Devoir 5 (suite des contrôles 2) [à rendre aux TD des 23 et 24 Novembre 2006]

6) Résoudre les systèmes

$$\begin{cases} x & + z + t = 1 \\ 2x + y + 3z + t = 1 \\ 3x + y + 4z + t = 1 \\ x + y + 2z & = 1 \end{cases} \begin{cases} x & + z + t = 0 \\ 2x + y + 3z + t = 1 \\ 3x + y + 4z + t = 1 \\ x + y + 2z & = 1 \end{cases}$$

7) \mathbf{R}^n est muni du produit scalaire usuel $\langle (x_1, \dots, x_n), (y_1, \dots, y_n) \rangle = \sum_{k=1}^n x_k y_k$.

Rappeler la preuve de si $x, y \in \mathbf{R}^n$ alors on a la majoration

$$|< x, y > | \le ||x|| ||y||$$

avec égalité si et seulement si les vecteurs x et y sont liés.

- 8) On rappelle que si $x, y \in \mathbf{R}^3$ on a la relation $||x \wedge y||^2 + \langle x, y \rangle^2 = ||x|| \cdot ||y||^2$
 - a) Soit $u, v, w \in \mathbf{R}^3$ rappeler la définition du déterminant $\det(u, v, w)$ des vecteurs u, v, w, puis déduire de a) (et de la relation rappelée en 7)) que l'on a

$$|\det(u, v, w)| \le ||u|| \cdot ||v|| \cdot ||w||$$

avec égalité si et seulement si $\langle u, v \rangle = \langle v, w \rangle = \langle w, u \rangle = 0$.

- b) Déduire de b) et de la règle de Sarrus que si les coordonnées de u, v et w sont entières de valeur absolue au plus 1 [c.a.d. dans $\{-1,0,1\}$] alors $|\det(u,v,w)| \leq 4$.
 - c) Calculer les déterminants $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & 1 & -1 \end{vmatrix}$, $\begin{vmatrix} 1 & 0 & 1 \\ 1 & -1 & -1 \\ 1 & 1 & -1 \end{vmatrix}$, $\begin{vmatrix} 1 & 0 & 1 \\ 0 & -1 & -1 \\ 1 & 1 & -1 \end{vmatrix}$.