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ABSTRACT. This paper is devoted to the classification of connected components of Prym eigenform loci in the
strataH(2, 2)odd andH(1, 1, 2) of the Abelian differential bundle ΩM3 overM3. These loci, discovered by
McMullen [Mc06], are GL+(2,R)-invariant submanifolds of complex dimension 3 of ΩMg that project to the
locus of Riemann surfaces whose Jacobian variety has a factor admitting real multiplication by some quadratic
order OD .

It turns out that these subvarieties can be classified by the discriminant D of the corresponding quadratic
orders. However there algebraic varieties are not necessarily irreducible. The main result we show is that
for each discriminant D the corresponding locus has one component if D ≡ 0, 4 mod 8, two components if
D ≡ 1 mod 8, and is empty if D ≡ 5 mod 8.

Surprisingly our result contrasts with the case of Prym eigenform loci in the strata H(1, 1) (studied by
McMullen [Mc07]) which is connected for every discriminant D.

1. INTRODUCTION

Since the work of McMullen [Mc03] it has been known that the properties of SL2(R)-orbit closure of
translation surfaces are strongly related to the endomorphisms rings of the Jacobian of the underlying Rie-
mann surfaces (see also [Möl06]). The algebro-geometric approach emphasized by McMullen is to detect
affine homeomorphisms of the flat metric on the level of the first homology group as affine homeomorphisms
induce self-adjoint endomorphisms of the Jacobian variety.

Recall that an Abelian variety A ∈ Ag admits real multiplication by a totally real number field K of
degree g over Q if there exists an inclusion K ↪→ End(A) ⊗ Q such that for any k ∈ K, the action of k is
self-adjoint with respect to the polarization of A. Equivalently, End(A) contains a copy of an orderO ⊂ K
acting by self-adjoint endomorphism.

1.1. Brief facts summary in the genus 2 case. The locus

E2 = {(X,ω) ∈ ΩM2 : Jac(X) admits real multiplication with ω as an eigenform},
plays an important role in the classification of SL(2,R)-orbit closures in ΩM2. Here A = Jac(X) ∈ A2,K
is a real quadratic field, and the endomorphism ring is canonically isomorphic to the ring of homomorphisms
of H1(X,Z) that preserve the Hodge decomposition. The polarization comes from the intersection form(
J 0
0 J

)
on the homology.

The locus E2 is actually a (disjoint) union of subvarieties indexed by the discriminants of the orders
O ⊂ End(Jac(X)). Since orders in quadratic fields (quadratic orders) are classified by their discriminant,
the unique quadratic order with discriminant D is denoted by OD. We then define

ΩED = {(X,ω) ∈ E2 : ω is as an eigenform for real multiplication by OD}.
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The subvarieties ΩED are of interest since they are GL+(2,R)-invariant submanifolds of ΩM2 (see [Mc07,
Mc06]). We can further stratified ΩED by defining ΩED(κ) = ΩED ∩ H(κ) for κ = (2) or κ = (1, 1).
This defines complex submanifolds of dimension 2 and 3, respectively. Hence ΩED(2) projects to a union
of algebraic curves (Teichmüller curves) in the moduli spaceM2.

1.2. Components of ΩED(1, 1) and ΩED(2). It is well known that the set of Abelian varieties A ∈
A2 admitting real multiplication by OD with a specified faithful representation i : OD → End(A) is
parametrized by the Hilbert modular surface XD := (H × −H)/SL(OD). In [Mc07], it has been shown
that each ΩED can be viewed as a C∗-bundle over a Zariski open subset of XD, and we have

E2 =
⋃

D≥4,D≡0,1 mod 4

ΩED

In particular ΩED is a connected, complex suborbifold of ΩM2 of dimension 3. The fact that there is only
one (connected) eigenform locus for each D follows from the fact that there is only one faithful, proper,
self-adjoint representation i : OD → M4(Z) up to conjugation by Sp(4,Z) (see [Mc07] Theorem 4.4). It
follows that ΩED(1, 1) is a Zariski open set in ΩED. In particular ΩED(1, 1) is connected for any quadratic
discriminant D.

The classification of components of ΩED(2) has also been obtained by McMullen [Mc05].

1.3. Higher genera. In [Mc06] it is shown that analogues of ΩED exist in higher genus (up to 5). These
subvarieties of ΩMg are called Prym eigenform loci. Surfaces in a Prym eigenform locus are pairs (X,ω)
such that there exists a holomorphic involution τ : X → X such that g(X) − g(Y ) = 2, where Y =
X/〈τ〉, τ∗ω = −ω, and the Prym variety Prym(X, τ) admits a real multiplication with ω an eigenform (see
Section 2 for precise definitions). Note that the condition g(X)−g(Y ) = 2 is needed for our discussion. For
any genus, the set of Prym eigenforms whose Prym variety admits a multiplication by OD will be denoted
by ΩED, and the intersection of ΩED with a stratumH(κ) is denoted by ΩED(κ).

The goal of this paper is to investigate the topology of the Prym eigenform loci in the strata H(2, 2)
and H(1, 1, 2) of ΩM3. It is well known that the stratum H(2, 2) also has two components H(2, 2)odd

and H(2, 2)hyp. It is not difficult to see that Prym eigenforms in H(2, 2)hyp are double covers of surfaces
in ΩED(2) (see Proposition 2.3). Thus dim ΩED(2, 2)hyp = 2, and ΩED(2, 2)hyp is a (finite) union of
GL+(2,R) closed orbits. On the other hand, we have dim ΩED(2, 2)odd = 3. The stratum H(1, 1, 2) is
connected and we also have dim ΩED(1, 1, 2) = 3 (see Proposition 2.6).

Our main result reveals that the situation in genus three is quite different from the one in genus. More
precisely:

Theorem A. Let κ ∈ {(2, 2)odd, (1, 1, 2)}. For any discriminant D ≥ 8, with D ≡ 0, 1 mod 4, the
loci ΩED(κ) are non empty if and only if D ≡ 0, 1, 4 mod 8, and in this case they are pairwise disjoint.
Moreover the following dichotomy holds:

(1) If D is even then ΩED(κ) is connected,
(2) If D is odd then ΩED(κ) has exactly two connected components.

Remark 1.1. One of the main differences between the cases of genus two and genus three is that the
polarization of the Prym variety in genus three has the form

(
J 0
0 2J

)
, which is the reason why ΩED(κ) is

empty if D ≡ 5 mod 8.
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In genus two we have Prym(X, τ) = Jac(X) and the Prym involution τ must be the hyperelliptic invo-
lution which is unique, in genus three Prym(X, τ) is only a factor of Jac(X), and there may be more than
one Prym involution as we will see in Section 3. Thus it is not obvious that one can use the discriminant to
distinguish different Prym eigenform loci.

It is also worth noticing that while ΩE9(4) and ΩE16(4) are empty (see [LN11]), the loci ΩE9(κ) and
ΩE16(κ) do exist for κ ∈ {(2, 2)odd, (1, 1, 2)}.

1.4. Triple tori. An important tool in our proof is the use of triple tori:

(1) We say that (X,ω) ∈ ΩED(2, 2)odd admits a three tori decomposition if there exists a triple of
homologous saddle connections {σ0, σ1, σ2} on X joining the two distinct zeros of ω.

(2) We say that (X,ω) ∈ ΩED(1, 1, 2) admits a three tori decomposition if there exist two pairs of
homologous saddle connections {σ0, σ1} and {σ′0, σ′1} on X joining the double zero to the simple
zeros such that {σ′0, σ′1} = τ({σ0, σ1}).

If (X,ω) admits a three tori decomposition then it can be viewed as a connected sum of three slit tori
(Xj , ωj), j = 0, 1, 2, (see Figure 1). We will always assume that X0 is preserved by the Prym involution τ
and X1, X2 are exchanged by τ .

σ0

σ1

σ2

σ2

(X0,ω0)

(X1,ω1)

(X2,ω2)

(X0,ω0)

(X2,ω2)

(X1,ω1)

τ(σ1)

σ1

τ(σ0)

σ0

FIGURE 1. Decomposition of (X,ω) ∈ Prym(2, 2)odd (left) and (X,ω) ∈ Prym(1, 1, 2)
(right) into three tori.

As a corollary of our main result, we prove the following theorem, which is used in the paper [LN13b]:

Theorem B. For any discriminant D such that ΩED(κ) 6= ∅, there exist in any component of ΩED(κ)
surfaces which admit three-tori decompositions.

Theorem B is proved in Section 7.

1.5. Strategy of the proof. The important ingredients of the proof of the main theorem is the use of surg-
eries (see Section 5). The core of Theorem A are Theorem 6.1 on admissible saddle connection and The-
orem 4.1 on non-connectedness. The proofs of Theorem 6.1 and Theorem 4.1 appear in Section 6 and 4
respectively.
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(1) An elementary way to get Prym eigenforms in H(2, 2)odd and H(1, 1, 2) is given by Lemma 2.4.
Another way is the use of the surgery “Breaking up a zero" on a Prym eigenforms inH(4) (see [KZ03]).
We deduce that ΩED(2, 2)odd and ΩED(1, 1, 2) are non-empty whenever ΩED(4) is non-empty.

(2) In Section 3 we prove that the loci ΩED(κ) are pairwise disjoint (Lemma 3.3 and Theorem 3.1).
As we have noticed in Remark 1.1 a surface (X,ω) ∈ H(2, 2)odd may have more than one Prym
involution. However we then show that all Prym varieties admit real multiplication by O9. This
proves in particular that ΩE9(2, 2)odd is non-empty despite the fact that ΩE9(4) = ∅.

(3) To get an upper bound of the number of components of ΩED(κ) our strategy is to find in each
component C of ΩED(κ) a surface (X,ω) such that we can collapse the zeros of ω along some
saddle connections to get a surface in ΩED(4). Such saddle connections are called admissible (see
Section 5). In this situation, the component C is adjacent to the locus ΩED(4) i.e. ΩED(4) ⊂ C. We
then prove that the number of components of ΩED(κ) that are adjacent to ΩED(4) can not exceed
the number of components of ΩED(4). Surprisingly, it turns out that there exist components that
are not adjacent to ΩED(4). These are precisely the components of the loci ΩE9(κ) and ΩE16(κ).
This fact is proved in Theorem 6.1. This result plus the fact that ΩED(4) has at most two connected
components (by [LN11]) furnish the desired upper bound.

(4) Finally, to get the exact count of the number of components we will show in Section 4 that if
ΩED(4) is not connected then ΩED(κ) is not connected either (in contrast with the situation in
genus two). This difference comes from the invariant defined in [LN11].

Acknowledgements. We would like to thank Alex Eskin, Martin Möller, and Barak Weiss for useful dis-
cussions. We also thank Alex Wright for useful discussions and comments on an earlier version of this text.
We would also thank Université de Bordeaux and Institut Fourier in Grenoble for the excellent working
condition during the preparation of this work. Some of the research visits which made this collaboration
possible were supported by the ANR Project GeoDyM. The authors are partially supported by the ANR
Project GeoDyM.

2. BACKGROUND

We review the necessary tools and results involved in the proof of our main result. For an introduction to
translation surfaces in general, and a nice survey on this topic, see e.g. [Zor06, MaTa02].

2.1. Prym eigenform. Let X be a Riemann surface and τ an involution of X . We define the Prym variety
of (X, τ) to be

Prym(X, τ) = (Ω(X, τ)−)∗/H1(X,Z)−

where Ω(X, τ)− = ker(τ + id) ⊂ Ω(X), Ω(X) is the space of holomorphic one forms on X), and
H1(X,Z)− is the anti-invariant homology of X with respect to τ . Remark that Prym(X, τ) has naturally a
polarization: the lattice H1(X,Z)− is equipped with the restriction of the intersection form on H1(X,Z).

