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Abstract. We prove that every even number 2 ≤ 2d ≤ 2g is realised as
the degree of a Thurston–Veech pseudo-Anosov stretch factor in every
connected component of every stratum of the moduli space of Abelian
differentials.

1. Introduction

Pseudo-Anosov mapping classes first appeared in Thurston’s work in
connection to classification of surface homeomorphisms. Nowadays, their
study is a theory by itself combining Teichmüller theory, dynamics, flat ge-
ometry and number theory. A mapping class f is pseudo-Anosov if and
only if it asymptotically stretches every isotopy class of essential simple
closed curves by a fixed factor λ(f), with respect to any Riemannian met-
ric. Examples arising from Anosov torus covers are abundant, and there
are many other constructions, for instance using train-tracks [PP90], Rauzy
induction [Rau79, Vee82], veering triangulations [Ago11], Penner’s construc-
tion [Pen88] or Thurston–Veech’s construction1 [Thu88] and [Vee89, §9].

Algebraic degrees of stretch factors. An important aspect of the theory
of pseudo-Anosov mapping classes emerged with Fried’s work and concerns
the study of the stretch factor λ(f). This is a bi-Perron algebraic integer
of degree bounded above by the dimension of the Teichmüller space for
the underlying surface. The question of realising any bi-Perron algebraic
integer as a stretch factor is a major challenge in the theory. Despite recent
advances [Pan20, LP21], Fried’s question remains widely open. Observe
that we cannot hope for a positive answer if we fix the topology of the
underlying surface: there are cubic bi-Perron number that are not realised
as the stretch factor of any mapping class on a genus three surface, see the
work by Thurston [Thu14, Page 6], and more recently [Yaz21].

Thurston–Veech’s construction. Given two multicurves α = α1∪· · ·∪αn
and β = β1 ∪ · · · ∪ βm with n and m components, respectively, that fill a
surface Σ and intersect minimally, we let X be their geometric intersection
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1In the literature, this construction is often called Thurston’s construction. We choose

the name to include Veech since in its full generality, the construction first appeared,
independently, in the two cited articles by Thurston and Veech.
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matrix. In his 1988 seminal bulletin paper [Thu88], Thurston proved that
all nontrivial products of multitwists in 〈Tα, Tβ〉 except powers of conjugates

of Tα or Tβ are pseudo-Anosov if the Perron-Frobenius eigenvalue of XX> is
strictly greater than four. In the same article, Thurston provides the upper
bound on the algebraic degree of a pseudo-Anosov stretch factor λ(f) by
the dimension of the Teichmüller space in general, and by 2g in the special
case of orientable invariant foliations. He also claimed, without proof, that
“the examples of [Thu88, Theorem 7] show that this bound is sharp”. The
referenced examples are exactly the examples nowadays known as Thurston’s
construction, described above. More recently, Strenner [Str17] answered the
question of which degrees appear for a pseudo-Anosov on a genus g surface,
including all nonorientable surfaces, by using Penner’s construction [Pen88].

Main results. In this paper, we justify Thurston’s remark for pseudo-
Anosov mapping classes with orientable invariant foliations. In fact, we
obtain a stronger result justifying Thurston’s remark in every connected
component of every strata of Abelian differentials, not just for a given genus.

Theorem 1. Every even integer 2 ≤ 2d ≤ 2g is realised as the degree of
a stretch factor of a product of two affine multitwists on a surface in every
connected component of every stratum of Abelian differentials on Riemann
surfaces of genus g.

The terminology “connected component” can be skipped on a first reading
of this paper, and we refer to §4.1 and [KZ03] for more details. A stratum
is the set of Abelian differentials having prescribed singularity multiplicities
(k1, . . . , kn), where

∑n
i=1 ki = 2g − 2.

The extension field K = Q(λ+λ−1) is important in Teichmüller dynamics
and is called the trace field. It is an invariant of Abelian differentials and
has degree at most g over Q [KS00]. We will deduce Theorem 1 from the
following result asserting that choosing a connected component of a stratum
of Abelian differentials poses no restriction on the degree of trace fields.

Theorem 2. Every integer 1 ≤ d ≤ g is realised as the degree of the trace
field of a product of two affine multitwists on a surface in every connected
component of every stratum of Abelian differentials on Riemann surfaces of
genus g.

Stretch factor degrees and trace field degrees are closely related. Since λ
is a root of the polynomial t2 − (λ + λ−1)t + 1, the degree of λ over K
is either one or two. The degree one case corresponds to pseudo-Anosov
homeomorphisms with vanishing SAF invariant by a result of Calta and
Schmidt [CS13], see also Strenner’s article [Str18]. As a key step in proving
Theorem 1 we present a novel nonsplitting criterion stating that the degree
of the field extension Q(λ) : Q(λ+λ−1) equals two under certain conditions
in Thurston–Veech’s construction, see Theorem 4 in §2.
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Square-tiled surfaces. The case when [Q(λ + λ−1) : Q] = 1 plays a
special role in Teichmüller theory, and our theorems are well-known in
this context. The translation surfaces admitting such pseudo-Anosov maps
are also called arithmetic surfaces, or square-tiled surfaces, since they are
torus coverings [GJ00]. In particular, this implies that the field extension
Q(λ) : Q(λ+ λ−1) has degree two.

Outline of the proof. Let H(k1, k2, . . . , km) be a given stratum of Abelian
differentials in genus g. Fix some 2 ≤ d ≤ g. This is the degree of a trace
field we want to construct. In Thurston–Veech’s construction, the stretch
factor λ of Tα ◦Tβ is related to the geometric intersection matrix of α and β
as follows: the number λ+ λ−1 + 2 equals the Perron-Frobenius eigenvalue
of XX>. In order to control the degree of λ + λ−1, we therefore need to
control the degree of the Perron-Frobenius eigenvalue of XX>. Roughly,
our strategy consists of the following four steps.

Step 1) construct examples. For positive integers y, yi, i = 1, . . . , g − 1,
we start by constructing a square-tiled surface (X,ω) ∈ H(k1, k2, . . . , km)
depending on y, yi. We think of the numbers y, yi as variables that we
specify in the following. Applying Thurston–Veech’s construction using the
core curves of the horizontal and vertical annuli of (X,ω) gives us a g × g
matrix XX>.

