Exercice (environ 7 points)

- 1. (Question de cours) Soit $\gamma:[a,b]\to \mathbf{C}$ un lacet continu et \mathcal{C}^1 par morceaux, et $\Gamma=\gamma([a,b])$. Rappeler la définition de l'indice d'un lacet par rapport à un point $z\in \mathbf{C}\setminus\Gamma$ (noté $\mathrm{Ind}_{\gamma}(z)$), son interprétation géométrique et les propriétés de la fonction Ind_{γ} .
- 2. Montrer que si pour tout $t \in [a, b]$, $|\gamma(t) 1| < 1$, alors $\operatorname{Ind}_{\gamma}(0) = 0$.
- 3. On suppose que $0 \notin \Gamma$. Soit $\delta : [a, b] \to \mathbb{C}$ un lacet continu. C^1 par morceaux, ne passant pas par 0. Exprimer $\operatorname{Ind}_{\delta/\gamma}(0)$ à l'aide de $\operatorname{Ind}_{\delta}(0)$ et $\operatorname{Ind}_{\gamma}(0)$. En déduire que si pour tout $t \in [a, b]$. $|\delta(t) \gamma(t)| < |\gamma(t)|$ alors $\operatorname{Ind}_{\delta}(0) = \operatorname{Ind}_{\gamma}(0)$.
- 4. Soit $(\gamma_s)_{s\in[0,1]}$ une famille de chemins de [a,b] dans C. On suppose que pour tout $s\in[0,1]$ et $t\in[a,b]$, $\gamma_s(t)\neq 0$, et que l'application $H:(s,t)\mapsto \gamma_s(t)$ est continue. Montrer que $\mathrm{Ind}_{\gamma_s}(0)$ ne dépend pas de $s\in[0,1]$. Indication : montrer que $\varepsilon:=\inf\{|\gamma_s(t)|:(s,t)\in[0,1]\times[a,b]\}$ est strictement positif, et utiliser la question précédente.

Problème (environ 13 points)

On se donne un ouvert connexe borné D et un ouvert Ω de \mathbb{C} et tels que $\overline{D} \subset \Omega$.

- 1. Soient h une fonction \mathbb{C}^1 , holomorphe sur Ω , $u = \operatorname{Re} h$ et $m = \inf\{u(z) : z \in \overline{D}\}$. Montrer que la borne inférieure m est atteinte en un point de ∂D .
- 2. Soient f,g deux fonctions \mathbf{C}^1 , holomorphes sur Ω , telles que |f-g|<|f| sur ∂D . Montrer que si f possède un zéro dans D, alors g aussi. Indication : on raisonnera par contraposition, supposant que g n'a pas de zéro dans D et en montrant que $\mathrm{Re}(f/g)>1/2$ sur ∂D .
- 3. Soit f une fonction holomorphe sur Ω . On suppose que f possède un zéro dans D. mais n'en a pas sur ∂D , et on note $\rho = \inf\{|f(z)| : z \in \partial D\}$. Montrer que f(D) contient $D(0,\rho)$. Indication : étant donné $\zeta \in D(0,\rho)$, on appliquera le résultat précédent à la fonction $g = f \zeta$.
- 4. Dans cette question, on suppose que Ω contient $\overline{D}(0,1)$, et on considère une fonction holomorphe f sur Ω , telle que f(0) = 0 et $f'(0) \neq 0$. On note $\lambda = |f'(0)|$ et $M = \sup\{|f(z)| : z \in \overline{D}(0,1)\}$.
 - (a) (Question de cours) Justifier l'existence d'une suite $(a_n)_{n\in\mathbb{N}}$ de coefficients telle que pour tout $z\in\overline{D}(0,1)$.

$$f(z) = \sum_{n=0}^{+\infty} a_n z^n.$$

et exprimer ces coefficients à l'aide des dérivées successives de f.

- (b) Montrer que pour tout $n \in \mathbb{N}$, $|a_n| \leq M$.
- (c) Montrer que pour tout $r \in]0,1[$ et $z \in C(0,r), |f(z)| \ge \lambda r Mr^2/(1-r).$
- (d) Montrer que f(D(0,1)) contient $D(0,\lambda^2/(6M))$. Indication : appliquer le résultat des questions précédentes à $r = \lambda/(3M)$.
- 5. Soit $\overline{D}(a,r)$ un disque fermé inclus dans Ω et g une fonction holomorphe sur Ω . En se ramenant à la situation précédente, montrer que si $g'(a) \neq 0$, alors g(D(a,r)) contient un disque de centre g(a) et de rayon qu'on exprimera en fonction de r, de $\tilde{\lambda} = |g'(a)|$ et de $\tilde{M} = \sup\{|g(z) g(a)| : z \in \overline{D}(a,r)\}$.