Following [Mc06] we will call a translation surface (X,ω) a Prym form if there exists an involution τ
of X such that dimC Ω(X, τ)− = 2, and ω ∈ Ω(X, τ)−. Note that the condition dimC Ω−(X, τ) = 2 is
equivalent to g(X) − g(Y ) = 2, where Y := X/〈τ〉. In this situation, we will call τ a Prym involution of
X . Note that a Riemann surface may have more than one Prym involution (see Theorem 3.1).

Recall that a (real) quadratic order is a ring isomorphic to Z[x]/(x2 + bx + c), the discriminant of
the order is defined by D = b2 − 4c. Orders with the same discriminants are isomorphic. Thus for any
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D ∈ N, D ≡ 0, 1 mod 4, we will write OD to designate the unique quadratic order of discriminant D.
WhenD is not a square,OD is a finite index subring of the integer ring in the quadratic fieldK := Q(

√
D).

Let A be an Abelian variety of (complex) dimension 2. We say that A admits a real multiplication by
OD if there exists an injective ring morphism i : OD → End(A) such that i(OD) is a self-adjoint proper
subring of End(A) (properness means that if f ∈ End(A) and there exists n ∈ N∗ such that nf ∈ i(OD),
then f ∈ i(OD)).

Definition 2.1. We will call a translation surface (X,ω) a Prym eigenform, if there exists a Prym involution
τ of X such that

• Prym(X, τ) admits a real multiplication by some quadratic order OD,
• ω ∈ Ω(X, τ)− is an eigenvector of OD.

The set of Prym eigenforms admitting real multiplication by OD will be denoted by ΩED. In [Mc05] it
is showed that ΩED are closed, GL+(2,R)-invariant submanifolds of the bundle ΩMg. Up to now, these
are the only known GL+(2,R)-invariant submanifolds of ΩMg which are neither closed orbits nor covers
of Abelian differentials or quadratic differentials in lower genus. The intersection of ΩED with a stratum
H(κ) will be denoted by ΩED(κ). Clearly, ΩED(κ) are GL+(2,R)-invariant submanifolds ofH(κ).

Any translation surface in genus two is a Prym form (the Prym involution being the hyperelliptic in-
volution). It turns out that the locus E2 of Prym eigenforms in genus two is a disjoint union of ΩED for
D ≡ 0, 1 mod 4 andD ≥ 5. It is a fact that ΩED(2) is connected ifD ≡ 0, 4, 5 mod 8, and has two compo-
nents otherwise (D ≡ 1 mod 8). On the other hand ΩED(1, 1) is connected for all D (see [Mc07, Mc05]).

McMullen [Mc06] proved the existence of Prym eigenforms in genus 3 and 4, and in particular that
ΩED(4) and ΩED(6) are non-empty for infinitely many D. It is well known that the minimal stratum
H(4) of ΩM3 has two components Hhyp(4) and Hodd(4) (see [KZ03] for precise definitions) and the
loci ΩED(4) are contained in Hodd(4). In [LN11] the authors gave a complete classification of ΩED(4),
namely:

Theorem 2.2 (Lanneau-Nguyen [LN11]). ForD ≥ 17, ΩED(4) is non empty if and only ifD ≡ 0, 1, 4 mod 8.
All the loci ΩED(4) are pairwise disjoint. Moreover, for the values 0, 1, 4 of discriminants, the following
dichotomy holds. Either

(1) D is odd and then ΩED(4) has exactly two connected components, or
(2) D is even and ΩED(4) is connected.

In addition, each connected component of ΩED(4) corresponds to a closed GL+(2,R)-orbit.
For D < 17, only ΩE12(4) and ΩE8(4) are non-empty, each of which consists of a unique closed

GL+(2,R)-orbit.

The first striking fact about Prym eigenforms in H(4) is that ΩED(4) = ∅ if D ≡ 5 mod 8, this is
actually due to the signature of the polarization of the Prym variety in genus three which is different from
the one in genus two. The second remarkable fact is that ΩE9(4) = ΩE16(4) = ∅ even though 9 and 16
are not “forbidden values” of D. It is worth noticing that even though we have the same statement in the
case D ≡ 1 mod 8 as McMullen’s result in ΩED(2) (namely, ΩED(4) has two components), the reason
for this disconnectedness is different. Roughly speaking, the two components of ΩED(4) correspond to
two distinct complex lines in the space Ω(X, τ)− ' H1(X,R)−, whereas in the case ΩED(2), the two
components correspond to the same complex line (this is actually a consequence of the fact that ΩED(1, 1)
is connected), they can only be distinguished by the spin invariant (see [Mc05, Section 5]).



6 ERWAN LANNEAU AND DUC-MANH NGUYEN

2.2. Prym eigenforms in H(2, 2) and H(1, 1, 2). The stratum H(1, 1, 2) is connected while the stratum
H(2, 2) has two connected components: H(2, 2)hyp and H(2, 2)odd (see [KZ03]). We will not use this
classification in the sequel.

Proposition 2.3. If (X,ω) ∈ ΩED(2, 2)hyp then there exists a Prym eigenform (X ′, ω′) ∈ ΩED′(2) and
an unramified double cover ρ : X → X ′ such that ρ∗ω′ = ω. In particular ΩED(2, 2)hyp is a finite union
of GL+(2,R) closed orbits, each of which is a copy of a GL+(2,R)-orbit in ΩED′(2).

Proof of Proposition 2.3. By definition X is a hyperelliptic Riemann surface, and the hyperelliptic involu-
tion ι exchanges the zeros of ω. Since ι commutes with all automorphisms of X , we have τ ′ := τ ◦ ι is also
an involution of X (where τ is the Prym involution of X). Set X ′ := X/〈τ ′〉. Note that ker(τ ′ − id) =
ker(τ +id), thus we have dim ker(τ ′− id) = 2 and X ′ is a Riemann surface of genus two. Let ρ : X → X ′

be the associated double cover. Using Riemann-Hurwitz formula, it is easy to see that ρ is unramified. Since
τ ′∗ω = ω, there exists a holomorphic one-form ω′ on X ′ such that ρ∗ω′ = ω. Since (X,ω) ∈ H(2, 2) and
ρ is unramified, we conclude that (X ′, ω′) ∈ H(2).

Remark that ρ∗ is an isomorphism between ker(τ ′ − id) = ker(τ ′ + id) and Ω(X ′), and ρ maps
H1(X,Z)− to a sublattice of index two in H1(X ′,Z), therefore ρ induces a two-to-one covering from
Prym(X, τ) to Jac(X ′). By assumption Prym(X, τ) admits a real multiplication by the orderOD for which
ω is an eigenvector. It follows that Jac(X ′) also admits a real multiplication by OD ⊗ Q for which ω′ is
an eigenvector. Thus there exists a discriminant D′ satisfying D′|D such that (X ′, ω′) ∈ ΩED′(2). This
shows the first part of the proposition.

But we know from [Mc07] that ΩED′(2) is a union of GL+(2,R) closed orbits, and since the map
(X,ω) 7→ (X ′, ω′) is clearly GL+(2,R)-equivariant, it follows that (X,ω) belongs to a GL+(2,R)-closed
orbit. Since any Riemann surface X inMg admits only finitely may unramified double covers, we derive
that there are only finitely many closed orbits in ΩED(2, 2)hyp. The proposition is then proved. �

Because of Proposition 2.3, in the rest of the paper we will focus on ΩED(2, 2)odd and ΩED(1, 1, 2).
Observe that if (X,ω) ∈ Prym(2, 2)odd then the Prym involution τ exchanges the two zeros of ω, and if
(X,ω) ∈ Prym(1, 1, 2) then τ exchanges the simple zeros ω.

The next lemma provides us with examples of Prym eigenforms in Prym(2, 2)odd and Prym(1, 1, 2).

Lemma 2.4 (Real multiplication by OD). Let (w, h, e) ∈ Z3 be an integral vector satisfying{
w > 0, h > 0, gcd(w, h, e) = 1,

D = e2 + 8wh, e+
√
D > 0.

Let λ := e+
√
D

2 . Note that λ2 = eλ+ 2wh. We denote by Sκ(w, h, e) the surface defined in Figure 2 below.
Then

Sκ(w, h, e) ∈ ΩED(κ).

Proof of Lemma 2.4. Each surface in Figure 2 is a connected some of three slit tori, and admits an involution
τ which fixes one torus and exchanges the other two (see also Section 1.4). It is not difficult to see that τ
is a Prym involution, and that Sκ(w, h, e) ∈ Prym(κ). Let (X,ω) be one of the surfaces in Figure 2. Let
X0 be the torus invariant by τ , and X1, X2 be the other two tori. By construction, there are bases (ai, bi) of
H1(Xi,Z), i = 0, 1, 2, such that
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λ

w

w

λ

h

h

S(2,2)(w,h,e)∈ΩED(2,2)odd

λ

h

h

w

w

λ

S(1,1,2)(w,h,e)∈ΩED(1,1,2)

FIGURE 2. Real multiplication by OD

• τ(a0) = −a0, τ(b0) = −b0, τ(a1) = −a2, τ(b1) = −b2,
• ω(a0) = λ, ω(b0) = ıλ,
• For i = 1, 2 one has ω(ai) = w and ω(bi) = ıh.

Set a = a1+a2, b = b1+b2. Then {a0, b0, a, b} is a symplectic basis ofH1(X,Z)− in which the intersection
form is given by the matrix

(
J 0
0 2J

)
. Let T be the endomorphism of H1(X,Z) which is given in the basis

(a0, b0, a, b) by the matrix

T =

(
eId2

(
2w 0
0 2h

)(
h 0
0 w

)
0

)
.

Since the restriction of the intersection form on H−1 (X,Z) is given by
(
J 0
0 2J

)
, it is easy to check that

T is self-adjoint with respect this form. Note that in this basis ω is given by the vector (λ, ıλ, 2w, 2hı),
therefore we have T ∗ω = λω. It follows that T ∈ End(Prym(X, τ)). Since T satisfies T 2 = eT +
2whId4, T generates a self-adjoint proper subring of End(Prym(X, τ)) isomorphic to OD for which ω is
an eigenvector. Thus Sκ(w, h,w) ∈ ΩED(κ). The lemma is proved. �

Corollary 2.5. For anyD ≥ 8, D ≡ 0, 1, 4 mod 8, the loci ΩED(2, 2)odd and ΩED(1, 1, 2) are non-empty.

Proof of Corollary 2.5. Apply Lemma 2.4 for some (w, h, e) ∈ Z with D = e2 + 8wh. �

2.3. Kernel foliation. To investigate the topology of these loci we first recall the notion of the kernel
foliation. Let (X,ω) ∈ H(κ) be a translation surface. In a neighborhood of (X,ω) the kernel foliation leaf
of (X,ω) consists of surfaces having the same absolute periods as (X,ω) and the relatives periods slightly
different. This foliation has already appeared in several papers (see for example [EMZ03, Cal04, MZ08,
HMSZ, MW14].

For κ ∈ {(2, 2)odd, (1, 1, 2)}, the intersection with the kernel foliation leaves gives rise to a foliation of
the Prym eigenform loci ΩED(κ), the leaves of this foliation have complex dimension one. Constructions of
surfaces in the intersection of the kernel foliation and Prym eigenform loci can be found in [LN13a, LN13b].
Since the leaves of this foliation has dimension one, for any (X,ω) ∈ ΩED(κ), we can use the notation
(X,ω)+w, withw ∈ C and |w| small, to denote surfaces in the same leaf and close to (X,ω) (see [LN13b],
Section 3). Moreover up to the action of GL+(2,R), a neighborhood of (X,ω) in ΩED(κ) consists of
surfaces in the same kernel foliation leaf as (X,ω). Namely, we have
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Proposition 2.6 ([LN13a], Corollary 3.2). Let (X ′, ω′) ∈ ΩED(κ) close enough to (X,ω) ∈ ΩED(κ).
Then there exists a unique pair (g, w), where g ∈ GL+(2,R) close to id, and w ∈ C with |w| small, such
that (X ′, ω′) = g · ((X,ω) + w). In particular, we have dim ΩED(κ) = 3.

