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1 Introduction

The adiabatic approximation of quantum mechanics, designed to address the time-dependent Schrödinger
equation in its Hamiltonian formulation, has been introduced very soon after the discovery of quantum
mechanics [BF, La, Z]. It has since been developed in order to accommodate more general Hamiltonians
and to improve its accuracy; see [K1, N1, ASY, Te, AE, N2, JKP, JP1, J1, JP2, Sc, BDF] for examples
along these lines. The adiabatic approximation being instrumental in the analysis of time-dependent
phenomena, this mathematical method was extended and applied to a variety of evolution equations
in more general contexts, like discrete time evolutions, [DKS, HJPR1, HJPR2], non-linear setups
[CFK1, CFK2, GG, S, LLFY, F-KJ], or contracting evolutions in Banach spaces [Kr, NR, J2, AFGG1]
for example.

Specifically, adiabatic approaches were successfully adapted to address the evolution of open quan-
tum systems consisting of a time-dependent small system of interest coupled to an environment, be it
from a global Hamiltonian perspective encompassing a modeling of the environment, or from an effective
point of view through a Lindblad evolution equation. In particular, asymptotic expressions for quantum
states solution to an evolution equation driven by time-dependent Lindblad generators in the adiabatic
limit are provided in [AFGG1, AFGG2, FH], together with detailed analyses of the special case of
dephasing Lindbladians. See [DS, TW, JMS] for results along the same lines, including a Hamiltonian
description of an environment at positive and zero temperature, while [A-SF, HJPR1, HJPR2, BFJP]
focus on entropy production issues in the adiabatic regime of such systems.

From the point of view of applications to quantum engineering and quantum control, these adiabatic
approaches are suited to describe the evolution of a small system that can be monitored in a time
dependent fashion by external agents, and which is weakly coupled to its environment, due to imperfect
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isolation. In the adiabatic limit, and for a regime of small coupling, one expects to get a description of
the evolution of the small system in terms of the characteristics of the Hamiltonian, with quantitative
information of the perturbations induced by the effect of the environment. While these questions have
been addressed in the physics literature in various setups, see e.g. the discussions and references in
[AFGG2, FH], the mathematical approaches of those questions are less numerous and often concern
specific cases.

Detailed information about the evolution of the small system is available for dephasing Lindbladians
only [AFGG1, AFGG2, FH, H], in which by definition, the dissipator is a function of the Hamiltonian.
Hence, a time dependence in the Hamiltonian implies a similar time dependence in the dissipator as
well. In the Hamiltonian model addressed in [JMS], the coupling between the small system and the
(bosonic) environment is assumed to be energy conserving at all times, which makes it dependent on
the Hamiltonian as well. This is arguably a shortcoming of the approach since the dissipator models the
effect of the coupling of the small system to the environment that, in general, is likely to be independent
of the way the system is monitored and is possibly time-independent. In the model considered in [DS],
the coupling of the small system to the (fermionic) environment is time independent, however the
coupling constant is determined by the adiabatic parameter.

In case the Lindblad generator is time independent, the dynamics of states can be inferred from the
spectral properties of the Lindbladian. Therefore, a host of perturbative methods have been designed
to identify and approximate the asymptotic state, as well as to analyse more precise properties of the
dynamics, e.g. unravelling. See for example the recent papers [ABFJ, BCF+, MGLG, HJ, BBC+], and
the references therein for works along these lines, in various setups.

The present contribution is devoted to the study of the effective dynamics of a small quantum system
weakly coupled to an environment, assuming a Lindbladian description that consists in a slowly varying
time-dependent Hamiltonian drive and an arbitrary dissipator. We analyse the evolved state of the
small quantum system as both the adiabatic parameter ε > 0 and the coupling constant g > 0 vanish,
in an independent way. Actually we can, and will, consider time-dependent dissipators, which will allow
for comparisons with some of the results mentioned above.

Under suitable assumptions, we provide leading order approximations of the density matrix of the
small system in the perturbative regime, g � ε, where the coupling constant is much smaller than the
adiabatic parameter, in the slow drive regime, ε � g, where the adiabatic parameter is much smaller
than the coupling constant, as well as in a transition regime, g �

√
ε, bridging the gap between the

two previous regimes. The transition regime is addressed by means of a reduced dynamics defined on
the kernel of the Hamiltonian part of the Lindbladian, that depends on the single parameter ε/g that
determines the regime we are in. We show that the reduced dynamics approximates the asymptotic
Lindbladian evolution in the transition regime, that covers the perturbative regime and, partially, the
slow drive regime.

As a consequence, we also derive the asymptotics of the transition probabilities between instanta-
neous eigenspaces of the Hamiltonian in these regimes. In the perturbative regime, the leading order of
these transition probabilities is shown to be given by the familiar expression of order ε2 depending only
on the Hamiltonian if g � ε3, and by an explicit integral expression of order g/ε that depends on the
dissipator if ε3 � g � ε. This is in keeping with [JMS] where a similar transition in the asymptotics
of the transition probability was observed for the Hamiltonian model considered. In case g = ε, we are
in the transition regime and the reduced dynamics is independent of ε to leading order. This regime
corresponds, in spirit, to the regime addressed in their Hamiltonian model by [DS], Section 3. For the
slow drive regime, ε � g, we get that the transition probability is independent of ε and g to leading
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order, and is characterised by the kernel of the dissipator.
These features are illustrated for a two-level system with a dissipator displaying a certain symmetry.

This allows for the explicit computation of the reduced dynamics which interpolates between these
regimes.

2 Setup and main results

The separable Hilbert space of the small system is denoted by H and t 7→ H(t) is its time dependent
Hamiltonian on H. The dissipator of the Lindbladian is constructed by means of a finite sum (for
simplicity) of bounded operators on H, called jump operators, t 7→ Γl(t), l ∈ I, a set of indices. We will
assume the following regularity hypotheses:

Reg
• H : [0, 1]→ B(H) is self-adjoint valued and C∞ in norm (with right and left derivatives at {0, 1}).
• ∂ktH(t)|t=0 = 0, for all k ∈ N∗.
• For each j ∈ I, I a finite set of indices, Γj : [0, 1] → B(H) is C∞ in norm (with right and left
derivatives at {0, 1}).

Note that while the leading order results stated in the present section do not require all derivatives
of the Hamiltonian at zero to vanish, the arbitrary high order generalisations of Section 7 require this
property. This assumption ensures that high order adiabatic approximations of the Heisenberg unitary
evolution of the spectral projectors of the Hamiltonian coincide with the spectral projectors of the
Hamiltonian at time zero.

For g ≥ 0, and each t ∈ [0, 1], the time-dependent Lindblad operator L[g]
t (·) ∈ B(B(H)) reads

L[g]
t (·) = L0

t (·) + gL1
t (·) = −i[H(t), ·] + g

∑
l∈I

(
Γl(t) · Γ∗l (t)−

1

2

{
Γ∗l (t)Γl(t), ·

})
, (2.1)

where the Hamiltonian part L0
t (·) is time-dependent, while the dissipator gL1

t (·) is possibly constant.

The Lindbladian L[g]
t acts in particular on the Banach space T (H), the set of trace class operators on

H with norm denoted by ‖ · ‖1. Further specialising, the Lindbladian acts on the set of density matrices
or states, i.e. positive trace class operators of trace one, in the Schrödinger picture we adopt here.

A special case of interest for which the dissipator depends on time is that of dephasing Lindbladians
characterized by Γl(t) = Fl(H(t)), where Fl : R → C is some smooth function, for each l ∈ I, see
[AFGG1]. Among other things, dephasing Lindbladians enjoy the following properties for each t fixed:

KerL[g]
t (·) = Ker [H(t), ·] in T (H),

[Γj(t), P (t)] = 0, ∀ spectral projector P (t) of H(t). (2.2)

We shall work on T (H), unless stated otherwise, and the corresponding operator norm of A ∈
B(T (H)) will be denoted by ‖A‖τ . In particular, for any A ∈ B(H), the maps on T (H) 3 ρ given by
Al : ρ 7→ Aρ and Ar : ρ 7→ ρA belong to B(T (H)) and have norms satisfying ‖A#‖τ ≤ ‖A‖, # ∈ {l, r},
where ‖ · ‖ denotes the operator norm on B(H). For A,B two operators in B(B(H)), we will denote
their composition by A ◦ B, or simply AB if no risk of confusion arises.
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For ε > 0, g ≥ 0, we consider the Lindblad equation{
ερ̇ = (L0

t + gL1
t )(ρ), t ∈ [0, 1],

ρ(0) = ρ0, ρ ∈ T (H),
(2.3)

in the adiabatic and small coupling regimes, characterised by (ε, g)→ (0, 0).

We recall here the main properties of the solutions to (2.3). As is well known, see [D1, Li] and

is recalled in [AFGG1, H] for example, for each fixed t ∈ [0, 1], the one-parameter family (esL
[g]
t )s≥0

considered on T (H) forms a norm continuous semigroup of completely positive and trace preserving
(CPTP) applications, which are contraction operators. Consequently, denoting by (U(t, s))0≤s≤t≤1 the
two-parameter propagator associated to (2.3),{

ε∂tU(t, s) = (L0
t + gL1

t )(U(t, s)),
U(s, s) = I, 0 ≤ s ≤ t ≤ 1,

(2.4)

it follows from Thm X.70 in [RS] for example that the propagator is a contraction:

‖U(t, s)ρ‖1 ≤ ‖ρ‖1, ∀ρ ∈ T (H), ∀1 ≥ t ≥ s ≥ 0. (2.5)

In particular we have ‖U(t, s)‖τ = 1, since U(t, s) is trace preserving.
While we shall stick to the bounded case, note that unbounded Hamiltonians and/or dissipators could
also be accommodated, [D1, J2, FFFS], for example.

We suppose that the spectrum of the Hamiltonian is separated into several disjoint subsets, which
corresponds to the familiar gap assumption of the adiabatic theory.

Spec
For 2 ≤ d <∞, there exists G > 0 such that for all t ∈ [0, 1], the spectrum of H(t), σ(H(t)), satisfies

σ(H(t)) = ∪1≤j≤d σj(t), inf
t∈[0,1],1≤j 6=k≤d

dist(σj(t), σk(t)) ≥ G > 0. (2.6)

Accordingly, we introduce the corresponding self-adjoint spectral projectors on H for 1 ≤ j ≤ d

Pj(t) = − 1

2iπ

∮
γj

(H(t)− z)−1dz, (2.7)

where γj ∈ ρ(H(t)) is a positively oriented simple loop encircling σj(t) which contains no element of
σ(H(t)) \ σj(t) in its interior, i.e. int γj ∩ σ(H(t)) = σj(t).
Moreover, Pj : t 7→ Pj(t) is C∞ since H is, and

Pj(t)Pk(t) = δjkPj(t),
∑

1≤j≤d
Pj(t) = I. (2.8)

Note that for all t ∈ [0, 1] and 1 ≤ j ≤ d, Pj(t) belongs to KerL0
t , i.e. L0

t (Pj(t)) ≡ 0. Following [K1],
we introduce the operator on H

K(t) =
∑

1≤j≤d
P ′j(t)Pj(t) = −

∑
1≤j≤d

Pj(t)P
′
j(t), (2.9)
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and the corresponding parallel transport, or Kato, operator on H solution to{
∂tW (t, s) = K(t)W (t, s),
W (s, s) = I, 0 ≤ s, t ≤ 1.