Step 2) specify the yi. The characteristic polynomial pg(t, y) ∈ Z[t, y] of

the matrix XX> satisfies pg(t, y) = (t − 1)g−dpd(t, y) if we set g − d + 1
of the g − 1 parameters yi equal to 1. Furthermore, if all the other yi are
pairwise different, then pd(t, y) is shown to be irreducible in Z[t, y] in §3.2.

Step 3) specify y. Hilbert’s irreducibility theorem [Lan60] furnishes infin-
itely many integer specifications of y such that pd(t, y) ∈ Z[t] is irreducible.
By our construction, all these choices of parameters correspond to surfaces in
H(k1, k2, . . . , km). Furthermore, the trace field is generated by the Perron-
Frobenius eigenvalue of XX>, which has degree d as desired.

Step 4) Apply the nonsplitting criterion. Finally, we apply Theorem 4
to deduce that the stretch factor λ of Tα ◦ Tβ is of degree 2d for all the
specifications of yi and y as above.

This description of the strategy does not yet take into account the con-
nected components we want to reach, but basically the same idea can be
applied in order to deal with all connected components. However, we need
to take variations of the families of examples we consider in order to find
surfaces belonging to all of them. This is dealt with in §4.
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2. A nonsplitting criterion

The goal of this section is to present an algebraic criterion that allows us to
deduce that the degree of the field extension Q(λ) : Q(λ+λ−1) equals two for
certain products of multitwists. Let α = α1∪· · ·∪αn and β = β1∪· · ·∪βm be
two multicurves with n and m components, respectively, that fill a surface Σ
and intersect minimally. Let X be their geometric intersection matrix, that
is, the n×m matrix whose ij-th coefficient equals the geometric intersection
number of αi and βj . We assume that the Perron-Frobenius eigenvalue µ2

of XX> is of degree d. Furthermore, we let Ω =
(

0 X
X> 0

)
. For a symmetric

matrix A, we denote by σ(A) its signature i.e. the number of positive
eigenvalues minus the number of negative eigenvalues. We will also denote
by null(A) its nullity i.e. the dimension of its kernel.

Lemma 3. The following properties hold.

(1) The number σ(Ω+2I)+null(Ω+2I) equals the number of eigenvalues
of Ω in the interval [−2, 2].

(2) The eigenvalues λi of M =

(
I X
0 I

)(
I 0
−X> I

)
are related to the

eigenvalues µi of Ω by the equation µ2i = 2− λi − λ−1i .

Proof. The first property is exactly Lemma 3.7 in [Lie17]. The second prop-
erty is Proposition 3.3(b) in [Lie17]; as the proof in [Lie17] does not explicitly
deal with the case where M is not diagonalisable, we present a complete ar-
gument here. We first calculate

M =

(
I X
0 I

)(
I 0
−X> I

)
=

(
I −XX> X
−X> I

)
and note that its inverse is given by

M−1 =

(
I −X
X> I −X>X

)
.

One directly verifies the equation Ω2 = 2I −M −M−1. In order to obtain
the same equation for all the eigenvalues (counting multiplicity), we change
basis such that M is in Jordan normal form. Note that in the new basis, also
the matrix M−1 becomes a block diagonal matrix, where all the blocks are
of upper triangular form and correspond to the Jordan blocks of M . In par-
ticular, also the matrix Ω2 becomes upper triangular in the new basis, and
the equation for the eigenvalues, µ2i = 2− λi + λ−1i (counting multiplicity),
can be read off from the diagonal entries of the matrix equation. �

Our criterion for the construction of pseudo-Anosov maps with stretch
factors of controlled degree is the following.
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Theorem 4. If n+m > σ(Ω + 2I) + null(Ω + 2I) > m+ n− 2d, then the
mapping class Tα ◦ Tβ is pseudo-Anosov with stretch factor λ of degree 2d.

Remark 5. This criterion is particularly strong in case n = m = d, that is,
when α and β have the same number of components and if the characteristic
polynomial of the matrix XX> is irreducible. In this case,

2n > σ(Ω + 2I) + null(Ω + 2I) > 0

is sufficient to ensure that the mapping class Tα ◦ Tβ is pseudo-Anosov with
stretch factor λ of degree 2d.

Proof. We first ensure that the mapping class Tα ◦ Tβ is pseudo-Anosov.
If n+m > σ(Ω+2I)+null(Ω+2I), then Ω has an eigenvalue outside the in-
terval [−2, 2] by (1) of Lemma 3. In particular, the dominating eigenvalue µ
of Ω is larger than 2 and the matrix product

(
1 µ
0 1

) (
1 0
−µ 1

)
is hyperbolic, as

its trace 2−µ2 is larger than 2 in modulus. Hence, the mapping class Tα◦Tβ
is pseudo-Anosov by Thurston–Veech’s construction [Thu88, Vee89].

Now, let λ be the stretch factor of the mapping class Tα◦Tβ. By Thurston–
Veech’s construction, we have λ + λ−1 = µ2 − 2. In particular, we directly
observe Q(λ + λ−1) = Q(µ2). Furthermore, the degree of the field exten-
sion Q(λ) : Q(λ+ λ−1) is either 1 or 2. It equals 2, which is what we want
to show, exactly if λ and λ−1 are Galois conjugates.

We now finish the proof by arguing that λ and λ−1 are indeed Galois
conjugates. By (2) of Lemma 3, the dilatation λ is also the leading eigenvalue
of −M , where M is the matrix product given in the (2) of Lemma 3. In
particular, the Galois conjugates of λ are among the eigenvalues −λi of the
matrix −M . These eigenvalues are in turn related to the eigenvalues µi
of Ω by the equation µ2i = 2 + λi + λ−1i , again by Lemma 3. Since we
have σ(Ω+2I)+null(Ω+2I) > n+m−2d, the matrix Ω has at most 2d−1
eigenvalues outside the interval [−2, 2]. Via the correspondence in Lemma 3,
the matrix −M hat at most 2d − 1 eigenvalues that do not lie on the unit
circle. In particular, one of the 2d Galois conjugates of λ or λ−1 (including λ
and λ−1 themselves) must be on the unit circle by the pigeonhole principle.
Thus the minimal polynomial of λ or λ−1 (and hence of both) is reciprocal
and it follows that λ and λ−1 are Galois conjugates. �

3. Strata of Abelian differentials

In this section, we present a proof of our main results, Theorem 2 and
Theorem 1, for each stratum. We postpone the more intricate analysis of
the connected components to §4.