3. UNIQUENESS

In genus two Prym involution and hyperelliptic involution coincide, so it is unique. In higher genus,
surfaces may have more than one Prym involution (see e.g. the Appendix). In [LN11], we showed that if
(X,ω) ∈ ΩED(4) then the Prym involution is unique. This is no longer true in H(2, 2)odd, nevertheless, if
a surface inH(2, 2)odd has two Prym involutions, then both Prym varieties admit real multiplication by O9

as we will see in Theorem 3.1. It follows in particular that if D1 6= D2 and κ ∈ {(2, 2)odd, (1, 1, 2)} then
ΩED1(κ) ∩ ΩED2(κ) = ∅.

Theorem 3.1. Let (X,ω) ∈ H(2, 2)odd be a surface having two Prym involutions τ1 6= τ2 such that
τ∗1ω = τ∗2ω = −ω. Then there exist i1 : O9 → End(Prym(M, τ1)) and i2 : O9 → End(Prym(M, τ2))
such that ii(O9) is a self-adjoint proper subring of End(Prym(X, τi)), and ω is an eigenform for both
subrings i1(O9) and i2(O9). In particular (X,ω) ∈ ΩE9(2, 2)odd.

If (X,ω) ∈ H(1, 1, 2), then there exists at most one Prym involution τ such that τ∗ω = −ω.

Corollary 3.2. For κ ∈ {(2, 2)odd, (1, 1, 2)}, if D1 6= D2 then ΩED1(κ) ∩ ΩED2(κ) = ∅.

Proof of Corollary 3.2. Let (X,ω) ∈ ΩED1(κ) ∩ ΩED2(κ). Let τ1 and τ2 be the corresponding Prym
involutions of X . If τ1 6= τ2 then by Theorem 3.1 one has κ = (2, 2)odd and D1 = D2 = 9. If τ1 = τ2 then
Lemma 3.3, applied to A = Prym(X, τ1) = Prym(X, τ2), gives the uniqueness of the self-adjoint proper
subring O ⊂ End(A), which implies D1 = D2. The corollary is then proved. �

We will need the following two elementary lemmas. The first one proves the uniqueness of the proper
subring, once the Prym variety and the eigenform are given (see also [LN11, Section 5] for related results).

Lemma 3.3. Let A be an Abelian variety of dimension two. We regard A as a quotient C2/L, where L is a
lattice isomorphic to Z4 equipped with a non-degenerate skew-symmetric inner product 〈, 〉 : L × L → Z
which is compatible with the complex structure. Let v 6= 0 be a vector in C2. Assume that there exists a
self-adjoint endomorphism ϕ of A such that ϕ(v) = λv, with λ ∈ R, ϕ 6= λ · Id. Then there exists a unique
discriminant D and a unique self-adjoint proper subring O of End(A) isomorphic to OD for which v is an
eigenvector.

Proof. Let S = C · v be the complex line generated by v, and let S′ denote the orthogonal complement of S
with respect to 〈, 〉 in C2. Note that S′ is also a complex line in C2. Setw = ıv. Since ϕ is an endomorphism
of A, we have ϕ(w) = iϕ(v) = λw. In other words ϕ|S = λ · idS . Since ϕ is self-adjoint, it also preserves
the complex line S′. Thus ϕ|S′ = λ′ · idS′ where λ′ 6= λ.

Since the self-adjoint endomorphism ϕ preserves the lattice L its minimal polynomial χϕ ∈ Z[X] has
degree 2. By definition λ is a real root of χϕ. Hence λ′, that is a root, is also real. Moreover, since v is an
eigenvector of ϕ, up to a real scalar, all the coordinates of v in a basis of L belong to K = Q(λ). Remark
that either K = Q, or K ⊂ R and [K : Q] = 2.

Let Kv be the subring of End(A) ⊗ Q consisting of self-adjoint endomorphisms of A for which v is an
eigenvector. For any f ∈ Kv, the matrix of f in the decomposition C2 = S ⊕S′ has the form

(
λ(f) 0

0 λ′(f)

)
.
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We claim that Kv is either isomorphic to K or to Q2. To see this, it suffices to notice that each element
of Kv is uniquely determined by its eigenvalues on S and S′. If λ ∈ Q then we can assume that all the
coordinates of v belong to Q, hence both λ(f) and λ′(f) belong to Q as f is defined of over Q. Thus Λ :

Kv → Q2, f 7→ (λ(f), λ′(f)) is an isomorphism of Q vector spaces. If λ 6∈ Q, then λ ∈ K = Q(
√
d),

with d ∈ N, d is not a square. It follows that λ′(f) is the Galois conjugate of λ(f) in K. Consequently,
Λ : Kv → K, f 7→ λ(f) is an isomorphism of Q-vector spaces.

Set O = Kv ∩ End(A). By definition, O is the unique self-adjoint proper subring of End(A) for which
v is an eigenvector. It remains to show that O ' Z[X]/(X2 + bX + c) for some b, c ∈ Z, such that
b2 − 4c > 0. We have dimQKv = 2. For any f ∈ O such that (f, id) is a basis of Kv as a Q-vector space,
we denote by ∆(f) the discriminant of the minimal polynomial of f . Note that we have ∆(f) > 0, and
∆(f) = (λ(f) − λ′(f))2. Set D = min{∆(f) : f ∈ O, (f, id) is a basis of Kv}. Let ψ be an element
of O such that ∆(ψ) = D. Let us show that O = Zψ + Zid. Indeed, let f be an element of O, then we
can write f = xψ + yid, with (x, y) ∈ Q2, and ∆(f) = x2D. If x 6∈ N, by replacing ψ by f − [x]ψ, we
can find ψ′ ∈ O such that 0 < ∆(ψ′) < D, therefore we must have x ∈ N. It follows that y ∈ N. Finally,
since ψ ∈ End(A), the minimal polynomial of ψ has the the form ψ2 + bψ + cid, with b, c ∈ Z such that
D = b2 − 4c. The proof of the lemma is now complete. �

Lemma 3.4. Let (X,ω) ∈ H(2, 2) t H(1, 1, 2), and τ1, τ2 be two Prym involutions of X such that τ∗1ω =
τ∗2ω = −ω.

(a) If (X,ω) ∈ H(1, 1, 2) then τ1 = τ2.
(b) If (X,ω) ∈ H(2, 2)odd and τ1 6= τ2, then there exists a branched cover p : X → Y of degree three,

where Y is a torus, which is ramified only at the zeros of ω and satisfies ω = p∗ξ, where ξ is a
holomorphic one-form on Y . Moreover, the involutions τ1, τ2 descend to the unique involution of Y
which acts by −id on the homology and exchanges the images by p of the zeros of ω.

Proof of Lemma 3.4. Set τ = τ1 ◦ τ2, one has τ∗ω = ω and τ fixes all the zeros of ω. We identify the
neighborhood of a double zero P of ω with the unit disk ∆ ⊂ C such that P is mapped to 0. In this local
chart, ω = z2dz. If ω ∈ H(1, 1, 2) then P is the unique double zero of ω, therefore τ1(P ) = τ2(P ) = P .
Since both τ1, τ2 are involutions, their restrictions to this neighborhood of P read τi(z) = −z. Thus
τ(z) = z, which implies that τ = idX and τ1 = τ2.

From now on, we will assume that ω ∈ H(2, 2)odd and τ1 6= τ2. The restriction of τ to the local chart of
P (defined above) can be written as τ(z) = ζz. Since τ∗ω = ω, it follows that ζ3 = 1. Obviously ζ 6= 1,
otherwise τ is the identity map in a neighborhood of P and hence it is the identity on X implying τ1 = τ2.
Let p : X → Y = X/〈τ〉 be the quotient map. Since τ has order three, p is a ramified covering of degree 3.
Clearly, the two zeros of ω are branched points of p of order 3. Moreover since dim ker(τ − id) ≥ 1, one
has genus(Y ) ≥ 1. These two facts, combined with the Riemann-Hurwitz formula

−4 = 2− 2 · genus(X) = 3 · (2− 2 · genus(Y ))−
∑
x∈X

(ep(x)− 1) ≤ −
∑
x∈X

(ep(x)− 1) ≤ −4

implies that genus(Y ) = 1 and the two zeros of ω are the only branched points of p. Since τ∗ω = ω, the
form ω descends to a holomorphic 1-form ξ on Y i.e. ω = p∗ξ.

Now the subgroup of Aut(X) generated by τ , namely {id, τ1 ◦ τ2, τ2 ◦ τ1}, is clearly invariant by the
conjugations by τ1 and τ2. Therefore τ1 and τ2 induces two involutions, say ι1 and ι2, on Y . Since τi
permutes the zeros of ω, the equality τ∗i ω = −ω reads ι∗i ξ = −ξ, and ιi exchanges the images of the zeros
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of ω by p. Now Y is a torus: there exists only one such involution. Hence ι1 = ι2. The lemma is then
proved. �

Proof of Theorem 3.1. From Lemma 3.4 it is sufficient to assume that (X,ω) ∈ H(2, 2)odd. For simplicity
we continue with the notions of the previous lemma. Let P,Q ∈ X denote the zeros of ω. We claim that
there exists a basis of H1(Y,Z) given by a pair of simple closed geodesics {α, β} that are invariant by ι and
that do not contain p(P ) and p(Q). Indeed one can pick a fixed point of ι and take a pair of simple closed
geodesics passing through this point and missing the point p(P ) and p(Q) = ι(p(P )).

The next goal is to construct a symplectic basis of X and a self-adjoint endomorphism of Prym(X, τ1).
We lift the curves α, β to X in the following manner. Let R ∈ Y be the (unique) intersection point of α
with β. Hence ι(R) = R and R is a regular point of the covering p. Since p ◦ τ1 = ι ◦ p, the involution τ1

induces a permutation (of order two) of p−1(R) = {R0, R1, R2}. Therefore τ1 fixes some point, say R0.

Let α0 (respectively, β0) be the pre-image of α (respectively, β) passing through R0. For j = 1, 2 let
αj = τ j(α0), βj = τ j(β0), where τ = τ1 ◦ τ2. By construction:{

〈αi, αj〉 = 〈βi, βj〉 = 0 for i, j ∈ {0, 1, 2}, i 6= j,
〈αi, βj〉 = δij for i, j ∈ {0, 1, 2}.

Hence (α0, β0, α1, β1, α2, β2) is a symplectic basis of H1(X,Z). This allows us to construct a symplectic
basis (a0, b0, a1, b1) of H1(X,Z)− = ker(τ1 + id) as usual:{

a0 = α0 b0 = β0

a1 = α1 + α2 b1 = β1 + β2

The intersection form is given by the matrix
(
J 0
0 2J

)
. One can normalize by using GL+(2,R) so that

ξ(α) = 1 and ξ(β) = ı ∈ C. Then ω (viewed as an element of H1(X,C)−) is the vector (in the basis dual
to (a0, b0, a1, b1))

(ω(a0), ω(b0), ω(a1), ω(b1)) = (1, ı, 2, 2ı).

It is straightforward to check that (X,ω) coincide with S(2,2)(1, 1,−1) ∈ ΩE9(2, 2).
Let us consider the matrix

T =
(
−id2 2·id2
id2 0

)
(a0,b0,a1,b1)

It is straightforward to check that T is self-adjoint with respect to the restriction of the intersection form
on H1(M,Z)−. Moreover (1, ı, 2, 2ı) · T = (1, ı, 2, 2ı) thus ω is an eigenform for T : hence (X,ω) ∈
ΩED(2, 2)odd. Since T 2 = −T+2, the endomorphism T generates a proper subring of End(Prym(M, τ1))
isomorphic to OD where D = 1 + 4 · 2 = 9. By Lemma 3.3, this subring is unique.

