Devoir surveillé du lundi 27 avril 2009 (durée 2 heures).

Documents autorisés (à l'exclusion de tout autre document) : polycopié de cours, notes de cours et de travaux dirigés.

Dans ce qui suit, $(\Omega, \mathcal{F}, \mathbb{P})$ est un espace probabilisé et \mathbb{E} est l'espérance associée à la probabilité \mathbb{P} .

Exercice 1.

Soit Y une variable aléatoire positive et intégrable sur $(\Omega, \mathcal{F}, \mathbb{P})$ vérifiant $\mathbb{E}[Y] = 1$. On pose

$$\mathbb{Q}(A) = \mathbb{E}[Y1_A] \quad , \quad A \in \mathcal{F} .$$

- 1. Montrer que \mathbb{Q} définit une mesure de probabilité sur (Ω, \mathcal{F}) qui est absolument continue par rapport à \mathbb{P} (c'est-à-dire qui vérifie $\mathbb{P}(A) = 0 \Rightarrow \mathbb{Q}(A) = 0$ pour tout $A \in \mathcal{F}$).
- 2. On note $\mathbb{E}_{\mathbb{Q}}$ l'espérance associée à la probabilité \mathbb{Q} . Montrer que si X est une variable aléatoire réelle \mathbb{P} -presque sûrement bornée sur (Ω, \mathcal{F}) , alors $\mathbb{E}_{\mathbb{Q}}[X] = \mathbb{E}[XY]$.
- 3. Plus généralement, montrer que si \mathcal{G} est une sous-tribu de \mathcal{F} et X une variable aléatoire réelle \mathbb{P} -presque sûrement bornée sur (Ω, \mathcal{F}) , alors

$$\mathbb{E}_{\mathbb{Q}}[X|\mathcal{G}] = \frac{\mathbb{E}[XY|\mathcal{G}]}{\mathbb{E}[Y|\mathcal{G}]} \quad \mathbb{Q}\text{-presque sûrement}$$

où $\mathbb{E}_{\mathbb{Q}}[X|\mathcal{G}]$ désigne l'espérance conditionnelle de X sachant \mathcal{G} relative à la probabilité \mathbb{Q} .

Exercice 2.

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles sur $(\Omega, \mathcal{F}, \mathbb{P})$ telle que pour tout $n \in \mathbb{N}$, (X_0, \ldots, X_n) est un vecteur aléatoire gaussien. On note $(\mathcal{F}_n^X)_{n\in\mathbb{N}}$ la filtration naturelle du processus $(X_n)_{n\in\mathbb{N}}$. Montrer que les trois affirmations suivantes sont équivalentes.

- (1) $(X_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n^X)_{n\in\mathbb{N}}$ -martingale.
- (2) Il existe un réel μ et une suite $(\sigma_n)_{n\in\mathbb{N}}$ de nombres réels tels que

$$\mathbb{E}[X_n] = \mu$$
 , $\operatorname{cov}(X_n, X_m) = \sigma^2_{\min\{n, m\}}$ pour tout $(n, m) \in \mathbb{N}^2$.

(3) Il existe une suite $(V_n)_{n\in\mathbb{N}}$ de variables aléatoires gaussiennes centrées indépendantes telle que

$$X_n = \sum_{k=0}^n V_k + \mathbb{E}[X_0]$$
 pour tout $n \in \mathbb{N}$.

Exercice 3.

Soient $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes sur $(\Omega, \mathcal{F}, \mathbb{P})$ à valeurs dans \mathbb{R} et $(\mathcal{F}_n^X)_{n\in\mathbb{N}}$ la filtration naturelle de $(X_n)_{n\in\mathbb{N}}$. Soient A et B deux boréliens de \mathbb{R} . On suppose que les probabilités $p = \mathbb{P}[X_n \in A]$ et $q = \mathbb{P}[X_n \in B]$ ne dépendent pas de n (pour tout $n \in \mathbb{N}$) et que l'on a p > 0 et q > 0. On pose :

$$T = \inf \left\{ n \in \mathbb{N}^{\star} \; ; \; X_{n-1} \in A, X_n \in B \right\} \, .$$

- 1. Montrer que T est un temps d'arrêt pour la filtration $(\mathcal{F}_n^X)_{n\in\mathbb{N}}$.
- 2. Montrer que $\mathbb{P}[T>2m] \leq (1-pq)^m$ pour tout $m \in \mathbb{N}$. En déduire que T est intégrable.

3. Montrer que la suite $(M_n)_{n\in\mathbb{N}}$ définie ci-dessous est une $(\mathcal{F}_n^X)_{n\in\mathbb{N}}$ -martingale :

$$M_0 = \frac{1}{p} 1_{\{X_0 \in A\}}$$
 , $M_n = \frac{1}{p} 1_{\{X_n \in A\}} + \frac{1}{pq} \sum_{i=1}^n 1_{\{X_{j-1} \in A, X_j \in B\}} - n$, $n \in \mathbb{N}^*$.

- 4. Exprimer $M_T + T$ en fonction de p, q et de la fonction indicatrice $1_{\{X_T \in A\}}$. Discuter les deux cas particuliers où A et B sont disjoints et où $B \subset A$.
- 5. Montrer que $\lim_{n\to\infty} \mathbb{E}[M_{\min\{T,n\}}] = \mathbb{E}[M_T].$

Indication : il suffit de prouver que la martingale $(M_{\min\{T,n\}})_{n\in\mathbb{N}}$ est uniformément intégrable. Utiliser pour cela la question 2 et la majoration $|M_n| \leq (n+q)/(pq)$ pour tout $n \in \mathbb{N}$ (à montrer).

6. En déduire les valeurs de $\mathbb{E}[M_T]$ puis de $\mathbb{E}[T]$ en fonction de p et q dans le cas où A et B sont disjoints puis dans le cas $B \subset A$.