Quelques calculs d'intégrales

- 1) a) Soit $I_n = \int_{-1}^{1} (1-x^2)^n dx$. Par intégration par partie établir, pour n > 0 la relation $\frac{2n+1}{2n}I_n = I_{n-1}$. En déduire $I_n = \frac{2^{2n+1}(n!)^2}{(2n+1)!} = \frac{2}{n+1}2^{2n} \binom{2n+1}{n}^{-1}$.
 - b) A partir de la formule de a), vérifier la véracité de la minoration du cours

$$I_n \ge 2 \int_0^1 (1-x)^n dx = \frac{2}{n+1}$$

- c) A l'aide de la formule de Striling $m! \sim \! \sqrt{2\pi m} (\frac{m}{e})^m$ estimer
- c1) l'erreur faite en b).
- c2) Si $\lambda \in [0,1[$ la norme uniforme $||P_n||_{1-\lambda^2 \le x^2 \le 1}$ de la restriction du polynôme $P_n(x) = \frac{(1-x^2)^n}{I_n}$ au complémentaire [-1,1] $-\lambda,\lambda[$ de $]-\lambda,\lambda[$ dans [-1,1] et comparez cette estimation avec celle faite cours.
- 2) a) Etablir pour tout $t \in \mathbf{R}$ la relation $1 + \cos(t) = \frac{1}{2} (e^{i\frac{t}{2}} + e^{-i\frac{t}{2}})^2$ [= $2\cos^2(\frac{t}{2})$]. b) Rappeler pourquoi il y a pour $0 \le k \le n$ des $a_k \in \mathbf{R}$ tels que, pour tout $t \in \mathbf{R}$ on ait la relation de linéarisation : $(\frac{1+\cos(t)}{2})^n = \sum_{k=0}^n a_k \cos(kt)$. c) Déduire de a) la valeur des a_k , puis celle de $J_n = \int_{-\pi}^{\pi} (\frac{1+\cos(t)}{2})^n dt = \frac{2\pi}{4^n} \binom{2n}{n}$.
 - d) Comme dans 1) b) et c) Comparer cette valeur avec la minoration du cours $J_n \geq \int_{-\infty}^{\pi} \left(\frac{1+\cos(t)}{2}\right)^n \sin(t)dt = \frac{2}{n+1}$, estimer la norme uniforme $\|Q_n\|_{|\delta| \leq t \leq 1}$

de la restriction du polynôme trigonométrique $Q_n(t) = \frac{\left(\frac{1+\cos(t)}{2}\right)^n}{J_n}$ au complémentaire $[-\pi,\pi]$ $]-\delta,\delta[$ de $]-\delta,\delta[$ dans $[-\pi,\pi]$ et comparer avec l'estimation du cours.

Conséquences du théorème de Weierstrass

- 3) Soit $f:[a,b] \to \mathbf{R}$ une application continue telle que pour tout entier naturel $n \in \mathbf{N}$ on ait $\int_a^b f(x)x^n dx = 0. \text{ Prouver que } f = 0.$
- 4) Soit $\omega = e^{\frac{i\pi}{4}}$, pour $n \in \mathbb{N}$ on considère l'intégrale $I_n = \int_0^\infty t^n e^{-\omega t} dt$.
 - a) Prouver que pour tout entier naturel $n \in \mathbb{N}$ l'intégrale I_n est convergente.
 - b) Etablir pour n positif la relation de récurrence $I_n = \frac{n}{\omega} I_{n-1}$.
 - c) En déduire la valeur $I_n = \frac{n!}{\omega^{n+1}}$, puis :
 - d) Pour tout entier naturel $m \in \mathbb{N}$ on a $\int_{0}^{\infty} t^{4m+3} e^{-\frac{t}{\sqrt{2}}} \sin(\frac{t}{\sqrt{2}}) dt = 0$.
 - e) Déduire de d) que si $f: [0, +\infty[\to \mathbf{R}, f(x) = e^{-x^{\frac{1}{4}}} \sin(x^{\frac{1}{4}}), \text{ alors pour tout entier naturel}]$ $n \in \mathbb{N}$ la fonction $x^n f(x)$ est absolument intégrable sur $[0, +\infty[$ et $\int_{\hat{x}}^{+\infty} x^n f(x) dx = 0$. [on pourra effectuer le changement de variable $x = \frac{t^4}{4}$].

Calculs de coefficients de Fourier

- 5) Soit $f: \mathbf{R} \to \mathbf{R}$ la fonction 2π -périodique t.q. $f(\pi) = 0$ et si $x \in]-\pi, \pi[, f(x) = x]$ a) Calculer les coefficients de Fourier réels $a_0(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$ et pour
 - $n \in \mathbb{N} \setminus \{0\}, a_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) cos(nx) dx, b_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) sin(nx) dx.$ b) Par sommation d'Abel, prouver que la série de Fourier de f converge vers f.
- 6) Reprendre les questions de l'exercice 5) avec $g: \mathbf{R} \to \mathbf{R}$ définie par, si $k \in \mathbf{Z}$ alors $g((k+\frac{1}{2})\pi) = 0$ et si $|x-k\pi| < \frac{\pi}{2}, g(x) = (-1)^k$. Comparer avec 1) de TD3.