The same argument shows that End(Prym(M, τ2)) also contains a unique self-adjoint proper subring
isomorphic to O9, for which ω is an eigenform. The proof of the theorem is now complete. �

4. NON CONNECTEDNESS OF ΩED(κ)

In this section we will show that when D ≡ 1 mod 8, the number of components of ΩED(2, 2)odd and
ΩED(1, 1, 2) is at least two. It is worth noticing that this is not true in genus two, namely, ΩED(2) has two
connected components, while ΩED(1, 1) is connected (see [Mc05]).

Theorem 4.1. For any D ≥ 9 satisfying D ≡ 1 mod 8, the loci ΩED(2, 2)odd and ΩED(1, 1, 2) are not
connected.
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Proof of Theorem 4.1. First of all by Corollary 2.5, ΩED(κ) is non-empty. Before going into the details,
we first explain why ΩED(4) is not connected when D ≡ 1 mod 8 (see [LN11, Theorem 6.1]). For every
surface (X,ω) ∈ ΩED(4) we denote by S the subspace of H1(X,R)− = ker(τ + Id) ⊂ H1(X,R)
generated by {Re(ω), Im(ω)} and by S′ the orthogonal complement of S with respect to the intersection
form in H1(X,R)−. By definition there is an injective ring morphism i : OD → End(Prym(X, τ)) such
that i(OD) is a self-adjoint proper subring of End(Prym(X, τ)), and for any T ∈ i(OD), S is an eigenspace
of T . It turns out that an element T ∈ Im(i) is uniquely determined by its minimal polynomial and by the
eigenvalue of its restriction to S. Indeed, the minimal polynomial of T has degree two; thus if T|S = λidS
then T|S′ = λ′idS′ , where λ and λ′ are the roots of the minimal polynomial of T . Therefore T is given by the
matrix

(
λ 0
0 λ′
)

in the decompositionH1(X,R)− = S⊕S′. In [LN11, Section 6] for eachD ≡ 1 mod 8, with
D ≥ 17, we constructed two surfaces (Xi, ωi) ∈ ΩED(4), i = 0, 1, where the corresponding generators of
the order T0 ∈ Im(i0) and T1 ∈ Im(i1) satisfies:

• T0 and T1 have the same minimal polynomial,
• T0|S0

= λidS0 and T1|S1
= λidS1 ,

• 〈, 〉|Rg(T0) 6= 0 mod 2 and 〈, 〉|Rg(T1) = 0 mod 2.

Now if (X0, ω0) and (X1, ω1) belong to the same connected component (i.e. A · (X0, ω0) = (X1, ω1)
where A ∈ GL+(2,R)) then there exists an isomorphism f : H1(X0,Z)− → H1(X1,Z)− such that
T ′1 := f−1 ◦ T1 ◦ f defines an endomorphism of Prym(X0, τ0). By uniqueness of the Prym involution and
the map i0 : OD → End(X0, τ0), it follows that both T0 and T ′1 belong to i0(OD). By construction T0 and
T ′1 have the same minimal polynomial and T0|S0

= (T ′1)|S0
= λidS0 . Thus in view of the above remark,

T0 = T ′1. This is a contradiction since 〈, 〉|Rg(T0) 6= 〈, 〉|Rg(T ′1) mod 2.

We now go back to the proof of Theorem 4.1 and apply similar ideas. Let (w, h, e) ∈ Z3 be as in
Lemma 2.4 where D = e2 + 8wh ≡ 1 mod 8. Note that e is odd. We will show that the two surfaces

(X0, ω0) := Sκ(w, h,−e) ∈ ΩED(κ) and (X1, ω1) := Sκ(w, h, e) ∈ ΩED(κ)

do not belong to the same component. Recall that by construction, for j = 0, 1, we have associated to
(Xj , ωj) a generator Tj of the order ij(OD) ⊂ End(Prym(Xj , τj)). Recall that, in the symplectic basis
(a0, b0, a, b) of H1(Xj ,Z) given in Lemma 2.4, the endomorphism is given by the matrix

T0 =

(
−eId2

(
2w 0
0 2h

)(
h 0
0 w

)
0

)
and T1 =

(
eId2

(
2w 0
0 2h

)(
h 0
0 w

)
0

)
respectively .

Let us assume that there is a continuous path γ : [0, 1] → ΩED(κ) such that γ(i) = (Xi, ωi) for i = 0, 1,
we will draw a contradiction. Let γ̃ be a lift of γ to the vector bundle ΩT3 over the Teichmüller space T3. We
will denote by (Xs, ωs) the image of s ∈ [0, 1] by γ̃. Let Σ be the base surface of the Teichmüller space. By
construction the path γ̃ induces a continuous map which sends every s ∈ [0, 1] to a tuple (Js, τs, Ls, is, Ss),
where

• Js is the complex structure of H1(Σ,R), induced by the complex structure of Xs,
• τs ∈ Sp(6,Z) is the matrix which gives the action of the Prym involution of Xs on H1(Σ,R),
• Ls is the lattice H1(Σ,Z) ∩ ker(τs + id),
• is : OD → End(H1(Σ,R)−s ), where H1(Σ,R)−s = ker(τs + id) ⊂ H1(Σ,R), is an injective ring

morphism where is(OD) is a self-adjoint proper subring of End(H1(Σ,R)−s ) that preserves Ls.
• Ss is the subspace of H1(X,R)− = ker(τs + Id) generated by {Re(ωs),Rg(ωs)}.
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Remark that since ω is holomorphic, Ss is invariant by Js. The action of GL+(2,R) preserves the subspace
Ss ⊂ H1(Σ,R)−, and the kernel foliation leaves invariant [Re(ω)] and [Im(ω)]. Therefore Ss is invariant
along the path γ̃. Clearly, the matrix τs is also invariant along the deformation γ̃. This implies that Ls and
is are also invariant along γ̃. In particular S0 = S1 = S and i0 = i1.

There exists an isomorphism f : H1(X0,Z)− −→ H1(X1,Z)− satisfying f(S0) = S1 and such that
T ′1 = f−1 ◦T1 ◦ f belongs to i0(OD) ⊂ End(Prym(X0, τ0)). Remark that T ′1 and T0 + e · Id have the same
minimal polynomial X2− eX − 2wh. In addition the eigenvalues of T ′1 on S0 = C ·ω0, and the eigenvalue
of T0 + e · Id on C · ω0 are both equal to λ = (e+

√
D)/2. Hence T ′1 = T0 + e · Id.

Now Rg(T0 + e · Id) mod 2 is generated by {a, b}. The restriction of the intersection form 〈, 〉 to this
subspace is equal to 0 mod 2. On the other hand the restriction of the intersection form to Rg(T ′1) does not
vanish modulo 2:

〈T1(a0), T1(b0)〉 ≡ 〈a0, b0〉 ≡ 1 mod 2.

This is a contradiction, and the theorem follows. �

In Section 5.4 we will give a topological argument for the non connectedness of ΩE9(2, 2)odd.

5. COLLAPSING ZEROS ALONG A SADDLE CONNECTION

In this section we describe a surgery on collapsing several zeros of Prym eigenforms together such that
the resulting surface is still a non degenerate Prym eigenform. This can be thought as the converse of the
surgery “breaking up a zero” (see [KZ03]).

In what follows, all the zeros are labelled and all the saddle connections are oriented: if (X,ω) ∈
ΩED(2, 2)odd, we label the zeros by P and Q and if (X,ω) ∈ ΩED(1, 1, 2), we label the simple zeros by
R1, R2 and the double zero by Q. Let σ0 be a saddle connection on X .

Convention 1. We will always assume that:
(1) If (X,ω) ∈ ΩED(2, 2)odd then σ0 is a saddle connection from P to Q that is invariant by τ .
(2) If (X,ω) ∈ ΩED(1, 1, 2) then σ0 is a saddle connection from R1 to Q.

Observe that such saddle connections always exist on any (X,ω) ∈ ΩED(κ): for κ = (2, 2)odd, take σ0

to be the union of a path of minimal length from a regular fixed point of τ to a zero of ω and its image by τ ,
for κ = (1, 1, 2), take a path of minimal length from the set {R1, R2} to {Q}.

5.1. Admissible saddle connections. We begin with the following definition.

Definition 5.1. Let (X,ω) ∈ Prym(κ) be a Prym form.
(1) κ = (2, 2)odd: we say that σ0 is admissible if for any saddle connection σ 6= σ0 from P to Q

satisfying ω(σ) = λω(σ0), with λ ∈ R+, one has λ > 1.
(2) κ = (1, 1, 2): we say that σ0 is admissible if, for any saddle connection σ 6= σ0 starting from R1

and satisfying ω(σ) = λω(σ0), with λ ∈ R+, either λ > 1 if σ ends at Q, or λ > 2 if σ ends at R2.

Observe that by definition the subset consisting of surfaces having an admissible saddle connection is an
open GL+(2,R)-invariant subset.

Lemma 5.2. Let κ ∈ {(2, 2)odd, (1, 1, 2)}. For any (X,ω) ∈ ΩED(κ) and any σ0 satisfying Convention 1,
there exists in a neighborhood of (X,ω) a surface (X ′, ω′) ∈ ΩED(κ) with a saddle connection σ′0 (cor-
responding to σ0 and also satisfies Convention 1) such that any saddle connection σ′ on X ′ in the same
direction as σ′0, if it exists, satisfies



COMPONENTS OF PRYM EIGENFORM LOCI 13

(1) Case κ = (2, 2)odd: ω′(σ′) = ω′(σ′0).
(2) Case κ = (1, 1, 2):

(a) If σ′ connects a simple zero to the double zero then ω′(σ′) = ω′(σ′0).
(b) If σ′ connects two simple zeros then ω′(σ′) = 2ω′(σ′0).

Proof of Lemma 5.2. For any vector v ∈ R2 small enough we denote by σ′0 the saddle connection on
(X ′, ω′) = (X,ω) + v corresponding to σ0. Observe that the set

Slope(X,ω) = {s ∈ R ∪ {∞} : s is the slope of ω(γ) 6= 0, with [γ] ∈ H1(X,Z)}

is countable. Hence there exists a vector v ∈ R2 small enough so that the slope of ω′(σ′0) does not belong
to the set Slope(X,ω) = Slope(X ′, ω′).

Case κ = (2, 2)odd. Let σ′ be a saddle connection starting from P in the same direction as σ′0. If σ′ ends
at P then [σ′] ∈ H1(X ′,Z) and 0 6= ω′(σ′) has the same slope as ω′(σ′0). This is a contradiction. Thus σ′

ends at Q and [γ′] = [σ′0 ∗ (−σ′)] ∈ H1(X ′, ω′). If ω′(γ′) 6= 0 then we get again a contradiction. Therefore
ω′(γ′) = 0 i.e. ω′(σ′) = ω′(σ′0).

Case κ = (1, 1, 2). Let σ′ be a saddle connection starting from R1 in the same direction as σ′0. If σ′ ends
at R1 we run into the same contradiction. If σ′ ends at Q then we also run into the same conclusion namely
ω′(σ′) = ω′(σ′0). Hence let us assume that σ′ ends at R2. Thus σ′0 ∗ τ(σ′0) ∗ (−σ′) is a closed path from R1

to R1 (through Q and R2). Therefore [γ′] = [σ′0 ∗ τ(σ′0) ∗ (−σ′)] ∈ H1(X ′, ω′). The same contradiction
shows that ω′(γ′) = 0, i.e. ω′(σ′) = 2ω′(σ′0). The lemma is proved. �

5.2. Non-admissible saddle connection and twin/double-twin. Lemma 5.2 leads to the following natural
definition.

Definition 5.3. Let (X,ω) ∈ ΩED(κ) and let σ0 be a saddle connection on X satisfying Convention 1.
If κ = (2, 2)odd: a saddle connection σ is a twin of σ0 if σ joins P to Q and ω(σ) = ω(σ0).
If κ = (1, 1, 2):

(1) a saddle connection σ is a twin of σ0 if it has the same endpoints and ω(σ) = ω(σ0).
(2) a saddle connection σ is a double-twin of σ0 if σ joins R1 to R2 and ω(σ) = 2ω(σ0).

