouver que
 - a1) l'application $f: \mathbf{R}^2 \to \mathbf{R}, f(u) = \langle u, v \rangle$ qui a $u = (x, y) \in \mathbf{R}^2$ associe son produit scalaire $\langle u, v \rangle = xa + yb$ avec v est linéaire. Quel est son noyau?
 - a2) l'application $g: \mathbf{R}^2 \to \mathbf{R}, g(u) = \det(u, v)$ qui a $u = (x, y) \in \mathbf{R}^2$ associe le déterminant $\det(u, v) = \begin{vmatrix} x & a \\ y & b \end{vmatrix}$ de u et v est linéaire. Quel est son noyau?
 - b) Déterminer le noyau de $h = (f, g) : \mathbf{R}^2 \to \mathbf{R}^2, h(u) = (f(u), g(u)).$
 - c) Il y a t il un vecteur $u \in \mathbf{R}^2$ tel que h(u) = v?
- **6)** Soit E le sous-espace de \mathbf{R}^5 engendré par les vecteurs $v_1=(1,1,1,1,1)$ $v_2=(1,-1,1,2,1), v_3=(3,-1,3,5,3), v_4=(1,1,-1,1,1), v_5=(2,0,0,3,2), v_6=(3,3,1,3,3), v_7=(3,1,1,4,3)$ et w=(3,1,1,4,3).
 - a) Déterminer une base de E ainsi que les coordonnées dans cette base des vecteurs v_1, \ldots, v_7 .
 - b) En déduire les solutions $(x_1, x_2, x_3, x_4, x_5, x_6, x_7) \in \mathbf{R}^7$ du système

$$\sum_{k=1}^{7} x_k \cdot v_k = w$$

7) Soit $f: E \to F$ une application linéaire entre deux espaces vectoriels. Après avoir rappelé les définitions de l'image Im(f) et du noyau ker(f) de f, prouver que E est de dimension finie si et seulement si Im(f) et ker(f) sont tous deux de dimension finie.