(2.10)

It is unitary and satisfies the well known intertwining relation

W (t, s)Pj(s) = Pj(t)W (t, s), (2.11)

whose proof is based on the fact that for any smooth projector P (t) = P 2(t), P (t)P ′(t)P (t) ≡ 0, see
[K1, K2, Kr]. Note that the propagator (W (t, s))0≤s,t≤1 is actually well defined and invertible for any
set of projectors that satisfy (2.8) in a Banach space framework, and it satisfies the intertwining relation
(2.11) for all 1 ≤ j ≤ d.

To keep technicalities to a minimum in this presentation section, we state the main results of the
paper in their leading order formulations, and under simple assumptions. As will be mentioned along
the way, some results are corollaries of more general statements to be found in later sections. The last
paragraph of the present section indicates the locations in the manuscript where the proofs of the results
and their generalisations are to be found.

2.1 Perturbative regime g � ε� 1

Our first result describes the modification of the adiabatic transition probabilities between the spectral
subspaces Pj(0)H at time zero and Pk(t)H at time t, for j 6= k, induced by the presence of the dissipator
gL1

t in the regime g � ε.
Pick an initial state ρj ∈ T (H) such that ρj = Pj(0)ρjPj(0) and denote by U0(t, s) the so-

lution to (2.4) with g = 0. In absence of dissipator, the transition probability considered reads
Tr(Pk(t)U0(t, 0)(ρj)) and is of order ε2, see Proposition 3.14 and Remark 3.15. In case both spectral pro-
jectors involved are associated to a (potentially degenerate) eigenvalue, σj(t) = {ej(t)}, σk(t) = {ek(t)},
one has the explicit expression (3.41) for j 6= k

Tr(Pk(t)U0(t, 0)(ρj)) = ε2 Tr
{Pk(t)P ′k(t)ρ̃j(t)P ′k(t)Pk(t)

(ej(t)− ek(t))2

}
+O(ε3), where

ρ̃j(t) = W (t, 0)ρjW (0, t). (2.12)

Note that due to (2.11) ρ̃j(t) = Pj(t)ρ̃j(t)Pj(t).
When the dissipator term is turned on we have, in the perturbative regime:

Theorem 2.1 Assume Reg and Spec with σj(t) = {ej(t)} for all t ∈ [0, 1], and consider a state
ρj = Pj(0)ρjPj(0). Then, the solution to (2.4) satisfies for j 6= k, as (ε, g)→ (0, 0) with g/ε→ 0,

Tr(Pk(t)U(t, 0)(ρj)) = Tr(Pk(t)U0(t, 0)(ρj))

+
g

ε

∑
l∈I

∫ t

0
Tr(Pk(s)Γl(s)ρ̃j(s)Γ

∗
l (s)Pk(s))ds+O(g + g2/ε2), (2.13)

with ρ̃j(t) = W (t, 0)ρjW (0, t).
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Further assuming that for j 6= k, σj(t) = {ej(t)} and σk(t) = {ek(t)} for all t ∈ [0, 1], we have in
the same regime,

Tr(Pk(t)U(t, 0)(ρj)) = ε2 Tr
{Pk(t)P ′k(t)ρ̃j(t)P ′k(t)Pk(t)

(ej(t)− ek(t))2

}
+
g

ε

∑
l∈I

∫ t

0
Tr(Pk(s)Γl(s)ρ̃j(s)Γ

∗
l (s)Pk(s))ds+O(g + ε3 + g2/ε2), (2.14)

with ρ̃j(t) = W (t, 0)ρjW (0, t).

The physical interpretation is that in this regime, the dissipator contributes to the adiabatic transition
probabilities of order ε2 by a history dependent perturbative term of order g/ε; see also Theorem 2.5
below.

Remark 2.2 i) The correction to the transition probability due to the dissipator is non negative.
ii) If we drop the assumption σj(t) = {ej(t)}, formula (2.13) still holds with ρ̃j(s) replaced by a state
ρ̃j(s, ε) that depends on ε and also satisfies ρ̃j(s, ε) = Pj(t)ρ̃j(s, ε)Pj(t), see (3.34). In any case, if
Pj(0) is of finite rank and ρj = Pj(0)/ dim(Pj(0)), then (2.13) holds with ρ̃j(t) = Pj(t)/ dim(Pj(0)).
iii) The transition probability from Pj(0)H to Pj(t)H reads

Tr(Pj(t)U(t, 0)(ρj)) = Tr(Pj(t)U0(t, 0)(ρj))

− g

ε

∑
l∈I

∫ t

0
Tr((I− Pj(s))Γl(s)ρ̃j(s)Γ∗l (s)(I− Pj(s)))ds+O(g + g2/ε2). (2.15)

iv) In case g = ε3, both contributions in (2.14) are of order ε2 and the error term is O(ε3).
v) If ε3 � g � ε, the dissipator contribution takes over, with arbitrary slow decay

Tr(Pk(t)U(t, 0)(ρj)) =
g

ε

∑
l∈I

∫ t

0
Tr(Pk(s)Γl(s)ρ̃j(s)Γ

∗
l (s)Pk(s))ds+O(g + ε2 + g2/ε2). (2.16)

vi) If g � ε3, one recovers the adiabatic result to leading order

Tr(Pk(t)U(t, 0)(ρj)) = ε2 Tr
{Pk(t)P ′k(t)ρ̃j(t)P ′k(t)Pk(t)

(ej(t)− ek(t))2

}
+O(ε3). (2.17)

vii) If L[g]
t is dephasing, the contribution of the dissipator vanishes, due to (2.2). This is keeping

with Thm 18 of [AFGG1] which yields transition probabilities of order εg with our notations; see also
[AFGG2].
viii) Finally, Theorem 2.1 is a consequence of Theorem 2.5 stated below.

While Theorem 2.1 focuses on transition probabilities, we also provide higher order approximations
of the full propagator U(t, s) in Propositions 3.9 and 7.5. The full formulations are too involved for this
presentation section and we limit ourselves here to the leading order expression stated as Theorem 2.5.

Any state ρ ∈ T (H) can be written as

ρ =
∑

1≤n,m≤d
Pn(t)ρPm(t), (2.18)
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with off diagonal elements, or coherences, Pn(t)ρPm(t), for n 6= m ∈ {1, . . . , d}, and diagonal elements,
or populations, Pn(t)ρPn(t), for n ∈ {1, . . . , d}. The extraction of the diagonal part of ρ is obtained by
the action of the projector P0(t) on B(H) defined for any A ∈ B(H) by

P0(t)(A) =
∑

1≤n≤d
Pn(t)APn(t). (2.19)

We take advantage of the fact that the superoperator P0(t) acts on states in T (H) in the same way as
its dual acts on observables in B(H). When acting on T (H), P0(t) is a CPTP map characterised by its
Kraus operators. In case σk(t) = {ek(t)} for all 1 ≤ k ≤ d and all t ∈ [0, 1], P0(t) coincides with the
spectral projector onto KerL0

t .
Then, observe that under Reg, the projector P0(t) given by (2.19) is smooth in trace norm. Consider

the parallel transport operator W0(t, s), 0 ≤ t, s ≤ 1, associated to P0(t) via the equation{
∂tW0(t, s) = [P ′0(t),P0(t)]W0(t, s),
W0(s, s) = I (2.20)

that satisfies, , see [Kr], the intertwining relation

P0(t)W0(t, s) =W0(t, s)P0(s) (2.21)

and the propagation relation for all 0 ≤ r, s, t ≤ 1

W0(t, s)W0(s, r) =W0(t, r). (2.22)

The operator W0(t, s) enjoys further properties:

Lemma 2.3 Assume Reg and Spec Then, for any 0 ≤ s, t ≤ 1, the operator W0(t, s)P0(s) is a CPTP
map on T (H), and W0(t, s) maps RanP0(s) to RanP0(t) isometrically in trace norm. Moreover,

W0(t, s)P0(s)(ρ) = W (t, s)P0(s)(ρ)W (s, t), (2.23)

where W (t, s) is the Kato operator defined by (2.10).

Remark 2.4 The first statements are shown in [AFGG1], and (2.23) is proven below in lemma 3.5.

We are now ready to give the approximation of U(t, 0):

Theorem 2.5 Assume Reg and Spec with σk(t) = {ek(t)} for all 1 ≤ k ≤ d and all t ∈ [0, 1]. Then
the solution to (2.4) satisfies, as (ε, g)→ (0, 0) with g/ε→ 0,

U(t, 0)P0(0) = U0(t, 0)P0(0) +
g

ε

∫ t

0
P0(t)W0(t, s)P0(s)L1

sW0(s, 0)P0(0)ds+O(g + (g/ε)2) (2.24)

= P0(t)W0(t, 0)P0(0) +
g

ε

∫ t

0
P0(t)W0(t, s)P0(s)L1

sW0(s, 0)P0(0)ds+O(ε+ (g/ε)2),

where, for all A ∈ B(H),

W0(t, s)P0(s)(A) = P0(t)W0(t, s)P0(s)(A) =
∑

1≤n≤d
W (t, s)Pn(s)APn(s)W (s, t), (2.25)

with W (t, s) the Kato operator (2.10).
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Remark 2.6 i) The first statement compares U(t, 0) with the Hamiltonian evolution U0(t, 0), while the
second one uses a leading order approximation of the latter, hence the different error terms.
ii) The projector P0(t) on the left of the integral term in (2.24) shows that the coherences of the correction
due to the dissipator vanish to leading order. Actually, as soon as σj(t) = {ej(t)}, we have for any n 6= m
in the regime g � ε� 1,

Pn(t)U(t, 0)(ρj)Pm(t) = Pn(t)U0(t, 0)(ρj)Pm(t) +O(g + (g/ε)2), (2.26)

see Lemma 3.12.
iii) Moreover, under the assumptions of Theorem 2.5, Proposition 3.14 shows that Pn(t)U0(t, 0)(ρj)Pm(t)
is of order ε2 if n and m are different from j, while it is of order ε if n or m equals j.

2.2 Slow drive regime ε� g � 1

We consider now larger time scales 1/ε for the drive, which implies the adiabatic dynamics within the

instantaneous eigenspaces of the driving Lindbladian L[g]
t will dominate. In order to tackle this regime

for g small, we will need more precise spectral information on L[g]
t that require working in a simpler

setup. In particular, the next result holds under the assumption that H is finite dimensional and that
σ(H(t)) is generic in the following sense:

Gen
• dimH = d, 1 < d <∞.
• ∀t ∈ [0, 1], σ(H(t)) = {e1(t), · · · , ed(t)} is simple and the Bohr frequencies {ej(t)− ek(t)}1≤j 6=k≤d are
distinct.