When (X,ω) ∈ ΩED(2, 2)odd, since the angle between two twin saddle connections is a multiple of 2π
and the angle at P is 6π, we see that each saddle connection σ0 has at most two twins. When (X,ω) ∈
ΩED(1, 1, 2), the same remark shows that σ0 has at most one twin or one double-twin. Moreover the
midpoint of any double twin saddle connection is fixed by the Prym involution.

Non admissible saddle connection does not necessarily imply the existence of a twin or double twin (see
Remark 5.6 below). However Lemma 5.2 shows that, under mild assumption, this dichotomy holds. As an
immediate corollary, we draw

Corollary 5.4. Let κ ∈ {(2, 2)odd, (1, 1, 2)}. For any connected component C of ΩED(κ), there exist
(X,ω) ∈ C and a saddle connection σ0 on (X,ω) satisfying Convention 1 such that either σ0 is admissible,
or σ0 has a twin or a double twin.
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5.3. Collapsing admissible saddle connections. We have the following proposition that is a converse to
the surgery “breaking up a zero” (see [KZ03]). We prove the proposition only in the setting of Corollary 5.4.
A more general statement holds but it is not needed in this paper.

Proposition 5.5. Let (X,ω) ∈ ΩED(κ) be a Prym form and σ0 a saddle connection satisfying Conven-
tion 1. We assume that σ0 is admissible. Then one can collapse the zeros of ω along σ0 by using the kernel
foliation so that the resulting surface belongs to ΩED(4).

In particular, if there is no saddle connection in the same direction as σ0 connecting two different zeros,
then one can collapse σ0 to get a surface in ΩED(4).

Proof. We first consider the case when (X,ω) ∈ ΩED(2, 2)odd. The proof we describe is constructive. Set
` = |σ0|. As usual we assume that σ0 is horizontal. By definition of admissible saddle connection, any other
horizontal saddle connection from P to Q has length > `.

For any horizontal geodesic ray emanating from a zero of ω we say that the ray is positive if it has
direction (1, 0) and negative if it has direction (−1, 0). For instance by convention σ0 is a positive ray for P
and a negative ray for Q. Since the conical angle at P and Q is 6π, there are two other positive horizontal
rays emanating from P , say σ+

P,1 and σ+
P,2, as well as two other negative rays for Q, say σ−Q,1 and σ−Q,2. We

parametrize each ray by its length to the zero where it emanates. Obviously, if a positive ray intersects a
negative ray then it corresponds to a (horizontal) saddle connection.

We will first prove the proposition under a slightly stronger condition

(C) any horizontal saddle connection other than σ0 has length > 2`.

We will construct a set T which is a union of horizontal rays as follows: the first element of T is σ0. Now
if a ray σ+

P,1 or σ+
P,2 intersects σ−Q,1 or σ−Q,2 by assumption, the associated saddle connection has length

λ > 2`. Hence we can choose ε > 0 such that positive rays σ+
P,1 and σ+

P,2 at time `+ ε do not intersect σ−Q,1
and σ−Q,2 at time ` + ε in their interior. These are the next elements of T . Finally we consider the negative
rays from P and positive rays from Q at time ε. By the assumption, the union T of all of these rays is an
embedded tree in X (see Figure 3).

We now consider a neighborhood T (δ) = {p ∈ X; h(p, T ) < δ} of T , where h is the distance measured
in the vertical direction. For δ > 0 small enough, T is a retract by deformation of T (δ). We can easily
construct T (δ) from 10 Euclidian rectangles whose heights are equal to δ and widths are equal to `+ 2ε.

We will now change the flat metric of T (δ) without changing the metric outside of this neighborhood.
Given any `′ ∈]0, `[, by varying the points where the rectangles are sewn, we can obtain a new surface
(X ′, ω′) in ΩED(2, 2)odd with a saddle connection invariant by the involution whose length is equal to `′.
Note that the surfaces obtained from this construction belong the same leaf of the kernel foliation as (X,ω).

When `′ = 0, we get a new closed surface (X0, ω0) ∈ H(4) sharing the same absolute periods as (X,ω).
Moreover there exists an involution τ0 on X0 such that τ∗0ω0 = −ω0. Hence (X0, ω0) ∈ ΩED(4).

Let us now give the proof of the lemma without the additional condition (C). Using
(

1 0
0 et
)
, t > 0, we

can assume that any non-horizontal saddle connection has length > 4`. Set

`0 = min{|σ|, σ is a simple horizontal geodesic loop at P or Q}.
Choose any δ ≤ 1/2 min{`, `0}, and consider B(P, δ) := {x ∈ X, d(x, P ) < δ} and B(Q, δ) := {x ∈
X, d(x,Q) < δ}, where d is the distance defined by flat metric. By assumption, B(P, δ) and B(Q, δ) are
two embedded topological disks in X which are disjoint. Therefore, the surface (X,ω) + (−δ, 0), which is
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FIGURE 3. Collapsing two zeros along a saddle connection invariant by τ .

obtained by moving P by δ/2 to the right, and Q by δ/2 to the left, is well defined. In the new surface, any
horizontal saddle connection from P toQ has length reduced by δ, but the lengths of all horizontal geodesic
loops are unchanged since they are absolute periods of ω. Note also that if σ is another horizontal saddle
connection joining P to Q, then |σ| − |σ0| is also unchanged. It follows that after finite steps, we can find a
surface in the horizontal leaf of (X,ω) such that |σ0| < 1/2`0 and |σ0| < 1/2|σ| for any other horizontal
saddle connection σ from P to Q. We can now apply the above arguments to conclude.

We now turn into the case when (X,ω) ∈ ΩED(1, 1, 2). The construction is similar, we keep the same
convention: σ0 is a positive ray for R1 and a negative ray for Q. Note that τ(σ0) is a horizontal saddle
connection from Q to R2, it is a positive ray for Q and negative ray for R2. We denote by σ±Q,i, i = 1, 2, the
two other positive/negative rays from Q, and σ+

R1
(resp. σ−R2

) the other positive (resp. negative) ray from
R1 (resp. from R2).

We again prove the proposition with a slightly stronger assumption that for any other horizontal saddle
connection σ, one has |σ| > 4|σ0|. We will construct a set T which is a union of positive/negative rays
parametrized by the length to its origin. The first elements of T are σ0 and τ(σ0). We then add to T

• the rays σ+
R1

and σ−R2
a time 2`+ ε

• the negative rays from R1 and positive rays from R2 at time ε.
• the positive and negative rays from Q other than σ0 and τ(σ0) at time `+ ε.

with ε > 0 small. Now if the ray σ+
R1

intersects any negative horizontal ray then, by assumption, the
associated saddle connection has length > 4`. Hence we can choose ε > 0 such that positive ray σ+

R1
at

time 2`+ ε does not intersect any negative ray from Q at time `+ ε, nor any negative ray from R1 or R2 at
time 2`+ ε. Similar arguments apply for other positive rays. It follows that T is a tree.

We now consider a neighborhood T (δ) = {p ∈ X; h(p, T ) < δ} of T where h is the distance measured
in the vertical direction. For δ > 0 small enough, T is a retract by deformation of T (δ). We can easily
construct T (δ) from 10 Euclidian rectangles whose heights are equal to δ and widths are equal to 2` + 2ε.
As above we can change the flat metric of T (δ) without changing the metric outside of this neighborhood.
The rest of the proof follows the same lines as the case κ = (2, 2)odd. �

5.4. Twins and non connectedness of Prym eigenform loci when D = 9. In this section we give another
elementary proof of the non connectedness of the loci ΩE9(2, 2)odd (Theorem 4.1).

Another proof of Theorem 4.1, case ΩE9(2, 2). Set X0 := S(2,2)(1, 1,−1) and X1 := S(2,2)(1, 1, 1) (see
Lemma 2.4). For i = 0, 1, let Ci be the connected component of (Xi, ωi).
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We claim that on any surface in C0, any saddle connection which connects the two zeros of ω0 has
exactly two twins. Since this property is not satisfied by (X1, ω1) (the longest horizontal saddle connection
on (X1, ω1) connects the zeros of ω1 and has no other twins) this will prove the theorem for ΩE9(2, 2)odd.

By construction the surface (X0, ω0) has three distinct Prym involutions, each of which preserves exactly
one of the tori in the decomposition shown in Figure 2. By Lemma 3.4 there exists a ramified covering
p : X0 → N0 of degree three (ramified at the zeros of ω0) whereN0 is a torus. Hence any saddle connection
on X0 which connect the zeros of ω0 has two other twins. For any surface in the kernel foliation leaf or
in the GL+(2,R)-orbit of (X0, ω0), this property is clearly preserved (since surfaces still have three Prym
involutions). Thus (X1, ω1) does not belong to the component of (X0, ω0). �

Remark 5.6. On the surface S(2,2)(1, 1, 1), the longest horizontal saddle connection (the one that is con-
tained in the boundary components of the bottom cylinder) satisfies Convention 1, and has no twins. It is
not admissible since there are two other saddle connections in the same direction with smaller length. If we
move this surface slightly in the kernel foliation leaf to break this parallelism, we will find a twin of this sad-
dle connection (see Figure 4). This example shows that having a saddle connection satisfying Convention 1
which has no twins does not imply the existence of an admissible one. On the other hand, we know that
S(2,2)(1, 1, 1) belongs to ΩE9(2, 2)odd and ΩE9(4) = ∅, so there exists no admissible saddle connection
on S(2,2)(1, 1, 1).

2

1

1

2

1

1

σ0 σ0

σ′0

FIGURE 4. On the left: (X,ω) = S(2,2)(1, 1, 1), on the right: (X,ω) + (0, ε). In (X,ω),
σ0 has no twin, but in (X,ω) + (0, ε) it has one.

5.5. Twins and triple tori. The next lemma provides a useful criterion to have triple tori from twin saddle
connections (see Section 1.4 for the definition of triple tori).

Lemma 5.7. Let (X,ω) be a translation surface and let σ0 be a saddle connection on X satisfying Con-
vention 1. We assume that σ1 is a twin of σ0 that is not invariant by τ .

(1) If (X,ω) ∈ Prym(2, 2)odd and σ1 ∪ τ(σ1) is separating then the triple of saddle connections
σ0, σ1, τ(σ1) decomposes (X,ω) into a triple of flat tori.

(2) If (X,ω) ∈ Prym(1, 1, 2) and σ0 ∪ σ1 is separating then the pairs (σ0, σ1) and (τ(σ0), τ(σ1))
decomposes (X,ω) into a triple of flat tori.

Proof of Lemma 5.7. As usual we assume first that (X,ω) ∈ Prym(2, 2)odd. Let σ2 = τ(σ1). We first begin
by observing that (X,ω) is the connected sum of a flat torus (X0, ω0) with a surface (X ′, ω′) ∈ H(1, 1),
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along σ1 ∪ σ2. Indeed the saddle connections σ1 and σ2 determine a pair of angle (2π, 4π) at P and Q.
Since τ permutes P and Q, and preserves the orientation of X , it turns out that the angles 2π at P and the
angle 2π at Q belong to the same side of σ1 ∪ σ2.

As subsurfaces of X , X0 and X ′ have a boundary that consists of the saddle connections σ1 and σ2. We
can glue σ1 and σ2 together to obtain two closed surfaces that we continue to denote by X0 and X ′. We
now have on X0 (respectively, on X ′) a marked geodesic segment σ (respectively, a saddle connection σ′)
that corresponds to the identification of σ1 and σ2. Note also that σ0 is contained in X ′.

The involution τ induces two involutions: τ0 on X0 and τ ′ on X ′. The involution τ0 is uniquely deter-
mined by the properties τ0(ω0) = −ω0 and τ0 permutes the endpoints of σ (namely, P and Q). Hence τ0

is the elliptic involution and has in particular 4 fixed points: the midpoint of σ and three fixed points of τ .
Since τ has 4 fixed points, τ ′ has exactly 2 fixed points: the midpoint of σ0 (σ0 is invariant by τ ) and the
midpoint of σ′.