Examen Fonctions holomorphes

3 janvier 2017

Documents, calculatrices et téléphones portables interdits.

Dans la notation, il sera tenu compte de la qualité de la rédaction et de la précision des justifications.

Durée: 3h

Exercice 1 (Questions de cours)

- 1. Enoncer les théorèmes de Liouville et de d'Alembert. Déduire le théorème de d'Alembert du théorème de Liouville.
- 2. Enoncer le théorème de représentation conforme de Riemann.

Exercice 2 Soit

$$f(z) = \frac{\exp(1/z)}{1-z}.$$

Déterminer les singularités de f, leur nature et les résidus correspondants.

Exercice 3

1. Soit t un réel fixé. Déterminer les singularités de la fonction de la variable complexe z:

$$f(z) = \frac{e^{itz}}{(z^2 + 1)^2}.$$

Calculer les résidus de f aux points singuliers.

2. Lorsque t > 0, calculer par la méthode des résidus

$$F(t) = \int_{-\infty}^{+\infty} \frac{e^{itx}}{(x^2+1)^2} dx.$$

- 3. Soit $G(z)=z^3\int_{-\infty}^{+\infty}\frac{e^{ix}}{(x^2+z^2)^2}\,dx,\,D=\{z\in\mathbb{C};\,\operatorname{Re} z>0\}.$
 - (a) Expliquer pourquoi G est holomorphe sur D.
 - (b) Montrer que F(t) = G(t) pour tout $t \in \mathbb{R}_+^*$.
 - (c) En déduire la valeur de G(z) pour $z \in D$.

Exercice 4

Soient f et g deux fonctions holomorphes ne s'annulant pas dans un ouvert connexe U contenant le disque unité fermé. On suppose que |f(z)| = |g(z)| pour |z| = 1. Montrer qu'il existe $\lambda \in \mathbb{C}$ avec $|\lambda| = 1$ tel que $f = \lambda g$ sur U. La conclusion est-elle encore vraie si l'on ne suppose plus que f et g ne s'annulent pas ?

T.S.V.P.

Exercice 5

Soit $f: D(0,1) \to \mathbb{C}$ une fonction holomorphe et $r \in (0,1)$. On suppose qu'il existe $z_0 \in D(0,r)$ tel que $f(z_0) = 0$. En écrivant la formule de Cauchy pour 0 et z_0 et en majorant $|f(0)| = |f(z_0) - f(0)|$, montrer que

$$|z_0| \ge \frac{r|f(0)|}{M(r) + |f(0)|},$$

où $M(r) = \sup_{|z|=r} |f(z)|$.

Exercice 6 Soit w un nombre complexe tel que $|w| < \frac{1}{e}$.

- 1. Montrer que la fonction f définie sur \mathbb{C} par $f(z) = ze^{-z} w$ a un zéro unique dans le disque unité. On désigne désormais par h(w) cet unique zéro de f.
- 2. Montrer que si γ désigne le cercle unité orienté positivement, on a :

(1)
$$h(w) = \frac{1}{2i\pi} \int_{\gamma} \frac{z(1-z)e^{-z}}{ze^{-z} - w} dz.$$

3. En déduire que

$$h(w) = \sum_{n=1}^{\infty} \frac{n^{n-1}}{n!} w^n.$$

4. Montrer que pour $\alpha \in \mathbb{C}$, on a

$$e^{\alpha h(w)} = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha+n)^{n-1}}{n!} w^n.$$

On utilisera une intégrale analogue à (1).

5. Etudier les variations de la fonction $x \mapsto xe^{-x}$ pour x réel positif ou nul. Montrer que la série de fonctions de la variable réelle x

$$S(x) = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha+n)^{n-1}}{n!} x^n e^{-nx}$$

converge normalement pour $x \ge 0$. Montrer que $S(x) = e^{\alpha x}$ pour $0 \le x \le 1$ et que $S(x) = e^{\alpha x'}$ pour $x \ge 1$, où x' est la solution appartenant à [0,1] de l'équation : $x'e^{-x'} = xe^{-x}$.