Note that Spec holds with σj(t) = {ej(t)} if Gen is satisfied.

Let {ϕj}1≤j≤d be a fixed orthonormal basis of eigenvectors of H(0). We consider {ϕj(t)}1≤j≤d, the
orthonormal basis of smooth eigenvectors of H(t) defined by

ϕj(t) = W (t, 0)ϕj , s.t. 〈ϕj(t)|ϕ′j(t)〉 ≡ 0, (2.27)

see (2.10) and (2.11). Therefore

Pj(t) = |ϕj(t)〉〈ϕj(t)| and H(t) =
∑

1≤j≤d
ej(t)Pj(t). (2.28)

As a consequence of assumption Gen, L0
t admits 0 as a d−fold eigenvalue, with

KerL0
t = Span{Pj(t), 1 ≤ j ≤ d}, (2.29)

whereas all its other eigenvalues are purely imaginary and simple. The spectral projector onto KerL0
t

is the projector P0(t) introduced in (2.19). The splitting of the eigenvalue 0 of L0
t by the addition of

the dissipator gL1
t is thus governed to leading order in g by the operator on B(H)

L̃1
t = P0(t) ◦ L1

t ◦ P0(t). (2.30)

See (4.15) for the matrix form of L̃1
t |KerL0t in the ordered basis {P1(t), . . . , Pd(t)}.
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We assume that the splitting induced by gL1
t is maximal in the following sense

Split
• For all t ∈ [0, 1], the spectrum of the restriction of L̃1

t to KerL0
t is simple.

Hypothesis Split is generic in the sense that in absence of very specific symmetry, the dissipator L1
t

fully lifts the degeneracy of the eigenvalue zero of L0
t , which is equivalent to saying that the matrix rep-

resentation of L̃1
t |KerL0t (4.15) has simple eigenvalues. It implies that for each fixed t ∈ [0, 1] and g > 0

small enough, L[g]
t has one dimensional kernel, so that the (Cesáro) limit as s → ∞ of the semigroup

esL
[g]
t converges to the projector onto that kernel. This is true for the example worked out in Section 6,

and for the simple quantum reset models considered in [HJ], section 2.1, in particular.

Consequently, for g > 0 small enough, the spectrum of the Lindbladian L[g]
t is simple, see [K2], with a

non trivial kernel. Moreover, thanks to Remark 4.2 below, the real parts of all the d− 1 eigenvalues of

order g are strictly negative for g > 0 small enough. The simplicity of the spectrum of L[g]
t for small

g > 0 allows us to construct a propagator (V(t, s))0≤s≤t≤1, which possesses the intertwining property

with all spectral projectors of L[g]
t , and approches (U(t, s))0≤s≤t≤1 under the sole condition ε� g � 1:

it satisfies for g > 0 small enough and all 0 ≤ s ≤ t ≤ 1

‖U(t, s)− V(t, s)‖τ = O(ε/g). (2.31)

The explicit description of V(t, s), which depends on the spectral data of L[g]
t and ε, is too involved for

this presentation section, and we refer the reader to Proposition 4.4 for more details.
We present a statement that holds under the supplementary condition ε � g �

√
ε. Our second

result describes the leading order of the density matrix U(t, 0)(Pj(0)), which is characterised by L̃1
t , in

the slow drive regime.

Theorem 2.7 Assume Reg, Gen and Split. Then, for any fixed 0 < t ≤ 1, and j 6= k, the solution
to (2.4) satisfies for (ε, g)→ (0, 0) with ε/g → 0 and g2/ε→ 0,

U(t, 0)(Pj(0)) = ν̃0(t) +O(g2/ε+ ε/g), (2.32)

where ν̃0(t) = P0(t)(ν̃0(t)) is determined by L̃1
t (ν̃0(t)) = 0 and Tr(ν̃0(t)) = 1.

In physical terms, the statements above mean that in the regime considered, the drive is so slow that the
dissipator has time enough to determine the instantaneous invariant state that the adiabatic dynamics
selects, within the kernel of the Hamiltonian part of the Lindbladian.

Remark 2.8 i) The extra constraint g2 � ε stems from the fact that we only retain L̃1
t in the description

of U(t, 0)(Pj(0)).
ii) Accordingly, for any 1 ≤ k ≤ d, the transition probability to Pk(t) starting at Pj(0) reads

Tr(Pk(t)U(t, 0)(Pj(0))) = Tr(Pk(t)ν̃0(t)) +O(g2/ε+ ε/g), (2.33)

while the coherences all vanish to leading order, since ν̃0(t) = P0(t)(ν̃0(t)).
iii) More precise results taking into account the other eigenstates of L̃1

t can be found in Corollary 5.7.
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2.3 Transition regime g �
√
ε� 1

The asymptotic expressions stated above require either g � ε or ε � g, and thus do not cover the
transition regime where ε and g are roughly of the same order. Our next result bridges this gap: for
an initial state ρj = Pj(0)ρjPj(0) ∈ T (H), it provides an approximation of the evolved state U(t, 0)(ρj)
which holds as soon as g �

√
ε� 1, a regime that covers partly both the perturbative and slow drive

regimes. Moreover, this result only requires the spectral assumption Spec with σj(t) = {ej(t)}, for all
1 ≤ j ≤ d, regardless of the dimensions of the spectral projectors Pj(t) of H(t).

Let L̃1
t = P0(t)L1

tP0(t) and consider (Ψ̃δ(t, s))0≤s≤t≤1, defined for δ > 0 by{
δ∂tΨ̃δ(t, s) =W0(0, t)L̃1

tW0(t, 0)Ψ̃δ(t, s),

Ψ̃δ(s, s) = I.
(2.34)

We call Ψ̃δ(t, s) the reduced dynamics, since (2.21) implies [Ψ̃δ(t, s),P0(0)] ≡ 0 .

The following Theorem shows that Ψ̃δ(t, s) with δ = ε/g provides an approximation of U(t, 0)P0(0)
in the transition regime g �

√
ε� 1:

Theorem 2.9 Assume Reg and Spec with σj(t) = {ej(t)} for all 1 ≤ j ≤ d and all t ∈ [0, 1]. Then,
for all 0 ≤ t ≤ 1, as (ε, g)→ 0 with g2/ε→ 0, we have for the solution of (2.4)

U(t, 0)P0(0) =W0(t, 0)Ψ̃ε/g(t, 0)P0(0) +O(ε+ g + g2/ε). (2.35)

Consequently, for any state ρj = Pj(0)ρjPj(0) ∈ T (H) and any 1 ≤ j, k ≤ d, 0 ≤ t ≤ 1, we have in the
same regime,

Tr{Pk(t)U(t, 0)(ρj)} = Tr{Pk(0)Ψ̃ε/g(t, 0)(ρj)}+O(ε+ g + g2/ε). (2.36)

In this transition regime, the dissipator is not strong enough to ensure instantaneous relaxation of the
dynamics over the adiabatic time scale, while the coherences are still suppressed by the slow drive.

Remark 2.10 i) The coherences vanish to leading order since

W0(t, 0)Ψ̃ε/g(t, 0)P0(0) = P0(t)W0(t, 0)Ψ̃ε/g(t, 0)P0(0). (2.37)

ii) The result holds in particular for g = ε in which case we have

U(t, 0)(ρj) =W0(t, 0)Ψ̃1(t, 0)(ρj) +O(ε), (2.38)

where the reduced dynamics is parameter free and thus of order 1.
iii) For any δ > 0, the maps Ψ̃δ(t, 0)P0(0) and W0(t, 0)Ψ̃δ(t, 0)P0(0) are CPTP, see Corollary 5.4.
iv) In case ε� g �

√
ε, the reduced dynamic is itself in an adiabatic regime in the parameter δ = ε/g,

which allows us to recover the slow drive regime as shown in Corollaries 5.6, 5.7, further assuming Gen
and Split. Whereas for g � ε� 1 we fall back on the perturbative regime, see Corollary 5.9, under the
present hypotheses.
v) In Section 6, the reduced dynamics Ψ̃ε/g(t, 0) is computed explicitly for a two-level system, under mild
symmetry assumptions on the jump operators Γl(t).
vi) Finally, under Gen, the reduced dynamics can be interpreted as the transition matrix of an associated
classical Markov process, see Lemma 5.5.
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The rest of the paper is organised as follows. In the next section, we consider the perturbative
regime, making use of Dyson series. To study this series, we revisit methods in the adiabatic analysis
of evolution equations, which leads to Proposition 3.9, the main technical result of this section. The
statements of Theorems 2.1 and 2.5 are leading order consequences of this result, as explained at the
very end of that section. Section 4 is devoted to the slow drive regime, starting with the spectral
analysis of the Lindbladian for g small, to get the approximation (2.31) of the Lindbladian evolution
for ε� g stated as Proposition 4.4, which is proven there. The transition regime is finally addressed in
Section 5, where the reduced dynamics is introduced and analysed. In particular, various asymptotic
values of δ = ε/g allowed by the condition g �

√
ε are considered as Corollaries 5.4, 5.6, 5.7 and 5.9

of Proposition 5.2, the main technical result of the section. For instance, Theorem 2.9 corresponds to
Corollary 5.4, while Corollaries 5.6 and 5.7 are shown to yield the statements of Theorem 2.7, whereas
Corollary 5.9 partially recovers results in the perturbative regime. An application to a two-level system,
or Qubit, illustrating those results is worked out in Section 6, while Section 7 is devoted to higher order
generalisations of the perturbative regime results. The paper closes with a technical appendix gathering
some proofs.

3 Perturbative regime g � ε

In the regime g � ε, the dissipator of the Lindbladian can be considered a perturbation of the Hamilto-
nian part, so that a head on approach using Dyson series in the interaction picture is useful. We work
here under Reg and Spec

Let (U0(t, s))(t,s)∈R2 be the propagator on T (H) solution to the equation in T (H){
ε∂tU0(t, s) = L0

t (U0(t, s)),
U0(s, s) = I, (t, s) ∈ [0, 1]2.

(3.1)

Introducing (U(t, s))(t,s)∈R2 , the unitary Schrödinger propagator, solution to the equation in H{
iε∂tU(t, s) = H(t)U(t, s),
U(s, s) = I, (t, s) ∈ [0, 1]2,

(3.2)

we check that for any ρ ∈ T (H)

U0(t, s)(ρ) = U(t, s)ρU∗(t, s), (3.3)

showing that U0(t, s) is actually unitarily implemented on T (H) and on B(H), and is well defined for
any 0 ≤ s, t ≤ 1.