Let ι be the hyperelliptic involution of X ′. Since ι has 6 fixed points, we derive τ ′ 6= ι. We claim that
ι(σ0) = −σ′. Indeed, ι(σ0) is a saddle connection such that ω′(ι(σ0)) = −ω′(σ0). Hence

ι(σ0) = −σ0 or ι(σ0) = −σ′.
If ι(σ0) = −σ0 then τ ′ ◦ ι(σ0) = σ0, hence τ ′ ◦ ι is the identity map in the neighborhoods of P and Q.
Therefore τ ′ ◦ ι = idX′ : this is a contradiction since we know that τ ′ 6= ι. Now the closed curve σ0 ∗ (−σ′)
is preserved by ι, hence it is separating. Cut X ′ along this closed curve we obtain two flat tori (X1, ω1) and
(X2, ω2). It is not difficult to see that X1 and X2 are exchanged by τ ′. By construction, X is the connected
sum of X0, X1, and X2 which are glued together along the slits corresponding to σ0, σ1, σ2.

The proof for the case (X,ω) ∈ Prym(1, 1, 2) is similar, it follows the same lines as the above discussion.
�

6. COLLAPSING SURFACES TO ΩED(4)

The goal of this section is to establish the following theorem, which is a key step in the proof of Theo-
rem A.

Theorem 6.1. Let κ ∈ {(2, 2)odd, (1, 1, 2)}. Let C be a connected component of ΩED(κ). If for every
surface (X,ω) ∈ C there is no admissible saddle connection on (X,ω) then D ∈ {9, 16}. More precisely,
under this assumption, C contains one of the following surfaces (see Lemma 2.4):

Sκ(1, 1,−1), Sκ(1, 1, 1) ∈ ΩE9(κ), or Sκ(1, 2, 0), S(2,2)(2, 1, 0) ∈ ΩE16(κ).

Recall that as an immediate consequence we draw an upper bound on the number of connected compo-
nents of ΩED(2, 2)odd and ΩED(1, 1, 2) (see Section 7).

6.1. Strategy of the proof of Theorem 6.1. Let (X,ω) be a Prym eigenform and let σ0 be a saddle con-
nection satisfying Convention 1. In view of Corollary 5.4 we can assume that σ0 has a twin or a double twin,
say σ1, otherwise the theorem is proved. Depending the strata, we will distinguish three cases as follows:

• κ = (2, 2)odd:
Case A τ(σ1) 6= −σ1 and σ1 ∪ τ(σ1) is separating.
Case B τ(σ1) 6= −σ1 and σ1 ∪ τ(σ1) is non-separating.
Case C τ(σ1) = −σ1.
• κ = (1, 1, 2):

Case A σ1 is a twin and σ0 ∪ σ1 is separating.



18 ERWAN LANNEAU AND DUC-MANH NGUYEN

Case B σ1 is a twin and σ0 ∪ σ1 is non-separating.
Case C σ1 is a double twin (τ(σ1) = −σ1).

We will first prove Theorem 6.1 under the assumption of Case A. This case is simpler since Lemma 5.7
applies: (X,ω) admits a three tori decomposition. In the other two cases, by Lemma 6.2 D is a square. We
then prove that Case B and Case C can be reduced to Case A: this corresponds, respectively, to Sections 6.3
and 6.4, respectively.

6.2. Proof of Theorem 6.1 under the assumption of Case A. From now on we will assume that for any
(X,ω) ∈ C ⊂ ΩED(κ), there exists no admissible saddle connection. Let σ2 be the image of σ1 by the
Prym involution τ . Thanks to Lemma 5.7 (X,ω) admits a three tori decomposition: X0 is preserved and
X1, X2 are exchanged by the Prym involution τ .

Claim 1. There exists (X,ω) ∈ C such that the horizontal direction is periodic on the tori (X0, X1, X2).

Proof of Claim 1. By moving in the kernel foliation leaf and using GL+(2,R) action, we can assume that
the slits σi are parallel to a simple closed geodesic in (X0, ω0) which is horizontal. Since (X,ω) is com-
pletely periodic in the sense of Calta (see [LN13a]), the claim follows. �

In the sequel we assume that (X,ω) is decomposed into three horizontal cylinders, say C0, C1, C2, along
the saddle connections σ0, σ1, σ2, where C0 is fixed, and C1, C2 are exchanged by the Prym involution. We
let s = |σi|. We denote by `i, hi the width and the height of the cylinder Ci. Obviously `1 = `2 and h1 = h2

(see Figure 1 for the notations).

6.2.1. Case κ = (2, 2)odd.

Claim 2. One of the following two equalities holds: h0 = h1 or h0 = 2h1.

Proof of Claim 2. Let δ be a saddle connection in C0 joining P to Q which crosses the core curve of C0

only once. Note that δ is anti-invariant by τ . Using U = {( 1 t
0 1 ) , t ∈ R}, we can assume that δ is vertical.

By assumption, δ is not admissible. Changing the length of the slits (the length of σi) if necessary and using
the argument in Lemma 5.2, we can assume that δ has a twin δ′. Remark that δ′ must intersect C1 ∪ C2,
therefore we have |δ′| = mh1 + nh0 with m ∈ Z, m ≥ 1. The condition |δ′| = |δ| implies n = 0. Thus
h0 = mh1.

Assume that h0 > 2h1. Let η1 be a geodesic segment in C1 joining P to the midpoint of σ0. Set
η2 = τ(η1) and η = η1 ∪ η2. Observe that η is a saddle connection invariant by τ . Again, by using the
subgroup U we assume that η is vertical. Hence |η| = 2h1 < h0. Clearly any other vertical (upward)
geodesic ray starting from P must intersect C0. Thus, if there exists another vertical saddle connection η′

joining P to Q, we must have |η′| ≥ h0 > 2h1 = |η|. Hence η is admissible and the claim is proved. �

Claim 3. If h0 = h1 then, either:
(1) `0 = `1 and (X,ω) is contained in the same component as Sκ(1, 1,−1) ∈ ΩE9(κ), or
(2) `0 = 2`1 and (X,ω) is contained in the same component as Sκ(1, 2, 0) ∈ ΩE16(κ).

Proof of Claim 3. Let h := h0 = h1. Up to the action of the horocycle flow we assume that δ0 is a saddle
connection in C0 joining P to Q such that ω(δ0) = (0, h). Since δ0 is not admissible, there exists a vertical
saddle connection δ1 joining P andQ such that ω(δ1) = (0, λ), where 0 < λ ≤ h. Actually ω(δ1) = (0, h).
Since δ1 cannot be contained in C0, δ1 is contained in C1. Thus δ2 = τ(δ1) is contained in C2. Let γ
be the saddle connection contained in C1 ∪ C2 joining P to Q and passing through the midpoint of σ0 as
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shown in Figure 5. By assumption there exists another saddle connection γ′ joining P to Q parallel to γ
such that |γ′| ≤ |γ|. We claim that either γ′ or τ(γ′) starts in C0. This is clear if γ′ is not invariant by τ .
If γ′ is invariant by τ and starts from C2 then it must end in C1 (since τ(C2) = C1). In particular γ′ must
cross C0 at least once. Hence the vertical coordinate ω(γ′) is greater than 2h. Therefore |γ′| > |γ| that is a
contradiction.

Q Pσ2

σ0

σ1

σ2

γ

γ′

C2

C1

C0

h0 = h1, `0 = `1

Q Pσ2

σ0

σ1

σ2

γ

γ′
γ′

C2

C1

C0

h0 = h1, `0 = 2`1

FIGURE 5. Claim 3: h1 = h0: the surfaces Sκ(1, 1,−1) and diag(1, 1
2) · Sκ(1, 2, 0).

We can now suppose that γ′ starts in C0. Observe that ω(γ) = (s− 2`1, 2h).

If γ′ is not contained in C0 = X0 (Figure 5, left), γ′ must end up in C1. Since |γ′| ≤ |γ| elementary
calculation shows that ω(γ′) = (s − `0 − `1, 2h). Now γ and γ′ are parallel, thus `0 = `1 and (X,ω) =
Sκ(1, 1,−1).

If γ′ is contained in C0 (Figure 5, right), γ′ must intersect twice the core curve of C0. Thus ω(γ′) =
(s−`0, 2h), from which we deduce `0 = 2`1 and (X,ω) = diag(1, 1

2)·Sκ(1, 2, 0). The claim is proved. �

Claim 4. If h0 = 2h1 then, either:
(1) `0 = `1 and (X,ω) is contained in the same component as Sκ(2, 1, 0) ∈ ΩE16(κ), or
(2) `0 = 2`1 and (X,ω) is contained in the same component as Sκ(1, 1, 1) ∈ ΩE9(κ).

Proof of Claim 4. Let h := h1 = h0/2. Let δ1 be a geodesic segment, contained in C1, joining the midpoint
of σ0 to P . Using the horocycle flow we assume δ1 to be vertical. Set δ2 = τ(δ1) and δ = δ1 ∪ δ2. By
construction δ is a saddle connection which is invariant under τ . By assumption, there exists another vertical
saddle connection δ′ joining P to Q such that |δ′| ≤ |δ|. It is easy to see that any other vertical geodesic ray
emanating from P intersects the core curve of C0. Since ω(δ) = (0, 2h) and h0 = 2h, δ′ is contained in
C0.

Now let γ be the saddle connection in C1 ∪ C2 passing through the midpoint of σ0, joining P to Q such
that ω(γ) = (2`1, 2h) (see Figure 6 below).

By assumption, there exists a saddle connection γ′ in the same direction as γ such that |γ′| ≤ |γ|. As in
Claim 3 either γ′ or τ(γ′) starts in C0. The proof follows the same lines. Up to permutation, γ′ starts in C0.
Since |γ′| ≤ |γ| and γ is parallel to γ′, γ′ is actually contained in C0. In particular ω(γ′) = (k`0, 2h) for
some k ∈ Z, k ≥ 1 and ω(γ′) = ω(γ). We draw 2`1 = k`0. Now we claim that the inequality

`0 ≥ `1
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Q P

γ

γ′

γ′
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C0

h0 = 2h1, `0 = `1
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γ

γ′
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C0

h0 = 2h1, `0 = 2`1

FIGURE 6. Claim 4: h0 = 2h1: the surface on the left belongs to component of Sκ(2, 1, 0),
and on the right belongs to the component of Sκ(1, 1, 1).

holds. Indeed there exists a horizontal saddle connection σ′0 in X0 such that σ1 ∪σ′0 and σ2 ∪σ′0 are the two
boundaries components of the cylinder C0. Similarly, there exists a pair of horizontal saddle connections
σ′1, σ

′
2 where σ′i is contained in Xi such that σ′i ∪ σ0 is a boundary component of Ci. By construction we

have τ(σ′0) = −σ′0, τ(σ′1) = −σ′2, and

`0 = |σ1|+ |σ′0| and `1 = |σ0|+ |σ′1| = |σ0|+ |σ′2|.
If `0 < `1 then |σ′0| < |σ′1| = |σ′2|. Hence σ′0 is admissible, contradicting our assumption.

In conclusion 2`1 = k`0 ≥ `1 implies `0 = `1, or `0 = 2`1. The corresponding surfaces are represented
in Figure 6. It is not hard to check that those two surfaces belong to the same connected component that
Sκ(2, 1, 0) and Sκ(1, 1, 1), respectively. The claim is proved. �

6.2.2. Case κ = (1, 1, 2).

Claim 5. One of the following two equalities holds: h0 = h1, or h0 = 2h1.

Proof of Claim 5. The proof of this claim follows the same lines as the proof of Claim 2. �

Claim 6. If h0 = h1 then, either
(1) `0 = `1, and (X,ω) is contained in the same component as Sκ(1, 1,−1) ∈ ΩE9(κ), or
(2) `0 = 2`1, and (X,ω) is contained in the same component as Sκ(1, 2, 0) ∈ ΩE16(κ).