LetH(k1, k2, . . . , km) be a stratum of Abelian differentials. Recall that the
number of odd ki must itself be even, say 2l. Furthermore, if g is the genus
of the underlying topological surface, we have the equality 2g−2 =

∑m
i=1 ki.
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3.1. Constructing a surface. We start by constructing a square-tiled sur-
face. First, we ensure that we land in the stratum H(k1, k2, . . . , km). We
start out with a long horizontal square-tiled surface with some large num-
ber y2 − g + 1 of squares and opposite side identifications, see Figure 1.
The surface obtained by identifying the sides is a torus, and there are no

. . .

Figure 1. A horizontal square-tiled surface.

singularities of the flat structure. We can add an angle of 4π to some cone
point (or marked point) by inserting a vertical strip of yi + 1 square tiles,
as in Figure 2. We treat the yi ≥ 1 as variables that we will need to spec-
ify later on. Like this, we can reach all strata with even multiplicities. In

...

→

Figure 2. Inserting a vertical strip of squares adds 4π to
the angle around a point.

order to create odd multiplicities, we insert an L-shaped square-tiled sur-
face with yi + 1 tiles, as shown in Figure 3. This creates two cone points

→

. . .

a

a b

b

Figure 3. Inserting an L-shaped square-tiled surface creates
two cone angles of 4π out of one marked point.

of angle 4π, which is multiplicity one. Recall that there must be an even
number 2l of odd multiplicities ki, so we can repeat this step l times to
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have the right number of odd multiplicities, and then successively add two
to the multiplicities by inserting vertical strips as above, until we reach the
stratum H(k1, k2, . . . , km). Following this procedure, we need to add a total
of l L-shapes and g − l − 1 vertical strips.

3.2. Calculating the polynomial. The square-tiled surface we construct
in Section 3.1 naturally decomposes into horizontal and vertical annuli that
are one square wide. Let X be the intersection matrix for the core curves αi
of the horizontal annuli and the core curves βj of the vertical annuli. We
index the rows by horizontal curves and the columns by vertical curves. We
now describe the matrix XX>. Since the curves αi and βj pairwise intersect
in a tree-like fashion, we use the following way of looking at the computation.
The i-th diagonal coefficient equals the number of vertical curves intersecting
the i-th horizontal curve αi. Furthermore, an off-diagonal ij-th coefficient
is equal to 1 if there exists a vertical curve intersecting both horizontal
curves αi and αj . Otherwise, it equals 0.

In order to write down the matrix XX>, we quickly recall our construc-
tion. We have one horizontal curve that we start with. It intersects y2

vertical curves. We further have one horizontal curve for each L-shaped sur-
face we inserted, which are l in total. These curves respectively intersect yi
vertical curves, for i = 1, . . . , l, and are linked to the starting horizontal
curve via an intersecting vertical curve. Finally, for each vertical surface
we inserted, we get another yi horizontal curves, all intersecting a single
vertical curve that also intersects the starting horizontal curve. Here, i runs
from l+1 to g−1. We present the matrix using parameters b, bi ∈ R. These
parameters are helpful in the proof of Lemma 7, and later in §4.3. For the
purpose of the calculation of XX> in this section, we simply have b = bi = 1
for all i. We write bn×m for the n×m matrix with all entries equal to b ∈ R.
In case n = m, we simplify and write bn.

Definition 1. For parameters b, bi ∈ R, i = 1, . . . , l, we consider the matrix

XX> =



y2 b1 · · · bl b1×yl+1
11×yl+2

· · · 11×yg−1

b1 y1
...

. . .

bl yl
byl+1×1 1yl+1

1yl+2×1 1yl+2

...
. . .

1yg−1×1 1yg−1


.

Lemma 6. The characteristic polynomial of XX> equals

p(t, y,y) = ta

−y2 g−1∏
i=1

(t− yi) + t

g−1∏
i=1

(t− yi)−
g−1∑
i=1

ci
∏
j 6=i

(t− yj)

 ,
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where a =
∑g−1

i=l+1(yi − 1), cl+1 = yl+1b
2, ci = yi for i ≥ l + 2 and ci = b2i

otherwise.

Proof. This calculation is slightly tedious, but obtained in a fairly straight-
forward manner by developing the first column of (tI − XX>). We begin
by observing that the determinants of the yi × yi matrices

tIyi − 1yi =


t− 1 −1 · · · −1
−1 t− 1
...

. . .

−1 t− 1

 ,

Myi(t) =


−1 −1 · · · −1
−1 t− 1
...

. . .

−1 t− 1


are respectively given by the polynomials tyi−1(t − yi) and −tyi−1. The
former calculation follows by inspecting the eigenvalues of the matrix 1yi ,
and the latter is derived by solving the equation

det(tIyi − 1yi) = tdet(tIyi−1 − 1yi−1) + det(Myi(t)).

We note and will later use that changing the diagonal coefficient (−1) of the
matrix Myi(t) with some other diagonal coefficient (t − 1) does not change
the determinant.

Now, by developing the first column of (tI − XX>), we get that the
characteristic polynomial of XX> has the following summands. The first
summand (obtained by deleting the first row and the first column when
developing) equals

(t− y2)
l∏

i=1

(t− yi)
g−1∏
i=l+1

det(tIyi − 1yi) = ta(t− y2)
g−1∏
i=1

(t− yi),

where a =
∑g−1

i=l+1(yi−1). The rest of the summands are obtained as follows.
Assume that in the development we delete the first column and the k-th row,
where k ≥ 2. We have to take the determinant of the matrix obtained by
deleting the k-th row of the matrix

−b1 · · · −bl −b1×yl+1
−11×yl+2

· · · −11×yg−1

t− y1
. . .

t− yl
tIyl+1

− 1yl+1

tIyl+2
− 1yl+2

. . .

tIyg−1 − 1yg−1


.
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After switching adjacent rows (a total of k − 2 times) to move the first row
to be the k − 1st one, the matrix obtained is almost of block diagonal form
and we can read off the determinant. For the rows k = 2, . . . , l+1, we obtain
the summand

(−bk−1)(−1)1+k(−1)k−2

 ∏
j 6=k−1, 1≤j≤l

(t− yj)
g−1∏
i=l+1

det(tIyi − 1yi)

 (−bk−1) =

= −b2k−1ta
∏

j 6=k−1
(t− yj).