The integral form of (2.4) and the definition of U0(t, s) yield

U(t, r) = U0(t, r) +
g

ε

∫ t

r
U0(t, s) ◦ L1

s ◦ U(s, r)ds, ∀0 ≤ r ≤ t ≤ 1. (3.4)
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By iteration we have for 0 ≤ s ≤ t ≤ 1, N ≥ 1, and with the convention s0 = t,

U(t, s)− U0(t, s) (3.5)

=
N∑
n=1

(g/ε)n
∫ t

s

∫ s1

s
· · ·
∫ sn−1

s
U0(t, s1) ◦ L1

s1 ◦ U
0(s1, s2) ◦ L1

s2 · · · ◦ L
1
sn ◦ U

0(sn, s)dsn . . . ds2ds1

+(g/ε)N+1

∫ t

s

∫ s1

s
· · ·
∫ sN

s
U0(t, s1) ◦ L1

s1 ◦ U
0(s1, s2) ◦ L1

s2 · · · ◦ L
1
sN+1

◦ U(sN+1, s)dsN+1 . . . ds2ds1

=

∞∑
n=1

(g/ε)n
∫ t

s

∫ s1

s
· · ·
∫ sn−1

s
U0(t, s1) ◦ L1

s1 ◦ U
0(s1, s2) ◦ L1

s2 · · · ◦ L
1
sn ◦ U

0(sn, s)dsn . . . ds2ds1.

The convergence is in the norm operator sense on T (H) for the second expression. In particular, with
sup0≤s≤1 ‖L1

s‖T = L1, the norm of the term of order n is bounded above by ((g/ε)L1(t− s))n/n!, since
U0(t, s) is isometric.

Remark 3.1 The Dyson series converges, irrespectively of the value of the ratio g/ε.

Thanks to (3.3), the adiabatic approximation of U0(t, s) is easily obtained from that of the Schrödinger
propagator U(t, s), under the spectral hypotheses Spec on the Hamiltonian.

3.1 Adiabatic toolbox

The gap hypothesis Spec and the assumed regularity in time of H(t) ensure the existence of a unitary
propagator on H, (V (t, s))(t,s)∈[0,1]2 defined by{

iε∂tV (t, s) = (H(t) + iεK(t))V (t, s),
V (s, s) = I, (t, s) ∈ [0, 1]2,

(3.6)

where K(t) is given in (2.9). The adiabatic theorem of quantum mechanics reads, see e.g. [K1, N1, ASY],

Lemma 3.2 Under Reg and Spec, there exists c such that for any 0 ≤ s, t ≤ 1, and ε > 0, the
solutions to (3.2) and (3.6) satisfy

‖U(t, s)− V (t, s)‖ ≤ cε, (3.7)

where V possesses the intertwining property

V (t, s)Pj(s) = Pj(t)V (t, s), ∀1 ≤ j ≤ d. (3.8)

Remark 3.3 Thanks to the second point of assumption Reg, we have for s = 0

‖U(t, 0)− V (t, 0)‖ ≤ ctε. (3.9)

As a direct consequence, the transition amplitude from the subspace Pj(s)H at time s, to the subspace
Pk(t)H at time t, j 6= k, is of order ε, as ε→ 0:

‖Pk(t)U(t, s)Pj(s)‖ = ‖Pk(t)V (t, s)Pj(s)‖+O(ε) = O(ε). (3.10)
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Estimate (3.7) in Lemma 3.2 is based on an integration by parts procedure that will be used below in
various situations, and even generalised in Section 7. Therefore, the argument is presented in Appendix
in a general abstract setup as Lemma 8.2, from which the proof of (3.7) follows. The classical intertwining
property (3.8), obtained by observing that both sides are solutions to the same differential equation
in t, with initial condition Pj(s) at t = s can be found in ([K1, K2, Kr]). For later purposes, we also
introduce here a useful decomposition of the operator V (t, s):

Let W (t, s) be the Kato operator defined by (2.10) and Φε(t, s) be the dynamical phase operator
defined by {

iε∂tΦε(t, s) = W−1(t, 0)H(t)W (t, 0)Φε(t, s),
Φε(s, s) = I, 0 ≤ s, t ≤ 1.

(3.11)

The dynamical phase operator Φε(t, s) describes the evolution within the spectral subspaces of H(t),
and thus depends on ε. As the Kato operator, it is well defined in a Banach space framework for
bounded generator, and its key property is that for all 1 ≤ j ≤ d

[Φε(t, s), Pj(0)] ≡ 0. (3.12)

In case Spec holds with σj(t) = {ej(t)}, Φε(t, s)Pj(0) = Pj(0)e−
i
ε

∫ t
s ej(r)dr, and if this assumption holds

for all 1 ≤ j ≤ d,

Φε(t, s) =
d∑
j=1

Pj(0)e−
i
ε

∫ t
s ej(r)dr, (3.13)

which justifies the name of the operator. The link between V , W and Φε reads, see e.g. [K1, JP2, J2]

Lemma 3.4 Under Reg and Spec, one has

V (t, s) = W (t, 0)Φε(t, s)W
−1(s, 0), ∀ 0 ≤ t, s ≤ 1. (3.14)

Under these assumptions, the operators V (t, s),W (t, s),Φε(t, s) are all unitary.

In turn, the adiabatic approximation (3.7) V (t, s) of U(t, s) on H provides an approximation of
U0(t, s) on T (H) up to O(ε). For ε > 0, define the isometric operator on T (H) (and on B(H))

V0(t, s)(ρ) = V (t, s)ρV ∗(t, s) = V (t, s)ρV (s, t), ρ ∈ T (H). (3.15)

Then, for c given in equation (3.7), we get

‖U0(t, s)− V0(t, s)‖τ ≤ 2cε, (3.16)

and the same holds for the operator norm on B(H).
To get a better grasp on V0(t, s), we proceed by proving here (2.23) which specifies the action of

W0(t, s) on the range of P0(s):

Lemma 3.5 For W0(t, s) defined by (2.20) and P0(t) by (2.19), we have for any ρ ∈ B(H),

W0(t, s) ◦ P0(s)(ρ) = W (t, s)P0(s)(ρ)W (s, t), (3.17)

where W (t, s) is the Kato operator defined by (2.10). Moroever, W0(t, s) is trace preserving.
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Remark 3.6 i) The particular case ρ = Pj(s) which gives W0(t, s)(Pj(s)) = Pj(t) can be found
[AFGG1].
ii) If the projectors are all one dimensional, i.e. Pj(t) = |ϕj(t)〉〈ϕj(t)|, 1 ≤ j ≤ d, we have

W0(t, s) ◦ P0(s)(ρ) =
∑

1≤k≤d
〈ϕk(s)|ρϕk(s)〉Pk(t). (3.18)

Proof: The fact thatW0(t, s) is trace preserving follows from Tr((I−P0(t))(A)) = 0 for all A ∈ T (H),
and (2.21), together with (3.17) and the fact that P0(s) is trace preserving. The identity is proven by
checking that its two sides satisfy the same differential equation (2.20) with initial condition P0(s) at
t = s. Considering first the argument Pk(s)ρPk(s) = P0(s)(Pk(s)ρPk(s)) in place of ρ in (3.17), the
RHS reads W (t, s)Pk(s)ρPk(s)W (s, t) = Pk(t)W (t, s)ρW (s, t)Pk(t) so that with (2.9),

∂t

(
W (t, s)Pk(s)ρPk(s)W (s, t)

)
=[K(t),W (t, s)Pk(s)ρPk(s)W (s, t)] (3.19)

=P ′k(t)Pk(t)W (t, s)ρW (s, t)Pk(t) + Pk(t)W (t, s)ρW (s, t)Pk(t)P
′
k(t).

Then, making use of

P ′0(t)(ρ) =
∑

1≤j≤d
P ′j(t)ρPj(t) + Pj(t)ρP

′
j(t), (3.20)

we get P0(t)P ′0(t)(Pk(t)W (t, s)ρW (s, t)Pk(t)) ≡ 0 and

P ′0(t)P0(t)(Pk(t)W (t, s)ρW (s, t)Pk(t)) (3.21)

= P ′k(t)Pk(t)W (t, s)ρW (s, t)Pk(t) + Pk(t)W (t, s)ρW (s, t)Pk(t)P
′
k(t),

showing the result for the argument Pk(s)ρPk(s). It remains to sum over 1 ≤ k ≤ d to end the proof. �

As a consequence, we get the following expression for the adiabatic approximation (3.16) of U0(t, s)(ρj)
where the state ρj = Pj(s)ρPj(s) and Pj(s) is associated to a permanently degenerate eigenvalue:

Lemma 3.7 Under Reg and Spec with σj(t) = {ej(t)} for all t ∈ [0, 1], for any state ρj = Pj(s)ρPj(s) =
P0(s)(ρj) it holds

U0(t, s)(ρj) = V0(t, s)(ρj) +O(ε), where

V0(t, s)(ρj) =W0(t, s)(ρj) = W (t, s)ρjW (s, t). (3.22)

Remark 3.8 If σj(t) = {ej(t)} for all 1 ≤ j ≤ d and all t ∈ [0, 1], then for any 0 ≤ s ≤ t ≤ 1,

P0(t)W0(t, s)P0(s) = P0(t)V0(t, s) = V0(t, s)P0(s). (3.23)

Proof: The first estimate is (3.16). Then, Lemma 3.4 yields the expression

V (t, s) = W (t, 0)Φε(t, s)W (0, s) with Φε(t, s)Pj(0) = Pj(0)e−
i
ε

∫ t
0 ej(r)dr, (3.24)

since σj(t) = {ej(t)}. Therefore, V0(t, s) given by (3.15) with ρj = Pj(s)ρjPj(s) and the intertwining

relation (2.11) make the phases e±
i
ε

∫ t
s ej(r)dr disappear, which justifies the last two identities. �

In particular, if dimPj(0) <∞, then Pj(t) belongs to T (H) for all t ∈ [0, 1] so that

U0(t, s)(Pj(s)) = Pj(t) +O(ε). (3.25)

Again, if Pj(0) is not trace class, the estimates above hold in operator norm.
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3.2 Adiabatic Dyson expansion

We now apply the foregoing to the analysis of the Dyson series.
Equation (3.5) and the above yields the following estimate of the propagator (U(t, s))0≤s≤t≤1:

Proposition 3.9 Under assumptions Reg and Spec, for any N ≥ 1, there exists c < ∞ (given in
Lemma 3.2), such that for all 0 ≤ s ≤ t ≤ 1 (with the convention s0 = t for N = 1), for all ε > 0, all
g ≥ 0, the propagator U(t, s) ∈ B(T (H)) satisfies

U(t, s) = V0(t, s)

+
N∑
n=1

(g/ε)n
∫ t

s

∫ s1

s
· · ·
∫ sn−1

s
V0(t, s1) ◦ L1

s1 ◦ V
0(s1, s2) ◦ L1

s2 · · · ◦ L
1
sn ◦ V

0(sn, s)dsn . . . ds2ds1

+RN+1(t, s, ε, g) (3.26)

where, with L1 = sup0≤s≤1 ‖L1
s‖τ ,

‖RN+1(t, s, ε, g)‖τ ≤ 2cεe2(t−s)L1(1+2cε)g/ε +
(L1(t− s))N+1

(N + 1)!
(g/ε)N+1. (3.27)

In particular, if g/ε ≤ 1 and ε ≤ 1/(2c),

‖RN+1(t, s, ε, g)‖τ ≤ 2e4L1
(
cε+ ((t− s)g/ε)N+1

)
= O(ε+ (g/ε)N+1). (3.28)

Remark 3.10 i) The isometric operators V0 depends on ε and displays fast oscillations as ε→ 0.
ii) Keeping U0 instead of V0 in the first term of the RHS of (3.26), the estimate on the remainder reads

‖RN+1(t, s, ε, g)‖τ = O(g + (g/ε)N+1)). (3.29)

iii) In case s = 0, on can replace c by tc, according to Remark 3.3.