Proof of Claim 6. Set h := h0 = h1. We first consider a saddle connection δ contained in C0, joining
R1 to Q and intersecting the core curve of C0 only once. As usual we assume δ to be vertical (hence
ω(δ) = (0, h)). By assumption δ has a twin or a double-twin δ1 (necessarily δ1 starts in C1). Clearly δ1 is
a twin: otherwise it must end in C2, hence it must cross the core curve of C0 at least once. In particular its
length satisfies |δ1| ≥ 3h > 2|δ| that is a contradiction.

Let γ be the saddle connection contained in C1 and joining R1 to Q, as shown in Figure 7 below.
By assumption ω(γ) = (`1, h). Now there exists another saddle connection γ′ starting from R1 in the

same direction as γ. Observe that γ′ must start in C0. Using Lemma 5.2, we can assume that γ′ is either a
twin or a double-twin of γ.

If γ′ is a twin of γ then ω(γ′) = (`1, h). Hence `0 = `1: (X,ω) = Sκ(1, 1,−1).
If γ′ is a double-twin of γ then ω(γ′) = (2`1, 2h). Hence γ′ crosses twice the core curves of C0 implying

that `0 = 2`1: (X,ω) = diag(1, 1
2) · Sκ(1, 2, 0). This proves the claim. �
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FIGURE 7. Claim 6: h0 = h1: the surfaces Sκ(1, 1,−1) and diag(1, 1
2) · Sκ(1, 2, 0).

Claim 7. If h0 = 2h1 then `0 = 2`1. In addition (X,ω) belongs to the same connected component as
Sκ(1, 1, 1) ∈ ΩE9(κ).

Proof. Set h = h1. Let δ1 be a saddle connection contained in C1 joining R1 to Q and intersecting the
core curve of C1 only once. We can suppose that δ1 is vertical. By assumption, there exists another vertical
saddle connection δ starting from R1. Observe that δ must intersect the core curve of C0, thus we have
|δ| ≥ h0 = 2|δ1|. By assumption, δ must be a double-twin of δ1, which means that δ joins R1 to R2 and is
contained in C0.

Now, let γ be the saddle connection in C1 joining R1 to Q as shown in Figure 8.

C2

C0

C1

R2

Q
R2

R1
Q

R1

τ(γ)

γ′

γ

FIGURE 8. Claim 7: h0 = 2h1: the surface Sκ(1, 1, 1)

By assumption, there exists a saddle connection γ′ starting fromR1 and parallel to γ. The same argument
as above shows that γ′ is a double-twin of γ and is contained in C0. It follows that `0 = 2`1. Thus (X,ω)
belongs to the component of Sκ(1, 1, 1). The claim is proved. �

6.3. Reduction from Case B to Case A. Let (X,ω) ∈ ΩED(κ) and let σ0 be a saddle connection in X
satisfying Convention 1. We suppose that σ0 has a twin σ1. Moreover, if κ = (2, 2)odd we assume that
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σ2 := −τ(σ1) 6= σ1 and σ1 ∪ σ2 is non-separating, and if κ = (1, 1, 2) we assume that σ0, σ1 is non-
separating. Our aim is to show that there exists in the component of (X,ω) a surface having a family of
homologous saddle connections satisfying Case A (this is Lemma 6.3). We first show

Lemma 6.2. Let (X,ω) ∈ ΩED(κ), where κ ∈ {(2, 2)odd, (1, 1, 2)}. If there exists c ∈ H1(X,Z)−

satisfying c 6= 0 and ω(c) = 0 then D is a square. In particular, up to rescaling by GL+(2,R), all the
absolute periods of ω belong to Q + ıQ.

Proof of Lemma 6.2. We can assume that c is primitive in H1(X,Z), that is for any n ∈ N, n > 1,
1

n
c 6∈

H1(X,Z). Pick a symplectic basis (α1, β1, α2, β2) of H1(X,Z)− with β2 = c. Set µi = 〈αi, βi〉, where
〈, 〉 is the intersection form of H1(X,Z), and ω(α1) = x1 + ıy1, ω(β1) = z1 + ıt1, ω(α2) = x2 + ıy2. Since

Area(X,ω) = µ1 det

(
x1 z1

y1 t1

)
+ µ2 det

(
x2 0
y2 0

)
= µ1 det

(
x1 z1

y1 t1

)
> 0

it follows that (x1 + ıy1, z1 + ıt1) is a basis of R2. Using GL+(2,R) we can assume that (x1, y1) = (1, 0)
and (z1, t1) = (0, 1). By [LN11, Proposition 4.2] there exists a unique generator T of OD which is given
in the basis (α1, β1, α2, β2) by a matrix of the form

T =

(
eId2

(
a b
c d

)
µ1
µ2

(
d −b
−c a

)
0

)
with (a, b, c, d, e) ∈ Z5 such that T ∗ω = λω and λ > 0. Observe that the discriminant D satisfies D =
e2 − 4µ1µ2 (bc − ad). Since Re(ω) = (1, 0, x2, 0) and Im(ω) = (0, 1, y2, 0) in the above coordinates, direct
computations show that b = d = 0. Hence D = e2 and (x2, y2) ∈ Q2. The lemma is proved. �

Lemma 6.3. Assume that κ = (2, 2)odd. Then there exists in the component of (X,ω) a surface having a
triple of homologous saddle connections γ0, γ1, γ2, where γ0 is invariant, γ1 and γ2 are exchanged by the
involution.

Proof. Let c0, c1, and c2 denote the simple closed curves σ1∗(−σ2), σ0∗(−σ1) and σ0∗(−σ2) respectively.
Note that we have c0 = c2 − c1 and τ(c1) = −c2. By assumption 0 6= c0 ∈ H1(X,Z). If 0 = c1 ∈
H1(X,Z) then c2 = −τ(c1) = 0 ∈ H1(X,Z), which implies that c0 = 0 ∈ H1(X,Z). Thus we can
conclude that all of the curves c0, c1, c2 are non-separating.

Cut X along σ0, σ1, σ2, we obtain a connected surface whose boundary has three components corre-
sponding to c0, c1, c2. Gluing the pair of geodesic segments in each boundary component together, we get
a closed translation surface (X ′, ω′) with three marked geodesic segments. Since the angle between two
consecutive twin saddle connections is 2π, we derive that ω′ has no zeros, thus (X ′, ω′) must be a torus.
We denote the geodesic segments in X ′ corresponding to c0, c1, c2 by c′0, c

′
1, c
′
2 respectively. The involution

τ of X induces an involution τ ′ on X ′, which leaves c′0 invariant and exchanges c′1 and c′2. Let P ′i and Q′i,
i = 0, 1, 2, denote the endpoints of c′i, where P ′i (respectively, Q′i) corresponds to P (respectively, to Q).

Observe that as (X,ω) moves in the leaf of the kernel foliation, the surface (X ′, ω′) is the same, only
the segments c′i vary. Therefore we can assume that (X ′, ω′) is the standard torus C/(Z ⊕ ıZ), and the
length of c′0 is small. Let δ1 (respectively, η1) denote the geodesic segment of minimal length from P ′0 to P ′1
(respectively, from Q′0 to Q′1). Note that as (X,ω) moves in the kernel foliation leaf, ω′(δ1) and ω′(η1) are
invariant. Therefore, we can assume that δ1 and c′0 are not parallel.
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FIGURE 9. Cylinders decomposition in direction of α±.

Since c′0 and c′1 are parallel and have the same length, we see that c′0 ∪ δ1 ∪ c′1 ∪ η1 is the boundary of
an embedded parallelogram in X ′. It follows in particular that δ1 and η1 are parallel and have the same
length. Let δ2 = τ ′(η1) and η2 = τ ′(δ1). We have δ = δ1 ∪ δ2 is a geodesic segment joining P ′1 to P ′2, and
η = η1 ∪ η2 is a geodesic segment joining Q′1 to Q′2.

Since ω(c0) = 0, By Lemma 6.2, for any c ∈ H1(X,Z), we have ω(c) ∈ Q + ıQ. Therefore ω′(δ) =
ω′(η) ∈ Q + ıQ. Since X ′ is the standard torus, there exists a pair of parallel simple closed geodesics
α+, α− of X ′ such that δ ⊂ α+, and η ⊂ α− (see Figure 9). When |c′i| is small enough and non-parallel to
α±, the geodesics α+ and α− cut X ′ into two cylinders, one of which contains all the segments c′0, c

′
1, c
′
2.

Recall that (X,ω) is obtained from (X ′, ω′) by slitting along c′0, c
′
1, c
′
2, and regluing the geodesic seg-

ments in the boundary. By construction, we see that (X,ω) admits a decomposition into four cylinders in
the direction of α± as shown in Figure 9. Let C0 denote the largest cylinder in this decomposition, then it
is easy to see that there exist in C0 three homologous saddle connections γ0, γ1, γ2 such that τ(γ0) = −γ0,
τ(γ1) = −γ2, and γ1 ∪ γ2 is a separating curve as desired. �

Lemma 6.4. Assume that κ = (1, 1, 2) and σ0 has a twin σ1 such that the curve σ0 ∗ (−σ1) is non-
separating. Then there exists in the component of (X,ω) a surface having two pairs of homologous saddle
connections (σ′1, σ

′′
1) and (σ′2, σ

′′
2), where σ′i and σ′′i join the simple zero Ri to the double zero Q, and

{σ′2, σ′′2} = τ({σ′1, σ′′1}).

Proof. We will use similar ideas to the proof of Lemma 6.3. Let c1 = σ0 ∗ (−σ1) and c2 = τ(c1). By
the cutting-gluing construction along c1 and c2 (using the assumption that c1 is non-separating), we get a
flat torus (X ′, ω′) with three marked geodesic segments c′1, c

′
2, c
′′ such that ω′(c′1) = ω′(c′2) = 1/2ω′(c′′)

(see Figure 10). For i = 1, 2, we denote the endpoints of c′i by R′i and Q′i so that R′i corresponds to Ri and
Q′i corresponds to Q. We denote the endpoints of c′′ by R′′1 and R′′2 such that R′′i corresponds to Ri. The
midpoint of c′′ corresponds to Q, we denote it by Q′′. We denote the subsegment of c′′ between Q′′ and R′′i
by c′′i . The Prym involution of X gives rise to an involution τ ′ of X ′ which satisfies τ ′(c′1) = −c′2, τ ′(c′′1) =
−c′′2 .

As (X,ω) moves in the leaf of the kernel foliation, the surface (X ′, ω′) remains the same, only the
segments c′1, c

′
2, c
′′ vary. Therefore we can assume that c′1, c

′
2, c
′′ are contained in three distinct parallel

simple closed geodesics of X ′. Changing the direction of c′′ slightly, we see that there exist geodesic
segments σ′i from Q′i to R′i, and σ′′i from Q′′ to R′′i , i = 1, 2, (see Figure 10) such that

• τ ′(σ′1) = −σ′2 and τ ′(σ′′1) = −σ′′2 ,
• σ′i ∗ c′i and σ′′i ∗ c′′i are homologous.
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Reconstruct (X,ω) from (X ′, ω′) we see that σ′i and σ′′i are homologous saddle connections, and the pairs
(σ′1, σ

′′
1) and (σ′2, σ

′′
2) have the desired properties. �

6.4. Reduction from Case C to Case A. Let (X,ω) be a Prym eigenform in Prym(2, 2)oddtPrym(1, 1, 2),
and let σ0 be a saddle connection onX satisfying Convention 1. If (X,ω) ∈ Prym(2, 2)odd we suppose that
σ0 has a twin σ1 which is also invariant by the Prym involution τ , and if (X,ω) ∈ Prym(1, 1, 2) we suppose
σ0 has a double twin σ1 (which is invariant by τ ). Our aim is to show that there exists in the component
of (X,ω) a surface having a family of saddle connections satisfying Case A for both κ = (2, 2)odd and
κ = (1, 1, 2). We first show

Lemma 6.5. Define
• c = σ0 ∗ (−σ1), if (X,ω) ∈ Prym(2, 2)odd,
• c = σ0 ∗ τ(s0) ∗ (−σ1), if (X,ω) ∈ Prym(1, 1, 2).