For the rows k > l + yl+1, we obtain summands of the form

(−1)(−1)1+k(−1)k−2

 l∏
j=1

(t− yj)
∏

j 6=i, l+1≤j≤g−1
det(tIyj − 1yj )

 det(Myi(t)) =

= −ta
∏
j 6=i

(t− yj).

Here, we assume for the calculation that the k-th row intersects the diagonal
block tIyi − 1yi , where i ≥ l + 2. There are a total of yi summands of this
type. If the k-th row intersects the block tIyl+1

− 1yl+1
, the corresponding

constant vectors of the first row and the first column have coefficients b ∈ R.
In this case, we obtain yl+1 times the summand

−b2ta
∏
j 6=l+1

(t− yj).

Adding all summands, we finally obtain the polynomial

ta

(t− y2)
g−1∏
i=1

(t− yi)−
g−1∑
i=1

ci
∏
j 6=i

(t− yj)

 ,

where a =
∑g−1

i=l+1(yi − 1), cl+1 = yl+1b
2, ci = yi for i ≥ l + 2 and ci = b2i

otherwise. �

Lemma 7. Let k ≥ 1, and let yi, ci ∈ Z for i = 1, . . . , k such that all yi are
pairwise distinct and all ci are positive. Then the polynomial

p(t, y) = −y2
k∏
i=1

(t− yi) + t

k∏
i=1

(t− yi)−
k∑
i=1

ci
∏
j 6=i

(t− yj)

is irreducible in Z[t, y].

Proof. We note that p(t, y) is a polynomial of degree two in the variable y.
Furthermore, the coefficient of y2 and the constant coefficient are relatively
prime. This follows from the observation that the complex roots of the coef-
ficient of y2 are exactly the yi, while none of those numbers is a root of the
constant coefficient. This implies that the only possibility to factorise p(t, y)
is by writing it as a product of two factors linear in the variable y. But this
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is prohibited by Eisenstein’s criterion. Indeed, the constant coefficient has a
simple root: the Perron-Frobenius eigenvalue of a matrix of the form XX>

as in Definition 1, where we set l = g − 1 = k, bi =
√
ci and y = 0. We can

therefore apply Eisenstein’s criterion to the irreducible factor in Z[t] con-
taining this root, and deduce that p(t, y) can not be factored into a product
of two factors with positive degree in the variable y. �

3.3. Main results for strata. We are now ready to prove the analogues
of Theorem 2 and Theorem 1 for strata of Abelian differentials.

Theorem 8. Every number 1 ≤ d ≤ g is realised as the degree of the trace
field of a product of two affine multitwists on a surface in every stratum of
Abelian differentials on Riemann surfaces of genus g.

Proof. Let H(k1, k2, . . . , km) be a stratum of Abelian differentials. We use
the surface constructed in §3.1. By Thurston–Veech’s construction [Thu88,
Vee89], there exists a flat structure on it, obtained by changing the side
lengths of the rectangles, such that the multitwists Tα and Tβ have affine
representatives, and such that the degree of the trace field is given by the
degree of the Perron-Frobenius eigenvalue µ2 of XX>.

Let 2 ≤ d ≤ g be the some degree of a trace field we want to construct.
Set g − d + 1 of the g − 1 parameters yi equal to 1 and all others 6= 1 and
pairwise distinct. In this way, the characteristic polynomial of XX> can be
factored as (t − 1)g−dp(t, y), where the polynomial p(t, y) is of degree d in
the variable t and with pairwise distinct yi. In particular, Lemma 7 implies
that p(t, y) is irreducible as a polynomial in Z[t, y]. Now, by Hilbert’s irre-
ducibility theorem [Lan60], there are infinitely many integer specifications
of y such that the resulting polynomial is irreducible in Z[t]. For |y| large
enough, all these specifications can be realised geometrically as in §3.1, since
we start with y2− g+ 1 squares in the construction. In particular, for every
such y, we obtain an Abelian differential with trace field of degree d. �

Theorem 9. Every even number 2 ≤ 2d ≤ 2g is realised as the degree of
a product of two affine multitwists on a surface in every stratum of Abelian
differentials on Riemann surfaces of genus g.

Proof. In the proof of Theorem 8, we have constructed examples with Perron-
Frobenius eigenvalue µ2 of XX> having degree d by letting g − d + 1
parameters yi equal to 1. For these examples, we now bound σ(2I + Ω)
in order to apply Theorem 4 to Tα ◦ Tβ. Let Ω′ be the matrix obtained
from Ω by deleting all the rows and all the columns corresponding to y or
the g− 1− (g− d+ 1) = d− 2 parameters yi that are not set equal to 1. We
have

σ(Ω + 2I) ≥ σ(Ω′ + 2I)− (d− 1).

By construction, Ω′ is the adjacency matrix of a forest consisting of path
graphs (some of which might be of length zero). In particular, one directly
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verifies that 2I + Ω′ is positive definite. We get

σ(Ω + 2I) ≥ σ(Ω′ + 2I)− (d− 1) = n+m− 2d+ 2 > n+m− 2d.

Furthermore, one directly checks that the matrix σ(Ω + 2I) has a negative
eigenvalue as soon as y > 4, which we are allowed to assume. This implies

n+m > σ(Ω + 2I) + null(Ω + 2I).

Theorem 4 applies and the mapping class Tα ◦ Tβ is pseudo-Anosov with
stretch factor λ of degree 2d. �

Remark 10. The examples we construct above can all obtained by cap-
ping off monodromies of certain fibred links called positive arborescent Hopf
plumbings. The pseudo-Anosov stretch factors therefore appear as the dom-
inating roots of the Alexander polynomials of these links. It is conceivable
that our argument, or at least a portion thereof, could be replaced by a
careful analysis of these Alexander polynomials using the skein relation.
However, the calculations we present here can readily be applied to our
examples in §4, which are not necessarily obtained from arborescent Hopf
plumbings anymore.

4. Connected components of strata

In this section, we study the connected components of strata of Abelian
differentials. After recalling the classification of the connected components,
we first analyse to which connected components our examples from §3 be-
long. We then construct examples covering all remaining connected compo-
nents, finally proving Theorem 2 and Theorem 1 in full generality.

4.1. Classification of connected components of strata. The connected
components of the strata of the moduli space of Abelian differentials are
classified by [KZ03]. There are at most three connected components, and
the classification uses two topological invariants that we describe now.