Proof: The first estimate follows by replacing U0 by its approximation V0 in each term of the Dyson
series, and collecting the different contributions to the error terms. With

∆ = sup
0≤s≤t≤1

‖U0(t, s)− V0(t, s)‖τ ≤ 2cε, (3.30)

the trace norm of the difference of the term of order n ≥ 1 in (3.5) with that of order n in (3.26) is
bounded above by

(g/ε)n
((t− s)L1)n

n!

∑
1≤k≤n+1

(
n+ 1
k

)
∆k ≤ (g/ε)n

((t− s)L1)n

n!

∑
0≤j≤n

(
n+ 1
j + 1

)
∆j+1

≤ (g/ε)n
((t− s)L1)n

n!
∆(n+ 1)

∑
0≤j≤n

(
n
j

)
∆j ≤ (g/ε)n

((t− s)L1)n

n!
∆2n(1 + ∆)n. (3.31)

Summing over all n ∈ N yields the first term in (3.27). The second term stems from the term of order
N + 1 in (3.5). The second estimate is a consequence of g/ε ≤ 1, t− s ≤ 1, 1 + 2cε ≤ 2 and αm

m! ≤ eα,
for all m ≥ 1, α > 0. �

Specialising to the leading order term in g/ε, and taking into account Remark 3.10 ii) above, we get
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Corollary 3.11 Under the assumptions of Proposition 3.9, for ε ≤ 1/(2c) and g/ε ≤ 1,

U(t, s) = U0(t, s) +
g

ε

∫ t

s
V0(t, s1) ◦ L1

s1 ◦ V
0(s1, s)ds1 +O(g + g2/ε2). (3.32)

This expression will provide an explicit leading order correction to the transition probability between
spectral subspaces driven by the purely Hamiltonian dynamics, due to the dissipator.

Consider a state ρj = Pj(0)ρjPj(0) ∈ T (H) and recall the definition (2.1) of the dissipator

L1
t (·) =

∑
l∈I

Γl(t) · Γ∗l (t)−
1

2
{Γ∗l (t)Γl(t), ·}. (3.33)

The transition probability between Pj(0)H and Pk(t)H, j 6= k, induced by the Lindbladian dynamics
(2.3) reads Tr(Pk(t)U(t, 0)(ρj)). Using (3.15) and Lemma 3.2, we have

ρ̃j(t, ε) = V0(s, 0)(ρj) = V (s, 0)ρjV (s, 0) = Pj(s)V (s, 0)ρjV (0, s)Pj(s), (3.34)

so that with Pj(t)Pk(t) = 0 and the cyclicity of the trace,

Tr(Pk(t)U(t, 0)(ρj)) = Tr(Pk(t)U0(t, 0)(ρj)) (3.35)

+
g

ε

∫ t

0
Tr(Pk(t)V0(t, s) ◦ L1

s ◦ V0(s, 0)(ρj))ds+O(g + g2/ε2)

= Tr(Pk(t)U(t, 0)Pj(0)ρjPj(0)U(0, t)Pk(t))

+
g

ε

∑
l∈I

∫ t

0
Tr(Pk(s)Γl(s)V (s, 0)ρjV (0, s)Γ∗l (s)Pk(s))ds+O(g + g2/ε2).

The first expression on the RHS yields the Hamiltonian adiabatic transition probability between these
subspaces, whereas the non-negative second term of order g/ε describes the effect of the environment.
Note that in case Pj(0) is finite rank, choosing ρj = Pj(0)/ dim(Pj(0)) yields the simpler integrands

Tr(Pk(s)Γl(s)Pj(s)Γ
∗
l (s)Pk(s))/ dim(Pj(0)), (3.36)

and by Lemma 3.7, V (s, 0)ρjV (0, s) = ρ̃j(s) is independent of ε if σj(t) = {ej(t)}.

Concerning coherences of the integral term in (3.32), we have the following integration by parts
result, whose proof is given in Appendix.

Lemma 3.12 Assume Reg, Spec and let ρj = Pj(0)ρjPj(0) be a state. Suppose σj(t) = {ej(t)} for
all t ∈ [0, 1]. Then, for any 1 ≤ n 6= m ≤ d, and all ε > 0,

g

ε
Pn(t)

∫ t

0
V0(t, s) ◦ L1

s ◦ V0(s, 0)(ρj)dsPm(t) = O(g). (3.37)

Actually, a similar result holds for each term in (3.26). For simplicity, we choose to express it under
the supplementary condition σk(t) = {ek(t)} for all 1 ≤ k ≤ d, and postpone its proof to the Appendix.
It will allow us to make contact with the reduced dynamics later on.
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Lemma 3.13 Assume Reg and Spec with σk(t) = {ek(t)} for all 1 ≤ k ≤ d and all t ∈ [0, 1]. Then
for all n ≥ 1, there exists εn > 0 such that for ε < εn and any state ρ ∈ T (H) (with s0 = t),∫ t

0

∫ s1

0
· · ·
∫ sn−1

0
V0(t, s1)L1

s1V
0(s1, s2)L1

s2 . . .L
1
snV

0(sn, 0)(ρ)dsn . . . ds2ds1

=

∫ t

0

∫ s1

0
· · ·
∫ sn−1

0
W0(t, s1)P0(s1)L1

s1 · · ·W
0(sn−1, sn)P0(sn)L1

snW
0(sn, 0)P0(0)(ρ)dsn . . . ds2ds1

+On(ε). (3.38)

Here On(ε) means a quantity bounded by Cnε, where Cn depends on n. Consequently, under the
assumptions of Lemma 3.13, for all N ≥ 1, in the regime g � ε � 1, we have the generalisation of
Theorem 2.5

U(t, 0) = U0(t, 0) (3.39)

+

N∑
n=1

(g
ε

)n∫ t

0

∫ s1

0
· · ·
∫ sn−1

0
W0(t, s1)P0(s1)L1

s1 · · ·W
0(sn−1, sn)P0(sn)L1

snW
0(sn, 0)P0(0)(ρ)dsn . . . ds1

+ON (g + (g/ε)N+1),

where all integral terms are independent of (ε, g). Note that the error term in (3.39) is negligeable with
respect to all explicit terms in the regime εN/(N−1) � g � ε.

We proceed by recalling the asymptotics of the transition probability between the spectral sub-
spaces Pj(0)H and Pk(t)H under the unitarily implemented evolution U0(t, s) and of the coherences of
U0(t, s)(ρj) depending on certain assumptions on the spectral subsets σk(t), 1 ≤ k ≤ d.

Proposition 3.14 Assume Reg and Spec and consider a state ρj = Pj(0)ρjPj(0) ∈ T (H). Then,
for σj(t) = {ej(t)}, the adiabatic transition probability between Pj(0)H and Pk(t)H, k 6= j, under the
Hamiltonian evolution is determined by the trace of

Pk(t)U0(t, 0)(ρj)Pk(t) (3.40)

= − ε2

(2π)2

{
Pk(t)

∮
γj

R(t, z)P ′k(t)R(t, z)dz ρ̃j(t)

∮
γj

R(t, z)P ′k(t)R(t, z)dz Pk(t)
}

+O(ε3),

where ρ̃j(t) = W (t, 0)ρjW (0, t) and R(t, z) = (H(t)− z)−1, for z ∈ ρ(H(t)).
In case σj(t) = {ej(t)} and σk(t) = {ek(t)} for all t ∈ [0, 1], we have

Pk(t)U0(t, 0)(ρj)Pk(t) = ε2
{Pk(t)P ′k(t)ρ̃j(t)P ′k(t)Pk(t)

(ej(t)− ek(t))2

}
+O(ε3). (3.41)

Further assuming σk(t) = {ek(t)}, for all 1 ≤ k ≤ d, all t ∈ [0, 1], the coherences read

Pn(t)U0(t, 0)(ρj)Pm(t) = ε2
{ Pm(t)P ′m(t)ρ̃j(t)P

′
n(t)Pn(t)

(ej(t)− em(t))(ej(t)− en(t))

}
+O(ε3), for m 6= j, n 6= j,

Pj(t)U0(t, 0)(ρj)Pm(t) = iε
ρ̃j(t)P

′
m(t)Pm(t)

em(t)− ej(t)
+O(ε2), for m 6= j. (3.42)
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Remark 3.15 In case the assumption σj(t) = {ej(t)} is dropped, ρ̃j(t) must be replaced by the ε−dependent
state

ρ̃j(t, ε) = V0(t, 0)(ρj) = V (t, 0)ρjV (0, t) = Pj(t)ρ̃j(t, ε)Pj(t) (3.43)

in (3.40), see (3.15). Similar integral expressions can be obtained for the coherences in case condition
σk(t) = {ek(t)} for all 1 ≤ k ≤ d does not hold.

The proof, making use of higher order adiabatic approximations is postponed to Section 7.

At this point, the proof of Theorem 2.1 follows from (3.35) and Proposition (3.14): recall that
σj(t) = {ej(t)} implies V (t, 0)ρjV (0, t) = W (t, 0)ρjW (0, t) = ρ̃j(t) by (3.15) and Lemma 3.7, which
yields eq. (2.13) from (3.35). Then, (2.14) follows directly from (3.41).

Similarly, the proof of the first line of (2.24) in Theorem 2.5 is a consequence of Corollary 3.11 for
s = 0, Lemma 3.12 and Remark 3.8. The second line follows from Lemma 3.7 and g � ε.

4 Slow drive regime g � ε

As already mentioned in Section 2, the analysis of the regime g � ε, is all the more accurate that

we control the spectral properties of the Lindbladian L[g]
t = L0

t + gL1
t . In this section, we provide a

fairly explicit approximation of U(t, s) based on perturbation theory under the sole condition ε � g,
see Proposition 4.4, assuming the Hilbert spaces H is finite dimensional and the Hamiltonian H(t) has
simple eigenvalues that are generic in the sense of Gen.