Then in both cases, we have c 6= 0 ∈ H1(X,Z)−, and ω(c) = 0.

Proof. From the definition of c, we have τ(c) = −c, hence c ∈ H1(X,Z)−. It is also clear that ω(c) = 0.
All we need to show is that c 6= 0 ∈ H1(X,Z).

We first consider the case (X,ω) ∈ Prym(2, 2)odd. Remark that the pair of angles at P andQ determined
σ0 and σ1 is (2π, 4π). Since τ(σ0) = −σ0 and τ(σ1) = −σ1 we see that the angle 2π at P and the angle
4π at Q belong to the same side of c, and vice versa. Cutting X along c we get a surface whose boundary
has two components, each of which is a union of two geodesic segments corresponding to σ0 and σ1. Since
σ0 and σ1 are twins, the two segments in each component has the same length, therefore we can glue
them together to get a closed (possibly disconnected) translation surface (X ′, ω′) with two marked geodesic
segments η1, η2. If the new surface is disconnected, then each component is a translation surface with only
one singularity of angle 4π. Since such a surface does not exist, we conclude that X ′ is connected, and
hence c 6= 0 in H1(X,Z).

For the case (X,ω) ∈ Prym(1, 1, 2), by a similar construction, that is cutting along c, then closing the
boundary components of the new surface (by gluing the path corresponding to σ0 ∪ τ(σ0) and the segment
corresponding to σ1), we also get a translation surface (X ′, ω′) having two singularities with cone angle 4π.
The same argument as above shows that this surface belongs toH(1, 1), therefore c 6= 0 ∈ H1(X,Z). �

Lemma 6.6. Let (X,ω) ∈ Prym(2, 2)odd be a Prym eigenform having a twin σ1 of σ0 that is invariant by
τ . Then one can find in the connected component of (X,ω) another surface having a triple of homologous
saddle connections.
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Proof of Lemma 6.6. Cutting X along c = σ0 ∪ σ1 and gluing the two segments of each boundary com-
ponent together, we get a closed translation surface (X ′, ω′) ∈ H(1, 1) (see the proof of Lemma 6.5). By
construction there exist onX ′ a pair of disjoint geodesic segments η1, η2 such that ω′(η1) = ω′(η2) = ω(σ0)
and ηi joins a zero of ω′ to a regular point. Let (Pi, Qi)i=1,2 denote the endpoints of ηi, where Pi (respec-
tively, Qi) corresponds to P (respectively, to Q). The numbering is chosen so that P1 and Q2 are the zeros
of ω′. The involution τ of X descends to an involution of X ′ exchanging η1 and η2. We denote this involu-
tion by τ ′. Remark that τ ′ has two fixed points in X ′, none of which are contained in the segments η1, η2.
Note also that as (X,ω) moves in its leaf of the kernel foliation, (X ′, ω′) also moves in its leaf of the kernel
foliation inH(1, 1) (only the relative periods change).

Let ι be the hyperelliptic involution of X ′. Since ι has six fixed points but τ ′ has two, we have ι 6= τ .
Remark that ι ◦ τ is also an involution of X ′ satisfying (ι ◦ τ)∗ω′ = ω′. The surface X ′′ = X ′/〈ι ◦ τ〉 is
an elliptic curve. Let π is the branched covering π : X ′ → X ′′, which is is ramified at P1 and Q2. Then
ω′ descends to a holomorphic 1-form ω′′ on X ′′ so that ω′ = π∗ω′′. For i = 1, 2 let P ′′i , Q

′′
i , η
′′
i denote the

images of Pi, Qi, ηi in X ′′. Note that we have ω′′(η′′1) = ω′′(η′′2) = ω(σ0).
We consider the tuple (X ′′, ω′′, P ′′1 , P

′′
2 ) as an element in H(0, 0), that is the moduli space of flat tori

with two marked points. We first observe that as (X,ω) moves in its leaf of the kernel foliation, the corre-
sponding surfaces (X ′′, ω′′, P ′′1 , P

′′
2 ) are the same in H(0, 0) (only ω′′(η′′1) = ω′′(η′′2) change). Indeed all

the coordinates of (X ′′, ω′′, P ′′1 , P
′′
2 ) are determined by the absolute periods of (X,ω).

Let α′′1 be a simple closed geodesic of (X ′′, ω′′) which passes through P ′′1 and does not contain P ′′2 .
Using GL(2,R), we can assume that α′′1 is horizontal. By moving in the kernel foliation leaf of (X,ω), we
can also assume that η′′i are parallel to α′′1 (ω′′(η′′i ) = λω′′(α′′1), with 0 < λ < 1). By construction, the
surface (X ′, ω′) admits a decomposition into cylinders in the horizontal direction. Note that X ′ must have
three horizontal cylinders, otherwise there would be horizontal saddle connection joining P1 to Q2, which
is excluded since α′′1 does not contain η′′2 (see Figure 11).

We can reconstruct (X,ω) from (X ′, ω′): one sees that (X,ω) also admits a decomposition into three
horizontal cylinders (see Figure 11). Consider the surface (X̃, ω̃) = (X,ω) + (0,−ε), with ε > 0 small
as shown in Figure 11. We see that (X̃, ω̃) admits a decomposition into four horizontal cylinders, three of
which are simple. It is easy to check that there exists a triple of twin saddle connections γ0, γ1, γ2 in the
largest horizontal cylinder of X̃ (which is preserved by the Prym involution) which satisfy τ(γ0) = −γ0,
τ(γ1) = −γ2, and γ1 ∪ γ2 is a separating curve. This proves the lemma. �

Lemma 6.7. Let (X,ω) ∈ Prym(1, 1, 2) be a Prym eigenform having a double twin σ1 of σ0. Then one can
find in the connected component of (X,ω) a surface having two pairs of homologous saddle connections
(σ′1, σ

′′
1) and (σ′2, σ

′′
2) that are exchanged by the Prym involution.

Proof. Let (X ′, ω′) ∈ H(1, 1) be the surface obtained by the “cutting-gluing” construction along c =
σ0 ∗ τ(σ0) ∗ (−σ1) (see Lemma 6.5). Note that we have on X ′ two marked and disjoint geodesic segments
η1 and η2 (corresponding to c) such that the midpoint of ηi is a zero of ω′, and ω′(ηi) = ω(σ1) = 2ω(σ0).
We will consider ηi as a slit with two sides η′i and η′′i , where η′i corresponds to σ1, and η′′i corresponds to
the union σ0 ∪ τ(σ0). Remark that the Prym involution τ induces an involution τ ′ on X ′ which is not the
hyperelliptic involution. It follows that X ′ is a double cover of a torus.

By construction, as (X,ω) moves in its kernel foliation leaf (X ′, ω′) is fixed, only the marked geodesic
segments (slits) ηi are changed. Using GL+(2,R), we can assume that X ′ is horizontally periodic, and
it has three horizontal cylinders (one may use the fact that X ′ is a double cover of a torus to show that
a periodic direction with three cylinder does exist). We can arrange so that the slits are also horizontal,
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FIGURE 12. Prym(1, 1, 2) case C: σ0 has a double-twin.

and η′i are contained in the boundary of the largest cylinder (see Figure 12). Reconstruct (X,ω) from
(X ′, ω′), we see that (X,ω) has two pairs of homologous saddle connections (σ′1, σ

′′
1) and (σ′2, σ

′′
2), such

that τ(σ′1) = −σ′2, τ(σ′′1) = σ′′2 , and σ′1 ∗ σ1 ∗ σ′′2 is homologous to the core curve of the largest horizontal
cylinder in X . The lemma is then proved. �

7. PROOF OF THE MAIN RESULT

Let us now give the proof of our main theorem.
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Proof of Theorem A. First of all D ∈ N, D ≡ 0, 1, 4 mod 8, the loci ΩED(κ) are non empty: this is
Corollary 2.5.

We now consider the cases D = 0, 1, 4 mod 8, D ≥ 9, and D 6∈ {9, 16}. By Theorem 6.1 and Corol-
lary 5.4, any component of ΩED(κ) contains a surface with an admissible saddle connection that collapse
to a point in ΩED(4). Recall that ΩED(4) is a finite collection of Teichmüller discs. By Proposition 2.6 for
any connected component C of ΩED(4), there exists at most one component of ΩED(κ) adjacent to C i.e.
its closure contains C. Therefore, the number of connected components of ΩED(κ) is bounded from above
by the number of components of ΩED(4).

In particular, when D ≡ 0, 4 mod 8, since ΩED(4) is connected (see Theorem 2.2), so is ΩED(κ). For
D ≡ 1 mod 8, by Theorem 2.2 we know that ΩED(4) has two components, so ΩED(κ) has at most two
components. On the other hand, Theorem 4.1 tells us that ΩED(κ) cannot be connected. Thus we can
conclude that ΩED(κ) has exactly two connected components.

For D ≡ 5 mod 8, if ΩED(κ) is non-empty then again Theorem 6.1, Corollary 5.4 and Proposition 5.5
implies that ΩED(4) is also non-empty, which contradicts Theorem 2.2.

We now consider the cases D ∈ {9, 16}. Since ΩED(4) = ∅, by Proposition 5.5, there exists no
admissible saddle connection on any surface in ΩE9(κ) t ΩE16(κ). By Theorem 6.1, we see that any
surface in ΩE9(κ) t ΩE16(κ) belongs to the same component as one of the surfaces

Sκ(1, 1,−1), Sκ(1, 1, 1), Sκ(1, 2, 0) or S(2,2)(2, 1, 0)

(see Lemma 2.4 for the definition).
It follows immediately that ΩE16(2, 2) and ΩE9(κ) has at most two components and ΩE16(1, 1, 2) is

connected. The fact that ΩE9(κ) is not connected is proved in Theorem 4.1. Hence ΩE9(κ) has exactly
two connected components.

It remains to prove that ΩE16(2, 2) is connected. It is sufficient to show that S(2,2)(1, 2, 0), S(2,2)(2, 1, 0) ∈
ΩE16(2, 2)odd belong to the same component. We consider (Xε, ωε) = S(2,2)(2, 1, 0) + (0, ε), with ε > 0
small enough (see Figure 13).

(Xε,ωε)=S(2,2)(2,1,0)+(0,ε) (Xε,ωε) (Y,η)

FIGURE 13. Connecting S(2,2)(2, 1, 0) to S(2,2)(1, 2, 0).

Observe that (Xε, ωε) admits a decomposition into four horizontal cylinders. Moving horizontally in
the kernel foliation leaf of (Xε, ωε) we get a surface (Y, η) = (Xε, ωε) + v, with v ∈ R × {0}, which
admits a decomposition into three vertical cylinders. It is not difficult to see that (Y, η) can be connected
to S(2,2)(1, 2, 0) by using the action of GL+(2,R) and moving in the kernel foliation leaves. The proof of
Theorem A is now complete. �
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As a direct corollary we prove Theorem B i.e. the existence in any component of ΩED(κ) of surfaces
which admit three-tori decompositions.

Proof of Theorem B. Let (w, h, e) ∈ Z3 be as in Lemma 2.4 where D = e2 + 8wh. We consider the
corresponding surfaces (X±, ω±) := Sκ(w, h,±e). By Lemma 2.4 (X±, ω±) ∈ ΩED(κ).

IfD 6≡ 1 mod 8 then by Theorem A, ΩED(κ) is connected and (X±, ω±) admits a three-tori decomposition.

If D ≡ 1 mod 8 then by Theorem A, ΩED(κ) has two connected components and from the proof of
Theorem 4.1, (X+, ω+) and (X−, ω−) do not belong to the same connect component. This ends the proof
of Theorem B. �
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