(1) Hyperellipticity. For g ≥ 2, the strata H(2g− 2) and H(g− 1, g− 1)
have a component that consists entirely of hyperelliptic Riemann
surfaces, where the hyperelliptic involution permutes the two zeros
(when there are two).

(2) Parity of the spin structure. If the degrees of the singularities of
a stratum are all even, then one can define a spin structure, or
equivalently a quadratic form q on the first homology group. The
parity of this spin structure (or the Arf invariant of the form) is a
topological invariant.

Remark 11. If a translation surface belongs to a hyperelliptic component
Hhyp(2g − 2) or Hhyp(g − 1, g − 1) and admits a cylinder decomposition,
then all cylinders are fixed by the hyperelliptic involution, and each of them
contains exactly two fixed points in its interior. Since the total number of
fixed points is 2g+2, this observation can be used to show that a translation
surface does not belong to a hyperelliptic component.
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We will use the topological definition of the spin structure (see [KZ03,
§3.1] for details) to have an effective way to compute its parity in terms of
the Arf invariant of q. Since the flat metric (X,ω) has trivial holonomy,
outside of finite number of singularities, we have a well-defined horizontal
direction. Consider a smooth simple closed oriented curve α on X which
does not contain any singularities. The total change of the angle between
the tangent vector to α and the tangent vector to the horizontal is equal to
2π · ind(α), where ind(α) ∈ Z. Choose any symplectic basis (ai, bi)i=1,...,g of
H1(X;Z/2). Then the parity of the spin structure is [KZ03, Equation (4)]:

Φ(ω) =

g∑
i=1

q(ai)q(bi) mod 2, (1)

where q(α) = ind(α) + 1 for an oriented smooth path α. Together with the
formula q(α+β) = q(α)+q(β)+i(α, β) for any α, β ∈ H1(X;Z/2), it is easy
to calculate the parity of the spin structure given in any (non symplectic)
basis of the first homology.

Next we explain concretely how to compute Φ(ω), where (X,ω) is ob-
tained from the construction in Section 3. Observe that (X,ω) belongs
to a non hyperelliptic component if g > 2. To see this, when (X,ω) ∈
Hhyp(2g−2), note that the number of cylinders we have inserted is g−1. By
Remark 11 they contribute to 2g−2 fixed points of the hyperelliptic involu-
tion (located on the 2g−2 horizontal core curves), say p1, p

′
1, . . . , pg−1, p

′
g−1.

There are two more fixed points q, q′ on the horizontal core curve of the
long cylinder C we start with, and one fixed point on its boundary, say q′′,
that is on the same vertical closed curve as q′. The last fixed point is the
singularity. On the other hand, each inserted cylinder should have two fixed
points on its vertical core curve: one is pi, the other one is p′′i ∈ C. Thus
necessarily p′′i = q for all i = 1, . . . , g − 1. This is possible only if g − 1 = 1.
For (X,ω) ∈ Hhyp(g − 1, g − 1) the situation is similar.

4.2. Non hyperelliptic components, spin 1. Consider (X,ω) obtained
from the construction in §3 when all ki are even. As a basis of the first
homology H1(X,Z/2), we take horizontal curves γ0, . . . , γg−1 (γ0 is the hor-
izontal curve that we start with, and γi is in the ith vertical cylinder), and
vertical curves η0, . . . , ηg−1 (η0 crosses γ0 only once, and ηi is the core curve
of the ith vertical cylinder for i > 0). By construction, for every i, j

i(γ0, ηj) = 1, i(γi, ηj) = δij for i > 0, and i(γi, γj) = i(ηi, ηj) = 0.

We can thus form a symplectic basis as follows:{
a1 = γ0, b1 = η0
ai = γi−1, bi = ηi−1 − η0 for i 6= 0
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Clearly ind(γi) = ind(ηi) = 0. Substituting in Equation (1), we conclude:

Φ(ω) = 1 +

g∑
i=2

q(γi−1)q(ηi−1 − η0) =

= 1 +

g∑
i=2

(q(ηi−1) + q(η0) + i(η0, ηi−1)) ≡ 1 mod 2.

4.3. Non hyperelliptic components H(2k1, . . . , 2km), spin 0, m > 1.
We now use a slightly different model defined as follows. Start with the
surface depicted in Figure 4, with a long horizontal cylinder made of y2 −
g + 1 squares. It belongs to Hhyp(2, 2). Its spin structure is 0 as we can
check directly, or by using the formulae in [KZ03, Corollary 5]. We can

• • • •

•

• •

•

•

•• • •

•

• •
A′1

A′1A1

A1

A2

A2

A0

A0

...

...

· · ·

Figure 4. A surface in Hhyp(2, 2) (with even spin structure).

insert g − 3 ≥ 1 vertical strips of yi + 1 square tiles (for i = 3, . . . , g − 1)
as in Section 3 in order to add zeros of even multiplicities and to reach the
stratum H(2k1, . . . , 2km) where

∑
2ki = 2g − 2. This construction does

not change the spin structure as we can see on the computation below. We
let γ0 the horizontal core curve in the long cylinder, and γ1, . . . , γg−1 the
other horizontal core curves contained in the ith cylinder. Similarly, we
let ηi for i = 0, . . . , g− 1 the vertical core curves: η0 is the core curve of the
vertical cylinder with label A0 and ηi is the core curve of the ith vertical
cylinder for i > 0. We have for every i, j

i(γ0, ηi) = 1 for i 6= 1 and i(γ0, η1) = 2,
i(γi, ηi) = δij for i > 0,
i(γi, γj) = i(ηi, ηj) = 0.
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We can thus form a symplectic basis of H1(S;Z2) as follows: a1 = γ0, b1 = η0
a2 = γ1, b2 = η1
ai = γi−1, bi = ηi−1 − η0 for i > 2

By using Equation (1) this leads to

Φ(ω) = 1 + 1 +

g∑
i=3

q(γi−1)q(ηi−1 − η0) =

= 1 + 1 +

g∑
i=3

(q(ηi−1) + q(η0) + i(η0, ηi−1)) ≡ 0 mod 2.

We now compute the degree of the trace field. In order to write down the
matrix XX>, we apply the strategy described in §3.2. Observe that the
horizontal curve that we start with crosses y2 − g + 1 + g − 3 = y2 − 2
squares. More precisely it intersects y2 − 4 vertical curves once and one
vertical curve twice. We obtain the following matrix, where bn×m stands
for the n×m matrix with all entries equal to b ∈ Z:

XX> =


y2 21×y1 11×y2 · · · 11×yg−1

2y1×1 1y1×y1
1y2×1 1y2×y2
...