We recall that for H(t) =
∑

1≤j≤d Pj(t)ej(t), the explicit description of the approximate evolution
operator V (t, s) defined by (3.6) provided by Lemma 3.4 holds with

Φε(t, s) =

d∑
j=1

Pj(0)e−
i
ε

∫ t
s ej(r)dr, (4.1)

irrespectively of the dimension of the projectors Pj(t), see (3.13). Under Reg and Gen, we consider
{ϕj(t)}1≤j≤d, the canonical smooth orthonormal basis of eigenvectors of H(t) defined in (2.27) that
satisfies

ϕj(t) = W (t, 0)ϕj , s.t. 〈ϕj(t)|ϕ′j(t)〉 ≡ 0, (4.2)

so that Pj(t) = |ϕj(t)〉〈ϕj(t)|. Introducing the Hilbert-Schmidt scalar product on B(H)〈〈
A,B

〉〉
= Tr(A∗B), (4.3)

the vectors (4.2) yield in turn an instantaneous orthonormal eigenbasis of L0
t with respect to

〈〈
·, ·
〉〉

:

Lemma 4.1 For all t ∈ [0, 1], the family of rank one operators on H, {|ϕj(t)〉〈ϕk(t)|}1≤j,k≤d, is a
smooth orthonormal basis of B(H) equipped with

〈〈
·, ·
〉〉

such that

L0
t (|ϕj(t)〉〈ϕk(t)|) = −i(ej(t)− ek(t))|ϕj(t)〉〈ϕk(t)| := λjk(t)|ϕj(t)〉〈ϕk(t)| (4.4)

Consequently, the spectrum of L0
t sits on the imaginary axis, is simple except for the eigenvalue 0 which

is d−fold degenerate, and
KerL0

t = Span{Pj(t), j = 1, . . . , d}. (4.5)
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The corresponding spectral decomposition is written as

L0
t =

∑
j 6=k

λjk(t)Pjk(t) + 0P0(t), (4.6)

where

Pjk(t)(ρ) = Pj(t)ρPk(t) = 〈ϕj(t)|ρϕk(t)〉|ϕj(t)〉〈ϕk(t)|

P0(t)(ρ) =
∑

1≤j≤d
Pj(t)ρPj(t). (4.7)

With Q0(t) = I− P0(t), we have L0
t = Q0(t) ◦ L0

t = L0
t ◦ Q0(t).

4.1 Perturbation theory of L[g]
t

We now address the spectral properties of L[g]
t = L0

t + gL1
t in the perturbative regime g → 0. Before

doing so, we recall that L[g]
t being a Lindblad operator, this imposes the following structural constraints

on its spectrum, for each t ∈ [0, 1]:

0 ∈ σ(L[g]
t ) = σ(L[g]

t ) ⊂ {z ∈ C |<z ≤ 0}, ∀ g ∈ R+. (4.8)

Indeed, for fixed t ∈ [0, 1], (esL
[g]
t )s≥0 being a contraction semigroup on T (H), it follows that <σ(L[g]

t ) ≤ 0
and that all eigenvalues sitting on the imaginary axis are semisimple, i.e. there is no eigennilpotent

(Jordan block) corresponding to those eigenvalues in the spectral decomposition of L[g]
t . Since esL

[g]
t is

a CPTP map for all s ≥ 0, it admits 1 as an eigenvalue, see e.g. [Sch], so that 0 is an eigenvalue of the

generator L[g]
t . The symmetry L[g]

t (ρ∗) = (L[g]
t (ρ))∗ which holds for all ρ ∈ T (H), implies the symmetry

of the spectrum, when applied to eigenvectors of L[g]
t .

Therefore, following Chapter II §2 [K2] and dropping the variable t from the notation, we denote

by P [g]
jk the spectral projector of L[g] associated with the eigenvalues emanating from the unperturbed

eigenvalue −i(ej − ek), and by P [g]
0 the spectral projector on the set of eigenvalues emanating from the

d−fold degenerate unperturbed eigenvalue 0, the so-called λ−group of eigenvalues, with λ = 0. Since

Pjk is one dimensional, P [g]
j,k is one dimensional and analytic in g ∈ C, |g| small enough. On the other

hand, dimP0 = d implies that the degenerate eigenvalue 0 may split for non zero g and while P [g]
0 is

analytic in g ∈ C, for |g| small enough, it might not be the case for the projections on the individual
eigenvalues emanating from 0.

Let {λ[g]
j }0≤j≤m, m ≤ d− 1, be the set of eigenvalues in the 0− group for g ∈ C \ {0} with |g| small

enough. Each {λ[g]
j }0≤j≤m is an analytic functions of a (fractional) power of g that tend to zero as g → 0

and may be permanently degenerate. For the structural reasons recalled above, one of these eigenvalues,

we denote by λ
[g]
0 , is identically equal to zero, λ

[g]
0 ≡ 0, ∀g ∈ C \ {0}. In case λ

[g]
0 is degenerate, it is

semisimple.
Let us analyse the splitting of the 0-group of eigenvalues. We have

P [g]
0 = − 1

2iπ

∫
γ0

(L[g] − z)−1dz = P0 + gP1 +O(g2), (4.9)
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for |g| small, where γ0 is a circle of small radius, independent of g, centered at the origin. We mention
for completeness, that since 0 is a semisimple eigenvalue of L0,

P1 = −P0L1S0 − S0L1P0 = P0P1Q0 +Q0P1P0, (4.10)

where S0 is the reduced resolvent of L0 at 0, satisfying S0P0 = P0S0 = 0 and S0L0 = L0S0 = Q0.
The analytic operator that describes the splitting reads

P [g]
0 L

[g]P [g]
0 = (P0 + gP1 +O(g2))(L0 + gL1)(P0 + gP1 +O(g2))

= gP0L1P0 +O(g2), (4.11)

where we used L0P0 = P0L0 = 0.

The restriction to KerL0 of the leading order term L̃1 = P0L1P0 admits a matrix representation L̃
in the ordered orthonormal basis of rank one projectors {P1, P2, . . . , Pd} of P0B(H) whose elements are
determined by the expressions (recall (4.7) and (3.33))

PkL1(Pj)Pk =
∑
l∈I

(PkΓ
∗
l PjΓlPk − δjkPkΓ∗l ΓlPk) . (4.12)

We set L̃ =
∑

l∈I L̃(l) ∈Md(R), where the matrix elements L̃(l)jk, 1 ≤ j, k ≤ d, read

L̃(l)kj = |〈ϕk|Γlϕj〉|2 − δjk‖Γlϕk‖2, (4.13)

so that for any ρ = P0(ρ) =
∑

1≤j≤d ρjPj , with ρj = 〈ϕj |ρϕj〉,

L̃1(ρ) = P0L1P0(ρ) =
∑

1≤j,k≤d
PkL̃kjρj . (4.14)

In other words,

L̃1|KerL0 ' L̃ =
∑
l∈I


|〈ϕ1|Γlϕ1〉|2 − ‖Γlϕ1‖2 |〈ϕ1|Γlϕ2〉|2 |〈ϕ1|Γlϕd〉|2

|〈ϕ2|Γlϕ1〉|2 |〈ϕ2|Γlϕ2〉|2 − ‖Γlϕ2‖2 |〈ϕ2|Γlϕd〉|2
. . .

|〈ϕd|Γlϕ1〉|2 |〈ϕd|Γlϕ2〉|2 |〈ϕd|Γlϕd〉|2 − ‖Γlϕd‖2

 .

(4.15)

Note that the real matrices L̃(l) have non negative off diagonal elements and satisfy∑
1≤j≤d

L̃(l)jk = 0, (4.16)

so that the same properties hold for L̃. This is a reflection of the fact that L1 being a lindbladian, we
have Tr(L1(ρ)) = 0 for any ρ ∈ B(H), where for ρ = P0(ρ),

Tr(L1(ρ)) = Tr{P0L1P0(ρ)} =
∑

1≤j,k≤d
Tr(Pk)L̃kjρj =

∑
1≤j,k≤d

L̃kjρj . (4.17)
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In particular 0 ∈ σ(L̃). Sufficient and necessary conditions for Ker L̃ to be one dimensional are given
in [No] or [D2], Chapter 12..

Note that in the language of classical Markov processes, (4.16) makes the transpose of L̃ a time-
dependent transition rate matrix, or generator, of a Markov process, see e.g. [YZ]. We further comment
on this in section 5.2.

We suppose that the splitting induced by L1 is maximal by assuming Split, i.e. that L̃1
t |KerL0t has

simple spectrum.

Remark 4.2 Assumption Split and Gershgorin Theorem imply that for any t ∈ [0, 1] and g > 0 small

enough, <σ(P0(t)[g]L[g]
t P0(t)[g])\{0} < 0.

Under this hypothesis on the efficiency of the dissipator, we have the spectral decomposition

L̃1
t = 0P̃0(t) +

d−1∑
j=1

λ̃j(t)P̃j(t), (4.18)

where the distinct eigenvalues λ̃j(t) and eigenprojectors P̃j(t) are smooth in t ∈ [0, 1].

Assumption Split ensures the spectrum of L[g]
t is simple for small g > 0, and its eigenprojectors

are all regular as g → 0+, despite L[g]
t is not normal:

Proposition 4.3 Assume Reg, Gen, and Split. Then, there exists g0 > 0 such that for all t ∈ [0, 1],

for all g ∈ C \ {0} with |g| < g0, L[g]
t admits d distinct eigenvalues {λ[g]

j (t)}0≤j≤d−1, with corresponding

one dimensional eigenprojectors P [g]
j0 (t), that are C∞ in t and analytic in g. Moreover, λ

[g]
0 (t) ≡ 0, and

limg→0 λ
[g]
j (t)/g = λ̃j(t) and limg→0 P [g]

j0 (t) = P̃j(t), where {λ̃j(t)} and P̃j(t) are the spectral data (4.18)

of L̃1
t .

