Devoir à rendre les 28 et 29 Septembre 2006

[indiquez le temps passé et, si vous travaillez à plusieurs, rendez une seule copie par groupe de travail

Exercices [Ces deux exercices 1) et 2) sont indépendants]

1) Soit n un entier naturel et

$$a_n = \frac{\prod_{k=1}^{n} (9k^2 - 1)}{\prod_{l=1}^{n} (4l^2 + 2l)}$$

- a) Expliciter $a_1, a_2, 3a_1, 3^2a_2$
- b) En général calculer a_n

[exprimer a_n par une "formule fermée" (avec des factorielles, mais sans le symbole $\prod_{k=*}^{n}$)]

- c) Prouver que $3^n a_n$ est un entier naturel.
- 2) Soit n un entier naturel, calculer

$$\sum_{k=0}^{n} 2^{3n-4k} 3^{2k} \binom{n}{k}$$

Problème [indépendant des exercices 1) et 2)]

3) Prouver que l'équation

 $(E) X^2 + X - 1 = 0$

a deux solutions, qu'elles sont réelles de signe opposé, résoudre (E).

- 4) On se place dans le plan complexe.
 - a) Tracer le cercle C de centre $-\frac{1}{4}$ et passant par le point $\frac{i}{2}$.
 - b) Prouver que C coupe l'axe réel en deux points A et B. On note x_A et x_B leurs affixes et suppose $x_B < x_A$. Prouvez que $2x_A$ et $2x_B$ sont les solutions de (E).
- 5) Soit n un entier supérieur à un et ξ une racine $n^{\text{ième}}$ de l'unité différente de 1 [c.a.d. ξ est un nombre complexe tel que $\xi^n = 1$ et $\xi \neq 1$]. Prouver

$$\sum_{k=0}^{n-1} \xi^k = 0$$

et expliciter cette relation (sans utiliser le symbole $\sum_{k=*}^{**}$) dans le cas n=5.

- **6)** a) Un des nombres $e^{i\frac{2\pi}{5}}$, $e^{i\frac{4\pi}{5}}$, $e^{i\frac{6\pi}{5}}$, $e^{i\frac{8\pi}{5}}$ est-il conjugué de $e^{i\frac{2\pi}{5}}$ et si oui lequel?
 - b) Prouver $2\cos(\frac{2\pi}{5}) = e^{i\frac{2\pi}{5}} + (e^{i\frac{2\pi}{5}})^4$, expliciter $(e^{i\frac{2\pi}{5}} + (e^{i\frac{2\pi}{5}})^4)^2$. Déduire alors de **5**) que $2\cos(\frac{2\pi}{5})$ est la solution positive de l'équation (E).
 - c) Déduire de ce qui précède que la tangente au cercle C au point A coupe le cercle unité (le cercle de centre 0 et rayon 1) en les points $e^{i\frac{2\pi}{5}}$ et $e^{i\frac{8\pi}{5}}$. Quelle est l'intersection de la tangente en B au cercle C avec le cercle unité?