. . .

1yg−1×1 1yg−1×yg−1

 .

From Lemma 6 with l = 0, we see that the characteristic polynomial of XX>

equals ta · p(t, y,y), where

p(t, y,y) = −y2
g−1∏
i=1

(t− yi) + t

g−1∏
i=1

(t− yi)−
g−1∑
i=1

ci
∏
j 6=i

(t− yj),

for a =
∑g−1

i=1 (yi − 1), c1 = 4y1 and ci = yi if i ≥ 2. From Lemma 7,
we deduce that p(t, y,y) is irreducible in Z[t, y] given that all yi ∈ N are
pairwise distinct (here our parameter b in Definition 1 equals 2). As before,
we can factor out (t−1)g−d and obtain an irreducible polynomial of degree d
by setting g−d+1 of the g−1 parameters yi equal to 1. We can then apply
the same strategy than the proof of Theorem 8 to get the result.

Corollary 1. Every number 1 ≤ d ≤ g is realised as the degree of the trace
field of a product of two affine multitwists on a surface in every non hyperel-
liptic connected component with spin 0 of a stratum of Abelian differentials
on Riemann surfaces of genus g.

We further apply the same strategy to realise all even degrees as stretch
factors. One can copy the proof of Theorem 9 word for word and obtain the
following result.
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Corollary 2. Every even number 2 ≤ 2d ≤ 2g is realised as the degree of
a product of two affine multitwists on a surface in every non hyperelliptic
connected component with spin 0 of a stratum of Abelian differentials on
Riemann surfaces of genus g.

4.4. Reaching non hyperelliptic component of H(2g − 2), spin 0.

4.4.1. Degree d = 2. We start with the model presented in Figure 4, and
insert g − 3 vertical cylinders (g > 3) with parameters y1 = 2 and yi =
1 for i > 1 (see also Figure 5). The number of squares in grey color is
y2− 2− 3− (g− 3) = y2− g− 2. The surface belongs to H(2, 2g− 4). Since
it can be continuously deformed to the surface in Figure 4 with spin 0, it
also has spin 0. Now we collapse all the grey squares. The resulting surface
belongs to the stratum Hnon hyp(2g−2). Again this continuous deformation
does not change the parity of the spin structure.

•

• •

• •

•

•

• •

• • • •

• • • •

••

• •

•

• •

A′1

A′1A1

A1

A2

A2

A0

A0

A3

A3

Ag−1

Ag−1

· · ·· · ·

Figure 5. A surface in Hnon hyp(2, 2g − 4) for g > 3. If
we collapse the handle (in grey color) we obtain a surface in
Hnon hyp(2g − 2).

Following the computation in the previous subsection, we now obtain the
(g + 1)× (g + 1) intersection matrix (recall y2 − g − 2 = 0)

XX> =



g + 2 2 2 1 · · · 1
2 1 1
2 1 1
1 1
...

. . .

1 1


.

By Lemma 6, the characteristic polynomial of XX> equals

ta

−(g + 2)

g−1∏
i=1

(t− yi) + t

g−1∏
i=1

(t− yi)−
g−1∑
i=1

ci
∏
j 6=i

(t− yj)

 ,
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where a = 1, c1 = 4y1 and ci = yi for i ≥ 2. Thus the polynomial is

t(t−1)g−3(−(g+2)(t−2)(t−1)+t(t−2)(t−1)−8(t−1)−(g−2)(t−2)) =

= t2(t− 1)g−3(t2 − t · (g + 5) + 2g + 2).

The discriminant of t2 − t · (g + 5) + 2g + 2 is D = (g + 5)2 − 8 · (g + 1) =
g2 + 2g+ 17. We see that (g+ 1)2 < D < (g+ 5)2. If the degree of the trace
field is one then D is a square, and one of the following three cases holds:

(1) D = (g+ 2)2. Then g2 + 2g+ 17 = g2 + 4g+ 4. Solving in g we find
2g = 13 which is a contradiction.

(2) D = (g+ 3)2. Then g2 + 2g+ 17 = g2 + 6g+ 9. Solving in g we find
6g = 1 which is a contradiction.

(3) D = (g+ 4)2. Then g2 + 2g+ 17 = g2 + 4g+ 4. Solving in g we find
g = 2 which is again a contradiction with g > 3.

4.4.2. Degree 2 < d ≤ g. We consider the modified version of our construc-
tion as depicted in Figure 6. When g > 3 the surface is not hyperelliptic.

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

• • •

• •

• •

• • • •

•

•

•

•

•

•
. . . . . .

...

...
...

A0

A0 A1

A1

A2

A2

Ag−3

Ag−3

Ag−2

Ag−2

Ag−1

Ag−1

Figure 6. A surface in the even spin non hyperelliptic
connected component of H(2g − 2) for g > 3.

For the computation of the spin structure, we consider the “obvious” core
curves γi and ηi (for i = 0, . . . , g−1) of the horizontal and vertical cylinders.
It forms a (non symplectic) basis of the homology:

i(γ0, ηi) = 1 for i 6= g − 1 and i(γ0, ηg−1) = 0,
i(γi, ηi) = δij for i = 0, . . . , g − 1
i(γi, γj) = i(ηi, ηj) = 0.
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We can thus form a symplectic basis of H1(S;Z2) as follows: a1 = γ0, b1 = η0
ai = γi−1, bi = ηi−1 − η0 for i = 2, . . . , g − 1
ag = γg−1, bg = ηg−1 − bg−1 = ηg−1 − ηg−2 + η0

Equation (1) reads

Φ(ω) = q(γ0)q(η0) +

g−1∑
i=2

q(γi−1)q(ηi−1 − η0) + q(γg−1)q(ηg−1 − ηg−2 + η0)

Since q(ηi−1− η0) = q(ηi−1) + q(η0) + i(ηi−1, η0) = 1 + 1 + 0 = 0 mod 2, the
sum with the g − 2 terms vanishes. For the last term, a direct computation
leads to

q(ηg−1 − ηg−2 + η0) = q(ηg−1) + q(ηg−2) + q(η0)+

+ i(ηg−1, ηg−2) + i(ηg−1, η0) + i(ηg−2 + η0) =

= 1 + 1 + 1 + 0 + 0 + 0 = 1 mod 2.