Proof: It is a direct consequence of analytic perturbation theory, since for t ∈ [0, 1] fixed (omitted in

the notation), the operator 1
gP

[g]
0 L[g]P [g]

0 for g ∈ C \ {0} with |g| < g0 admits an analytic extension to

{g ∈ C, |g| < g0} with term of order g0 given by L̃1 thanks to (4.11), with σ(L̃1|KerL0) simple. �

4.2 Adiabatics and perturbation theory

Under the hypotheses of the previous proposition and for g ∈ C\{0}, |g| small enough, σ(L[g]
t ) is simple

and its spectral decomposition reads

L[g]
t = 0P [g]

00 (t) +
∑

1≤j≤d−1

λ
[g]
j (t)P [g]

j0 (t) +
∑

1≤j 6=k≤d
λ

[g]
jk(t)P [g]

jk (t), (4.19)

with analytic data in g, where λ
[0]
jk(t) = −i(ej(t) − ek(t)), P

[0]
jk (t) = Pjk(t), see (4.6). For g > 0

σ(L[g]
t ) \ {0} ⊂ {z|<z < 0}. Moreover

P [g]
0 (t) =

d−1∑
j=0

P [g]
j0 (t). (4.20)
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Accordingly, for 0 < g < g0 fixed, we introduce V(t, s)0≤s≤t≤1 by

V(t, s) =W(t, 0)Ψε(t, s)W−1(s, 0), (4.21)

in keeping with Lemma 3.4, where W(t, s) is the solution to

∂tW(t, s) =
{
P [g]

00
′(t)P [g]

00 (t) +
∑

1≤j≤d−1

P [g]
j0
′(t)P [g]

j0 (t) +
∑

1≤j 6=k≤d
P [g]
jk
′(t)P [g]

jk (t)
}
W(t, s),

:= K[g]
t W(t, s),

W(s, s) = I, 0 ≤ s, t ≤ 1, (4.22)

which satisfies the intertwining property with respect to all spectral projectors of L[g]
t by construction,

and

Ψε(t, s) = P [g]
00 (0) +

∑
1≤j≤d−1

P [g]
j0 (0)e

∫ t
s λ

[g]
j (u)du/ε +

∑
1≤j 6=k≤d

P [g]
jk (0)e

∫ t
s λ

[g]
jk (u)du/ε. (4.23)

Note that W(t, s) is independent of ε and since its generator is analytic in g ∈ C \ {0}, for |g| small
enough, we have

sup
g0>g>0

‖W(t, s)‖ ≤ CW , (4.24)

uniformly in 0 ≤ s ≤ t ≤ 1, as revealed by straightforward estimates of the Dyson series expansion of

the solution to (4.22). Also, <σ(L[g]
t ) ≤ 0 for all t ∈ [0, 1], implies that for all 0 ≤ s ≤ t ≤ 1,

sup
ε>0,g0>g>0

‖Ψε(t, s)‖ ≤ CΨ, (4.25)

uniformly in 0 ≤ s ≤ t ≤ 1. One checks that the operator V(t, s) satisfies{
ε∂tV(t, s) = (L[g]

t + εK[g]
t )V(t, s),

V(s, s) = I,
(4.26)

and,
sup

ε>0,g>0
‖V(t, s)‖τ ≤ CV . (4.27)

uniformly in 0 ≤ s ≤ t ≤ 1. Recall also ‖U(t, s)‖τ = 1.
As expected, (V(t, s))0≤s≤t≤1 approximates the propagator (U(t, s))0≤s≤t≤1 solution to (2.4) in the

slow drive regime ε→ 0, g → 0, ε� g:

Proposition 4.4 Assume Reg, Gen and Split. Then, there exists g0 > 0 and C < ∞ such that for
g < g0, and all 0 ≤ s ≤ t ≤ 1

‖U(t, s)− V(t, s)‖τ ≤ Cε/g. (4.28)

Remark 4.5 i) In case some eigenvalues are permanently degenerate in (4.19), the same result holds,
mutatis mutandis. This is the case for dephasing Lindbladians, as proven in [AFGG1] for g fixed; see
also [J2] for results along these lines in an analytic context.
ii) The condition ε� g to get a useful approximation stems from the operators Rj(B) and their deriva-
tives in the integration by parts formula that contain differences of eigenvalues at the denominators, see
(8.8), and hence have norms of order 1/g.

iii) The approximation V(t, s) depends on both g and ε and requires the spectral data of L[g]
t .
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Proof: This is a direct application of the integration by parts argument presented in Appendix, Lemma
8.2, keeping track of the dependence in g > 0 of the estimates; one makes use of the regularity of the

spectral data of L[g]
t as g → 0+ proven in Proposition 4.3, and of the fact that both U(t, s) and V(t, s)

are uniformly bounded in ε and g. More precisely, dropping the arguments in the notation, in the
expression provided by Lemma 8.2 for U −V with X = U , Y = V, G = L[g], and K = K[g], the operators
X and Y are uniformly bounded in ε and g. The other operators appearing in (8.9) only depend on g
and involve L[g], K[g] and operators of the form Rj(B) and ∂tRj(B), where, see Remark 8.1,

Rj(B) =
∑
k 6=j

PjBPk + PkBPj
gk − gj

, (4.29)

with {gj} = σ(G) = σ(L[g]) with corresponding eigenprojectors Pj , and B = [K[g],Pj ]. Note also

∂tRj(B) = Rj(∂tB) +
∑
k 6=j

(∂t(gj − gk))
PjBPk + PkBPj

(gk − gj)2
+
P ′jBPk + P ′kBPj + PjBP ′k + PkBP ′j

gk − gj
. (4.30)

By Proposition 4.3, L[g], K[g], Pj and their derivatives are uniformly bounded as g → 0, hence the same
holds for B. Also, the denominators in (4.29), (4.30) never vanish for small g > 0, and there exists c > 0,
such that inft∈[0,1],g>0 |gj − gk| ≥ cg if both gj and gk stem from KerL0, while inft∈[0,1],g>0 |gj − gk| ≥ c
otherwise. In the former case, supt∈[0,1],g>0 |∂t(gj − gk)/(gj − gk)2| ≤ c/g. Altogether, this shows that
max(‖Rj(B)‖, ‖∂tRj(B)‖) = O(1/g), which implies in turn ‖U − V‖ = O(ε/g). �

The next task to get Theorem 2.7 is to make more explicit the dependence in (g, ε) of the result
above in the regime g � ε. This goal can actually be achieved as a Corollary of another approximation
of U(t, s) derived in the next section under more general spectral assumptions, in the transition regime
g �

√
ε� 1, see Corollaries 5.7 and 5.6.

5 Transition Regime g �
√
ε� 1

We work here under the assumptions Reg and Spec with σj(t) = {ej(t)} for all 1 ≤ j ≤ d, all t ∈ [0, 1],
so that H(t) =

∑
1≤k≤d ek(t)Pk(t), where dimPk(t) ≤ ∞.

With λjk(t) = −i(ej(t) − ek(t)), Pjk(t)(·) = Pj(t) · Pk(t), see (4.4) and (4.7), and P0(t)(·) =∑
1≤k≤d Pk(t) · Pk(t) given by (2.19), we denote by {λ1(t), λ2(t), . . . , λr(t)} the non-zero distinct values

in {λjk(t)}1≤j,k≤d, where 2 ≤ r ≤ d(d− 1). Accordingly we define r projectors on B(H) by

Pn(t) =
∑

j 6=k s.t.
λjk(t)=λn(t)

Pjk(t), 1 ≤ n ≤ r. (5.1)

Then, regardless of the dimension of the projectors Pk(t), we have the smooth spectral decomposition

L0
t =

∑
1≤n≤r

λn(t)Pn(t) + 0P0(t), and σ(L0
t ) = {0} ∪ {λn(t)}1≤n≤r. (5.2)

The spectral projectors Pn(t) have arbitrary dimension, possibly infinite. In particular,

KerL0
t =

{
A ∈ B(H) s.t. A =

∑
1≤j≤d

Pj(t)APj(t)
}
, (5.3)
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the set of diagonal operators with respect to {Pj(t)}1≤j≤d.

Since we are interested in the transitions between spectral projectors of the Hamiltonian, that belong
to the kernel of the Lindbladian at zero coupling, we focus on the evolution restricted to the projector

P [g]
0 (t) associated with the piece of spectrum of L[g]

t = L0
t + gL1

t a distance of order g away from zero,
see (4.20), by perturbation theory.

Let W [g]
0 (t, s) be the Kato operator defined by{

∂tW [g]
0 (t, s) = [P [g]

0
′(t),P [g]

0 (t)]W [g]
0 (t, s),

W [g]
0 (s, s) = I,

(5.4)

and Ψ
[g]
ε (t, s), 0 ≤ s ≤ t ≤ 1, be the dynamical phase operator solution to{

ε∂tΨ
[g]
ε (t, s) =W [g]

0 (0, t)L[g]
t W

[g]
0 (t, 0)Ψ

[g]
ε (t, s),

Ψ
[g]
ε (s, s) = I,

(5.5)

which commutes with P [g]
0 (0). Similarly to (4.21), we set for 0 ≤ s ≤ t ≤ 1,

V [g]
0 (t, s) =W [g]

0 (t, 0)Ψ[g]
ε (t, s)W [g]

0 (0, s). (5.6)

The generators in these evolution equations being bounded on T (H), the corresponding propagators
have finite operator norms on T (H) as well. We have the estimates

Lemma 5.1 Assume Reg and Spec with σj(t) = {ej(t)} for all 1 ≤ j ≤ d. There exist C < ∞,
CΨ <∞, ε0 > 0 and g0 > 0 such that for all ε < ε0 and g < g0,

‖U(t, s)− V [g]
0 (t, s)‖τ ≤ Cε, (5.7)

sup
0≤s≤t≤1

‖Ψ[g]
ε (t, s)‖τ ≤ CΨ, (5.8)

where
V [g]

0 (t, 0)P [g]
0 (0) = P [g]

0 (t)V [g]
0 (t, 0). (5.9)

Proof: The integration by parts argument in Appendix, more precisely Corollary 8.3 with X = U ,

G = L[g] and Y = V0, K = [P [g]
0
′,P [g]

0 ], yield (5.7) since

ε∂tV [g]
0 (t, s) = (L[g]

t + ε[P [g]
0
′(t),P [g]

0 (t)])V [g]
0 (t, s), (5.10)

and ‖U(t, 0)‖τ = 1. The uniformity in g > 0 of the estimate is ensured by perturbation theory: the

fact that P [g]
0 (t) is associated with a piece of the spectrum of L[g]

t = L0
t + gL1

t , of size of order g and
separated by a gap of order 1 from the rest of the spectrum, implies that for all t ∈ [0, 1]

P [g]
0 (t) = P0(t) +O(g). (5.11)

This estimate remains true for derivatives with respect to t, so that

[P [g]
0
′(t),P [g]

0 (t)] = [P ′0(t),P0(t)] +O(g), (5.12)
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which yields uniformity in g of the estimate so that sup 0≤s≤t≤1
0<ε<ε0,0<g<g0

‖V [g]
0 (t, s)‖τ < ∞. Moreover,

uniformly in s, t ∈ [0, 1],

W [g]
0 (t, s) =W0(t, s) +O(g), (5.13)

where W0(t, s) is defined by (2.20), as a consequence of Duhamel formula

W [g]
0 (t, s) =W0(t, s) +

∫ t

s
W0(t, u)([P [g]

0
′(u),P [g]

0 (u)]− [P ′0(u),P0(u)])W [g]
0 (u, s)du. (5.14)

The estimate (5.13) and (5.6), together with W0(t, s)−1 =W0(s, t), see (2.22), imply (5.8). �

5.1 Reduced dynamics

We now consider the reduced dynamics within P0(0)B(H), depending on a time scale 1/δ and driven

by the splitting operator, that will approximate Ψ
[g]
ε (t, 0)P [g]

0 (0) in certain regimes.

Let L̃1
t = P0(t)L1

tP0(t) and recall, see (2.34), that Ψ̃δ(t, s), 0 ≤ s ≤ t ≤ 1 is defined for δ > 0 by{
δ∂tΨ̃δ(t, s) =W0(0, t)L̃1

tW0(t, 0)Ψ̃δ(t, s),

Ψ̃δ(s, s) = I.
(5.15)

Note that the Dyson series for Ψ̃δ(t, 0) has the same integral terms as those provided in Lemma 3.13.
Also by definition, recall Q0(t) = I− P0(t),

Ψ̃δ(t, s) = P0(0)Ψ̃δ(t, s)P0(0) +Q0(0), (5.16)

where ‖Q0(0)‖τ ≤ 2, since P0(0) is CPTP.

