Devoir à la maison (à rendre le lundi 20 avril).

Dans ce qui suit, $(\Omega, \mathcal{F}, \mathbb{P})$ est un espace probabilisé et \mathcal{G} est une sous-tribu de \mathcal{F} .

Exercice 1. Variance conditionnelle.

Soit X une variable aléatoire de carré intégrable sur $(\Omega, \mathcal{F}, \mathbb{P})$. On appelle variance conditionnelle de X sachant \mathcal{G} la variable aléatoire

$$\operatorname{var}(X|\mathcal{G}) = \mathbb{E}[(X - \mathbb{E}[X|\mathcal{G}])^2 | \mathcal{G}].$$

- 1. Montrer que $var(X|\mathcal{G}) = \mathbb{E}[X^2|\mathcal{G}] \mathbb{E}[X|\mathcal{G}]^2$ presque sûrement.
- 2. Montrer que

$$\operatorname{var}(X) = \mathbb{E}(\operatorname{var}(X|\mathcal{G})) + \operatorname{var}(\mathbb{E}[X|\mathcal{G}])$$

 $(\operatorname{var}(X) = \operatorname{var}(X | \{\Omega, \emptyset\}) \text{ désigne la variance usuelle}).$

3. En déduire que

$$\operatorname{var}(\mathbb{E}[X|\mathcal{G}]) \leq \operatorname{var}(X)$$
.

Que peut-on dire de X si cette inégalité est une égalité ?

Indication : on pourra utiliser un résultat de l'exercice 10 de la feuille de TD 1.

Exercice 2. Inégalité de Tchebychev.

Soit a>0 et X une variable aléatoire de carré intégrable sur $(\Omega,\mathcal{F},\mathbb{P})$. Montrer que

$$\mathbb{P}[|X| \ge a | \mathcal{G}] \le \frac{\mathbb{E}[X^2 | \mathcal{G}]}{a^2} \text{ p.s.}$$

où l'on a noté $\mathbb{P}[|X| \geq a | \mathcal{G}] = \mathbb{E}[1_{\{|X| > a\}} | \mathcal{G}].$

Exercice 3. Espérance conditionnelle nulle d'une variable aléatoire positive.

Soit X une variable aléatoire sur $(\Omega, \mathcal{F}, \mathbb{P})$ à valeurs dans $[0, \infty]$. Montrer que pour presque tout $\omega \in \Omega$,

- 1. $\mathbb{E}[X|\mathcal{G}](\omega) = 0 \implies X(\omega) = 0$
- 2. $X(\omega) = \infty$ \Rightarrow $\mathbb{E}[X|\mathcal{G}](\omega) = \infty$.

Exercice 4. Temps d'arrêt (1).

Soit $(X_n)_{n\in\mathbb{N}}$ un processus stochastique à temps discret à valeurs dans \mathbb{R} , défini sur son espace probabilisé canonique $(\Omega = \mathbb{R}^{\mathbb{N}}, \mathcal{B}_{\infty}, \mathbb{P})$. Soit $(\mathcal{F}_n^X)_{n\in\mathbb{N}}$ la filtration naturelle de $(X_n)_{n\in\mathbb{N}}$. Pour toute variable aléatoire τ sur $(\mathbb{R}^{\mathbb{N}}, \mathcal{B}_{\infty}, \mathbb{P})$ à valeurs dans \mathbb{N} , on définit $\theta_{\tau} : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ par (cf. cours)

$$\theta_{\tau}: (x_n)_{n\in\mathbb{N}} \mapsto (x_{n+\tau((x_i)_{i\in\mathbb{N}})})_{n\in\mathbb{N}}.$$

Montrer que, si S et T sont deux temps d'arrêt de $(\mathcal{F}_n^X)_{n\in\mathbb{N}}$, alors les variables aléatoires suivantes sont également des temps d'arrêt de la même filtration :

- 1. $\min\{S, T\}, \max\{S, T\}, \text{ et}$
- 2. $T + S \circ \theta_T$.

Exercice 5. Temps d'arrêt (2).