Suite du TD 5 et compléments

D'autres calculs et estimations d'intégrales

1') a) Soit n un entier positif et $f, g : [a, b] \to \mathbf{R}$ deux fonctions de classe \mathbb{C}^n . Etablir

$$\int_{a}^{b} f^{(n)}(x)g(x)dx = \left[\sum_{k=1}^{n} (-1)^{k+1} f^{(n-k)} g^{(k-1)}\right]_{a}^{b} + (-1)^{n} \int_{a}^{b} f(x)g^{(n)}(x)dx$$

- b) Calculer la valeur de l'intégrale I_n de 1) a) en appliquant à $f(x) = (1+x)^{2n}$ et $g(x) = (1-x)^n$ la formule d'intégration par parties itérée établie en a).
- 2') Soit $K_n = \int_{-\pi}^{\pi} \cos(\frac{t}{2})^{2n} dt$. Par intégration par partie établir, pour n > 0, la relation de récurrence $K_n = \frac{2n-1}{2n} K_{n-1}$. En déduire un autre calcul de l'intégrale J_n de 2).
- 7) Soit $f:[a,b] \to \mathbf{R}$ une fonction intégrable au sens de Riemann [donc vérifiant la condition de Riemann: Pour tout $\epsilon > 0$ il y a $\delta > 0$ tel que si $a = a_0 < \cdots < a_N = b$ avec $\max_{1 \le i \le N} a_i a_{i-1} \le \delta \text{ alors } \sum_{i=1}^n \sup_{a_{i-1} \le s, t \le a_i} |f(s) f(t)| (a_i a_{i-1}) \le \epsilon].$
 - a) Déduire de la condition de Riemann $\lim_{\omega \to +\infty} \int_a^b f(t) \sin(\omega t) dt = 0.$
 - b) Déduire du cours le résultat (apparemment) plus faible $\lim_{\mathbf{N}\ni k\to+\infty}\int_a^b f(t)\sin(k\frac{2\pi}{b-a}\,t)dt=0.$
 - c) Prouver que si $\alpha \in [c,d]$ est dans un intervalle borné alors, uniformément en α , on a :

$$\lim_{h \to 0} \int_{a}^{b} [f(t)\cos(\alpha(t+h)) - f(t)\cos(\alpha t)]^{2} dt = 0 = \lim_{h \to 0} \int_{a}^{b} [f(t)\sin(\alpha(t+h)) - f(t)\sin(\alpha t)]^{2} dt$$

d) En écrivant $\frac{(b-a)\omega}{2\pi} = \left[\frac{(b-a)\omega}{2\pi}\right] + \left\{\frac{(b-a)\omega}{2\pi}\right\}$, où $\left[\frac{(b-a)\omega}{2\pi}\right] \in \mathbf{Z}$ et $\left\{\frac{(b-a)\omega}{2\pi}\right\} \in [0,1[$, déduire a) des résultats du cours et de c).

La preuve de Bernstein du théorème de Weierstrass

8) Si n, ν sont entiers avec $0 \le \nu \le n$, le $\nu^{\text{ième}}$ polynôme de Bernstein de degré n est $\varphi_{\nu} = \varphi_{\nu,n} : [0,1] \to [0,1], \varphi_{\nu}(x) = \binom{n}{\nu} x^{\nu} (1-x)^{n-\nu}$. On se propose d'établir :

Soit $f:[0,1]\to \mathbf{R}$ continue avec pour tout $x\in[0,1], |f(x)|\leq 1$ et $\epsilon>0, \delta>0$ tels que $s,t\in[0,1], |s-t|\leq \delta$ implique $|f(s)-f(t)|\leq \epsilon$ alors pour tout entier $n\geq\frac{2}{\epsilon\delta^2}$ et $x\in[0,1]$ on a :

$$|f(x) - \sum_{\nu=0}^{n} f(\frac{\nu}{n})\varphi_{\nu}(x)| \le \epsilon$$

- a) Prouver que la somme $\sum_{\nu=0}^{n} \varphi_{\nu}$ est la fonction constante 1.
- b) Etablir pour tout entiers naturels $\nu, n \in \mathbb{N}$ avec $0 < \nu \le n$ la relation $\nu \binom{n}{\nu} = n \binom{n-1}{\nu-1}$, en déduire si $1 < \nu \le n$ la relation $\nu(\nu-1) \binom{n}{\nu} = n(n-1) \binom{n-2}{\nu-2}$, puis

$$\sum_{\nu=0}^{n} \nu \varphi_{\nu}(x) = nx, \qquad \sum_{\nu=0}^{n} \nu(\nu - 1)\varphi_{\nu}(x) = n(n-1)x^{2}$$

(*)
$$\sum_{\nu=0}^{n} (\nu - nx)^{2} \varphi_{\nu}(x) = nx(1-x)$$

c) Etablir $\left|f(x) - \sum_{\nu=0}^{n} f(\frac{\nu}{n})\varphi_{\nu}(x)\right| = \left|\sum_{\nu=0}^{n} \left(f(x) - f(\frac{\nu}{n})\right)\varphi_{\nu}(x)\right|$. En coupant cette dernière somme suivant que $|\nu - nx| \le \delta n$ ou $|\nu - nx| > \delta n$ (et dans ce dernier cas utilisant $1 \le \frac{(\nu - nx)^2}{\delta^2 n^2}$) déduire le théorème de Bernstein de la relation (*).