Finally we get Φ(ω) = 1 + 0 + 1 = 0 mod 2.
The intersection matrix (with the parameters yg−2 = yg−1 = 1) is

XX> =



y2 11×y1 · · · 11×yg−3 1 0
1y1×1 1y1 0 0
...

. . .
...

...
1yg−3×1 1yg−3 0 0

1 0 · · · 0 2 1
0 0 · · · 0 1 1


.

By developing along the last column, its characteristic polynomial equals

(t− 1)

(
(t− 2)p(t, y,y)− ta

g−3∏
i=1

(t− yi)

)
− p(t, y,y) =

p(t, y,y)(t2 − 3t+ 1)− ta(t− 1)

g−3∏
i=1

(t− yi) =

= ta

(
−y2(t2 − 3t+ 1)

g−3∏
i=1

(t− yi) + (t3 − 3t2 + 1)

g−3∏
i=1

(t− yi)

−(t2 − 3t+ 1)

g−3∑
i=1

ci
∏
j 6=i

(t− yj)

 , (2)

where p(t, y,y) is the degree g− 2 polynomial in Lemma 6, with the param-

eters a =
∑g−3

i=1 (yi− 1) and ci = yi for all 1 ≤ i ≤ g− 3. Following the same
line of proof we used for Lemma 7, we show
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Lemma 12. The polynomial

−y2(t2−3t+1)

g−3∏
i=1

(t−yi)+(t3−3t2+1)

g−3∏
i=1

(t−yi)−(t2−3t+1)

g−3∑
i=1

yi
∏
j 6=i

(t−yj)

is irreducible in Z[t, y] given that all yi ∈ N are distinct.

Proof. We note that the polynomial has degree two in the variable y with
no non trivial common factor between the coefficient of y2 and the constant
coefficient. By Perron-Frobenius theorem, there is a simple irreducible factor
of the constant coefficient. Thus Eisenstein’s criterion applies in Z[t][y]. �

4.5. Reaching the hyperelliptic components of strata H(2g− 2) and
H(g−1, g−1). We start by constructing a square-tiled surface. Pick a long
horizontal square-tiled cylinder made of 2n+ 1 squares with identifications
A0, A1, . . . , An and A′1, . . . , A

′
n as depicted in Figure 7. We then add a stair

case template, made of k steps, using a total of 2k squares. Finally we insert
a long vertical square-tiled cylinder with some large number y of squares and
identifications C1, . . . , Cy as in Figure 7. We treat y as a variable that we
will need to specify later on. This creates a surface Xn,k,y. Similarly, one
can construct a surface Yn,k,y be collapsing one square corresponding to the
label A0.

AnA1

A′1A′n

. . .

A0

A0

A′1

An

A′n

A1

. . .

B1

B1

B2

B2

B3

Bk
C1

C2

...

Cy

Cy−1

Cy

C1

C2

...

Cy−1

. .
.

...

Figure 7. The surface Xn,k,y ∈ H(g − 1, g − 1) made of
2n + 2k + y + 2 squares, and the surface Yn,k,y ∈ H(2g − 2)
obtained from Xn,k,y by collapsing the grey square.
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Lemma 13. The genus of Xn,k,y and Yn,k,y is g = n + k + 2. Moreover
Xn,k,y belongs to the hyperelliptic connected component of H(g − 1, g − 1)
while Yn,k,y belongs to the hyperelliptic connected component of H(2g − 2).

Proof of Lemma 13. Clearly the two square-tiled surfaces are hyperelliptic:
the involution fixes the k+ 2 horizontal cylinders. By inspecting the gluing,
one sees that Xn,k,y has two zeros, each of order g − 1. The cone angle at
each zero is g · 2π. Since the total number of squares contributing to the
cone angle is 2n + 2k + 2 + 2, we get (2n + 2k + 4) · 2π = g · 2π + g · 2π.
Hence, g = n+ k + 2.
Similarly, Yn,k,y has one zero, of order 2g − 2 and cone angle (2g − 1) · 2π.
Now the total number of squares contributing to the cone angle is one less:
2n+ 2k + 2 + 1. Thus, (2n+ 2k + 3) · 2π = (2g − 1) · 2π. �

A quick inspection of the intersections of horizontal curves with vertical
curves yields that XX> is the following (k + 2)× (k + 2) Jacobi matrix:

XX> =



α 1
1 2 1

1
. . .

. . .

. . .
. . . 1
1 2 y

y y2


,

where α = 2 + 4n if one considers Xn,k,y, and α = 1 + 4n otherwise.

Lemma 14. If α 6= 1, then the characteristic polynomial of XX>, when
regarded as a polynomial in the variables y and t, is irreducible in Z[t, y].

Proof of Lemma 14. Let pk be the characteristic polynomial of XX>. We
will use the characteristic polynomial qk(t) of the (k+1)×(k+1) matrix Bk
obtained from 2Ik+1 + Ad(Ak+1) by adding α−2 to the first diagonal entry,
where Adj(Ak) is the adjacency matrix of the path graph with k vertices.
We obtain directly by developing the determinant of tIdk+2 − XX> along
the last column that pk(t, y) = −y2(qk(t) + qk−1(t)) + tqk(t). We now claim
that the roots of qk and qk−1 are pairwise distinct and simple.

Proof of the claim. We note that Bk−1 is obtained from Bk by deleting the
last row and the last column. Interlacing results for real symmetric matrices
tell us that the eigenvalues of Bk and Bk−1 interlace. This means that
if λ1 ≤ · · · ≤ λk+1 are the eigenvalues of Bk and if µ1 ≤ · · · ≤ µk are the
eigenvalues Bk−1, then we have

λi ≤ µi ≤ λi+1

for all 1 ≤ i ≤ k. The crucial point is that the inequalities need to be
strict. Indeed, Theorem 7 by Gantmacher and Krein [GK37] states that
a tridiagonal matrix with positive coefficients on the main diagonal and
the adjacent diagonals is oscillatory if and only if all the leading principal
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minors are positive. This implies that Bk is oscillatory, since the matrix Bk
is positive definite (for α ≥ 1). Now, Theorem 6.5 by Ando [And87] states
that for oscillatory matrices, all the interlacing inequalities are strict. That
is, we have

λi < µi < λi+1

for all 1 ≤ i ≤ k. In particular, the eigenvalues of Bk and the eigenvalues
of Bk−1 are pairwise distinct and simple. �

We now finish the proof the lemma. Let F 6= t be an irreducible factor
of qk. Since the roots of qk are simple, F 2 is not a factor of tqk. If F is
a factor of qk + qk−1 then qk and qk−1 share a common root, which is not
possible by the claim. Hence, by Eisenstein’s criterion, pk(t, y) is irreducible
when regarded as a polynomial in the variable y and so can not be factored in
the form (ay+b)(cy+d). So, if there is a factorisation of pk(t, y), then one of
the factors must have degree zero in the variable y. But such a factorisation
cannot exist, since qk(t) + qk−1(t) and tqk(t) are relatively prime in Z[t].
Indeed, since the roots of qk(t) and qk−1(t) are distinct, the only possible
common factor of tqk and qk + qk−1 is t. But pk(0, y) is the determinant
of XX> and equals y2 · (α− 1) 6= 0. This proves the lemma. �

Theorem 15. For any hyperelliptic connected component C of H(2g − 2),
every number 1 ≤ d ≤ g − 1 is realised as the degree of the trace field of a
product of two affine multitwists on a surface in C.

Proof of Theorem 15. Since the case d = 1 is clear by considering square-
tiled surfaces, let us assume d ≥ 2 and set k = d − 2 ≥ 0. We construct a
surface Xn,k,y or Yn,k,y where n = g− d = g− k− 2 ≥ 0 (see Lemma 13). If
d < g then n 6= 0 and α 6= 1. If d = g, that is, n = 0, then by assumption
we consider only Yn,k,y ∈ H(g − 1, g − 1) so that α = 4n+ 2 = 2 6= 1. Thus

Lemma 14 applies and the characteristic polynomial of XX>, viewed as a
polynomial in Z[y, t] is irreducible. Then by Hilbert’s irreducibility theorem,
there are infinitely many specifications of y so that the resulting polynomial
is irreducible as a polynomial in the variable t. Note that all specifications
can be realised geometrically. Indeed, one can choose y > 0 by symmetry. In
particular, applying Thurston–Veech’s construction, there exists a product
of two multitwists on the surface of genus g = n+d in the desired connected
component. �

We also prove the analogous theorem for degrees of stretch factors.

Theorem 16. For any hyperelliptic connected component C of H(g−1, g−1),
every even number 2 ≤ 2d ≤ 2g is realised as the degree of the stretch factor
of a product of two affine multitwists on a surface in C.

For any hyperelliptic connected component C of H(2g − 2), every even
number 2 ≤ 2d ≤ 2g − 2 is realised as the degree of the stretch factor of a
product of two affine multitwists on a surface in C.
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Proof. We use the same examples as in the proof of Theorem 15. We first
deal with the case d = 2 by taking the specific example y = 1. In this case,

we have k = 0 and we get XX> =

(
α 1
1 1

)
. We obtain

µ2 =
α+ 1 +

√
α2 − 2α+ 5

2
,

which is an algebraic number of degree two over Q. Indeed, we have

α2 > α2 − 2α+ 5 > (α− 1)2

in case α 6= 1, 2, so this number is not a square and µ2 is not rational.
Neither is it in case α = 2, by direct calculation, and the case α = 1 is not
needed.

We are now ready to apply Theorem 4. Let Ω′ be the matrix obtained
from Ω by deleting the row and the column corresponding to the cylinder
with 2n+ 1 or 2n+ 2 squares. We have

σ(Ω + 2I) ≥ σ(Ω′ + 2I)− 1.

By construction, Ω′ is the adjacency matrix of a forest consisting of path
graphs, so that 2I + Ω′ is positive definite. We get

σ(Ω + 2I) ≥ dim(Ω)− 2 > dim(Ω)− 4.

The criterion applies and the mapping class Tα ◦ Tβ is pseudo-Anosov with
stretch factor λ of degree 2d = 4.

For the case d ≥ 3, we take the examples as in the proof of Theorem 15,
without specialising y. Let Ω′ be the matrix obtained from Ω by deleting the
rows and the columns corresponding to the horizontal cylinder with 2n+ 1
or 2n+ 2 squares, and to the vertical cylinder with y + 1 squares. We have

σ(Ω + 2I) ≥ σ(Ω′ + 2I)− 2.

By construction, Ω′ is the adjacency matrix of a forest consisting of path
graphs, so that 2I + Ω′ is positive definite. We get

σ(Ω + 2I) ≥ dim(Ω)− 4 > dim(Ω)− 2d.

The criterion applies and the mapping class Tα ◦ Tβ is pseudo-Anosov with
stretch factor λ of degree 2d. �

4.6. Reaching hyperelliptic component of H(2g − 2) with degree g.
Take the stair case model with a “long” stair made of y2 squares (see Fig-
ure 8). The g × g matrix is

XX> =



y2 1
1 2 1

1
. . .

. . .

. . .
. . . 1
1 2 1

1 1


.
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B1

B1

B2

B2

B3

Bg−2

Bg−1

Bg−1

. .
.

· · ·

Figure 8. A stair case template in the hyperelliptic compo-
nent of H(2g − 2).

Let pg(t, y) be the characteristic polynomial ofXX>. We will use the charac-
teristic polynomial qg(t) of the g× g matrix Bg obtained from 2Ig + Ad(Ag)
by adding −1 to the last diagonal entry, where Adj(Ag) is the adjacency
matrix of the path graph with g vertices.

By developing the determinant of tIdg −XX> along the first column we
get

pg(t, y) = −y2qg−1(t) + tqg−1(t)− qg−2(t).
We now claim that the polynomials qg−1(t) and tqg−1(t) − qg−2(t) are rel-
atively prime. Using the same argument as in Lemma 14, we get that the
matrix Bg is oscillatory, and hence the roots of pg−1 and pg−2 are all simple
and pairwise distinct. Since the minimal polynomial of the Perron-Frobenius
eigenvalue of Bg is a simple irreducible factor F of tqg−1(t) − qg−2(t) that
is not also a factor of qg−1(t), Eisenstein’s criterion applies and pg(t, y) is
irreducible. Thus there are infinitely many specifications of y > 0 such that
pg(t, y) ∈ Z[t] is irreducible. This yields the degree d = g for the hyperellip-
tic component of H(2g − 2) for any g > 1.

Using this model, it is now straightforward to adapt the proofs of The-
orem 15 and Theorem 16 to construct examples where the trace field is of
degree g and the stretch factor is of degree 2g.
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