On considère l'espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ avec $\Omega = \mathbb{N}^*$ et $\mathcal{F} = \mathcal{P}(\mathbb{N}^*)$ (tribu de toutes les parties de \mathbb{N}^*). Soit $(\mathcal{F}_n)_{n\in\mathbb{N}^*}$ la filtration de (Ω, \mathcal{F}) définie pour tout $n\in\mathbb{N}^*$ par

$$\mathcal{F}_n = \sigma(\{1\}, \{2\}, \dots, \{n\})$$

(tribu engendrée par les n singletons $\{1\}, \{2\}, \ldots, \{n\}$ de \mathbb{N}^*). Montrer que la variable aléatoire $T: \mathbb{N}^* \to \mathbb{N} \cup \{\infty\}$ est un temps d'arrêt de $(\mathcal{F}_n)_{n \in \mathbb{N}^*}$ si et seulement si il existe $k \in \mathbb{N}^* \cup \{\infty\}$ tel que pour tout $\omega \in \mathbb{N}^*$,

$$T(\omega) = k$$
 si $\omega > k$ et $T(\omega) \ge \omega$ si $\omega \le k$.

Indication (\Rightarrow) : montrer que parmi toutes les parties $\{T=n\}\subset\mathbb{N}^*$ avec $n\in\mathbb{N}^*$, au plus une seule est une partie infinie.

Exercice 6. Problème.

Soit $n \in \mathbb{N}^*$. On dit qu'une fonction $f: \{0,1\}^n \to \mathbb{N}$ est *croissante* si et seulement si pour tout (x_1,\ldots,x_n) et $(y_1,\ldots,y_n) \in \{0,1\}^n$,

$$x_i \leq y_i \ \forall \ i = 1, \dots, n \quad \Rightarrow \quad f(x_1, \dots, x_n) \leq f(y_1, \dots, y_n) \ .$$

1. Soient $(X_1^{(p)},\ldots,X_n^{(p)})$ et $(X_1^{(q)},\ldots,X_n^{(q)})$ des n-uplets de variables aléatoires indépendantes de même loi de Bernoulli (à valeurs dans $\{0,1\}$) de paramètres $p=\mathbb{P}[X_i^{(p)}=1]$ et $q=\mathbb{P}[X_i^{(q)}=1]$, respectivement. Montrer que, pour toute fonction croissante $f:\{0,1\}^n\to\mathbb{R}$,

$$p \le q \quad \Rightarrow \quad \mathbb{E}[f(X_1^{(p)}, \dots, X_n^{(p)})] \le \mathbb{E}[f(X_1^{(q)}, \dots, X_n^{(q)})].$$
 (1)

Indication : considérer un n-uplet (Y_1, \ldots, Y_n) de variables aléatoires indépendantes de même loi de Bernoulli de paramètre p/q, tel que (Y_1, \ldots, Y_n) et $(X_1^{(q)}, \ldots, X_n^{(q)})$ sont indépendants. Définir $\widetilde{X}_i^{(p)} = Y_i X_i^{(q)}$ pour $i = 1, \ldots, n$, et montrer que les $\widetilde{X}_i^{(p)}$ sont indépendantes, ont même loi de Bernoulli de paramètre p et satisfont à l'inégalité (1).

- 2. On suppose n=1. Soient f et g deux fonctions croissantes $\{0,1\} \to \mathbb{R}$ et X une variable aléatoire de loi de Bernoulli de paramètre $p, p \in [0,1]$. Montrer que $\operatorname{cov}(f(X),g(X)) \geq 0$. Indication : considérer une nouvelle variable aléatoire \widetilde{X} indépendante de X et de même loi que X et prouver que $\mathbb{E}[(f(X)-f(\widetilde{X}))(g(X)-g(\widetilde{X})] \geq 0$.
- 3. Plus généralement, soit $n \in \mathbb{N}^*$ un entier quelconque. Soient f et g deux fonctions croissantes $\{0,1\}^n \to \mathbb{R}$ et (X_1,\ldots,X_n) un n-uplet de variables aléatoires indépendantes de même loi de Bernoulli de paramètre p. Montrer par récurrence que

$$cov(f(X), g(X)) \ge 0. (2)$$

Indication: conditionner par rapport à (X_1,\ldots,X_{n-1}) puis utiliser l'hypothèse de récurrence.