The next Proposition is the main technical step regarding the approximation of the evolution U(t, s)
in the transition regime considered, which holds regardless of the dimension of the projectors Pj(t).

Proposition 5.2 Assume Reg and Spec with σj(t) = {ej(t)}, for all 1 ≤ j ≤ d. There exist C̃,
C̃Ψ <∞ and g0, ε0, α0 > 0 such that for all g ≤ g0, ε ≤ ε0, g2/ε ≤ α0, and 0 ≤ s ≤ t ≤ 1,

‖Ψ[g]
ε (t, s)P [g]

0 (0)− Ψ̃ε/g(t, s)P
[g]
0 (0)‖τ ≤ C̃(t− s)g2/ε, (5.17)

and ‖Ψ̃ε/g(t, s)‖τ ≤ C̃Ψ.

Remark 5.3 The ratio ε/g which determines the time scale in the reduced dynamics Ψ̃ε/g(t, s) is not
required to be small here.

Proof: Recall (4.11) which states that, uniformly in 0 ≤ t ≤ 1,

L[g]
t P

[g]
0 (t) = P [g]

0 (t)L[g]
t P

[g]
0 (t) = gP0(t)L1

tP0(t) +O(g2), (5.18)

and the intertwining relation W [g]
0 (t, s)P [g]

0 (s) = P [g]
0 (t)W [g]

0 (t, s), consequence of the definition (5.4).

Composing (5.18) by W [g]
0 (0, t) and W [g]

0 (t, 0) and using (5.11) and (5.13), we get that the generator of

Ψ
[g]
ε (t, s)P [g]

0 (0), see (5.5), satisfies

W [g]
0 (0, t)L[g]

t W
[g]
0 (t, 0)P [g]

0 (0)− gW0(0, t)P0(t)L1
tP0(t)W0(t, 0)P [g]

0 (0) = g2Λ(t, g), (5.19)
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where ‖Λ(t, g)‖τ ≤ CΛ, uniformly in 0 ≤ t ≤ 1 and g > 0 small enough. Therefore, making use of

[Ψ
[g]
ε (t, s),P [g]

0 (0)] ≡ 0, Duhamel formula yields

Ψ[g]
ε (t, s)P [g]

0 (0) = Ψ̃ε/g(t, s)P
[g]
0 (0) +

g2

ε

∫ t

s
Ψ̃ε/g(t, r)Λ(r, g)Ψ[g]

ε (r, s)P [g]
0 (0)ds. (5.20)

Hence

‖Ψ[g]
ε (t, s)P [g]

0 (0)− Ψ̃ε/g(t, s)P
[g]
0 (0)‖τ ≤ CΛ(t− s)g

2

ε
sup

0≤r≤t≤1
‖Ψ̃ε/g(t, r)‖τ sup

0≤r≤s≤1
‖Ψ[g]

ε (r, s)P [g]
0 (0)‖τ .

(5.21)

Now, sup0≤s≤t≤1 ‖Ψ
[g]
ε (t, s)P [g]

0 (0)‖τ := CΨP is uniformly bounded for ε > 0 and g > 0 small enough,
see (5.8). Moreover, thanks to (5.16) and (5.11), there exists c <∞ such that

‖Ψ̃ε/g(t, s)‖τ ≤ ‖Ψ̃ε/g(t, s)P0(0)‖τ + 2, (5.22)

‖Ψ̃ε/g(t, s)P
[g]
0 (0)− Ψ̃ε/g(t, s)P0(0)‖τ ≤ cg‖Ψ̃ε/g(t, s)‖τ . (5.23)

Consequently, making use of the identity (recall (5.16))

Ψ̃ε/g(t, s) = Q0(0) + Ψ[g]
ε (t, s)P [g]

0 (0)

+ (Ψ̃ε/g(t, s)P
[g]
0 (0)−Ψ[g]

ε (t, s)P [g]
0 (0)) + Ψ̃ε/g(t, s)(P0(0)− P [g]

0 (0)). (5.24)

we get with the above and (5.21),

sup
0≤s≤t≤1

‖Ψ̃ε/g(t, s)‖τ ≤ 2 + CΨP

(
1 + CΛ

g2

ε
sup

0≤r≤t≤1
‖Ψ̃ε/g(t, r)‖τ

)
+ cg sup

0≤s≤t≤1
‖Ψ̃ε/g(t, s)‖τ . (5.25)

Therefore, there exists 0 < C̃Ψ <∞ such that if ε > 0, g > 0 and g2/ε are small enough,

sup
0≤s≤t≤1

‖Ψ̃ε/g(t, s)‖τ ≤
2 + CΨP

1− CΨPCΛ
g2

ε − cg
≤ C̃Ψ, (5.26)

irrespectively of the value of ε/g. By inserting this estimate into (5.21), we get the first statement with
C̃ = CΛC̃ΨCΨP . �

We are now in a position to approximate the evolution U(t, s) and the transition probabilities
between the spectral projectors Pj(t) within KerL0

t , which is the content of Theorem 2.9:

Corollary 5.4 Assume Reg and Spec with σj(t) = {ej(t)}, for all 1 ≤ j ≤ d. There exists C0 < ∞,
ε0 > 0, g0 > 0, and α0 > 0 such that for all 0 ≤ t ≤ 1, ε < ε0, g ≤ g0, g2/ε < α0,

‖U(t, 0)P0(0)−W0(t, 0)Ψ̃ε/g(t, 0)P0(0)‖τ ≤ C0(ε+ g + g2/ε). (5.27)

Consequently, for any state ρj = Pj(0)ρjPj(0) ∈ T (H), for any 1 ≤ j, k ≤ d,

Tr{Pk(t)U(t, 0)(ρj)} = Tr{Pk(0)Ψ̃ε/g(t, 0)(ρj)}+O(ε+ g + g2/ε). (5.28)

Also, for any δ > 0 and any 0 ≤ t ≤ 1, the map Ψ̃δ(t, 0)P0(0) is CPTP on T (H).
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Proof: The first statement follows immediately from Lemma 5.1, Proposition 5.2 and estimate (5.11).
To access the transition probabilities Tr(Pk(t)U(t, 0)(ρj)), we get the action ofW0(t, 0) on the projector
P0(0) by means of Lemma 3.5. Thus, using Ψ̃ε/g(t, 0)P0(0) = P0(0)Ψ̃ε/g(t, 0)P0(0), we get the transition
probabilities in terms of the reduced dynamics in the regime g2 � ε� 1

Tr{Pk(t)U(t, 0)(Pj(0))} = Tr{Pk(t)W0(t, 0) ◦ Ψ̃ε/g(t, 0)(Pj(0))}+O(ε+ g + g2/ε)

= Tr{Pk(0)Ψ̃ε/g(t, 0)(Pj(0))}+O(ε+ g + g2/ε). (5.29)

Finally, given δ > 0, (5.27) for ε = δg yields W0(t, 0)Ψ̃δ(t, 0)P0(0) = limg→0 U(t, 0)P0(0) in ‖ · ‖τ -norm ,
where U(t, 0)P0(0) is CPTP on T (H), so the same is true forW0(t, 0)Ψ̃δ(t, 0)P0(0). SinceW0(0, t)P0(t)
is CPTP as well, see Lemma 2.3, and Ψ̃δ(t, 0)P0(0) = P0(0)Ψ̃δ(t, 0)P0(0),

Ψ̃δ(t, 0)P0(0) =W0(0, t)W0(t, 0)P0(0)Ψ̃δ(t, 0)P0(0) =W0(0, t)P0(t)W0(t, 0)Ψ̃δ(t, 0)P0(0) (5.30)

is CPTP, as a composition of such maps. �

5.2 Associated Markov Process

Let us proceed with a remark about the generic finite dimensional case. If Reg and Gen hold (without
condition on the Bohr frequencies, actually), the generator W0(0, t)L̃1

tW0(t, 0) of the reduced dynamics
Ψ̃δ(t, 0) has a matrix expression in the fixed basis {P1(0), P2(0), . . . , Pd(0)} given by the time dependent
matrix L̃(t) (4.15). Indeed, (4.14) and Remark 3.6 i), yield

W0(0, t)L̃1
tW0(t, 0)(Pj(0)) =W0(0, t)P0(t)L1

t (Pj(t)) =
∑

1≤k≤d
Pk(0)L̃kj(t). (5.31)

In other words, W0(0, t)L̃1
tW0(t, 0) ' L̃(t), where

∑
1≤k≤d L̃kj(t) = 0 for any 1 ≤ j ≤ d, recall (4.16).

Hence, the matrix representation of the reduced dynamics in the same basis, Ψ̃δ(t, 0)|Span{P1(0),...,Pd(0)},
is such that its transpose is a stochastic matrix, see e.g. [YZ]. Therefore, we can associate to the
reduced dynamics a d-state classical continuous-time Markov process:

Lemma 5.5 Under Reg and Gen, the reduced dynamics Ψ̃δ(t, 0)P0(0) is associated to a continuous-
time Markov process (Xt)t≥0 in the state space {P1(0), . . . , Pd(0)} := {1, . . . , d} by the relation for any
t ≥ 0

P(Xt = j|X0 = i) = Tr
(
Pj(0)Ψ̃δ(t, 0)(Pi(0))

)
. (5.32)

5.3 Back to the slow drive regime

Specialising to the simpler generic framework given by assumptions Gen, and supposing the dissipa-
tor splits KerL0

t maximally, we can further approximate the reduced evolution Ψ̃δ(t, s) for δ = ε/g � 1.

By Assumption Split, Remark 4.2 and (4.18), the generator of Ψ̃δ(t, 0) reads

W0(0, t)L̃1
tW0(t, 0) = P0(0)

(
0Q̃0(t) +

d−1∑
j=1

λ̃j(t)Q̃j(t)
)
P0(0) + 0Q0(0), (5.33)
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with rank one spectral projectors Q̃j(t) = W0(0, t)P̃j(t)W0(t, 0) and corresponding eigenvalues λ̃j(t)
with negative or zero real parts. Thus Ψ̃δ(t, s)Q0(0) ≡ Q0(0), and [Ψ̃δ(t, s),P0(0)] ≡ 0. In case the time
scale 1/δ is large, the following adiabatic approximation holds: There exists δ0 > 0 and c̃ < ∞ such
that for all δ < δ0, and all 0 ≤ s ≤ t ≤ 1,

∥∥∥Ψ̃δ(t, s)P0(0)− W̃(t, 0)
( d−1∑
j=0

e
∫ t
s λ̃j(r)dr/δQ̃j(0)

)
W̃(0, s)P0(0)

∥∥∥ ≤ c̃δ, (5.34)

where W̃(t, s) is defined by {
∂tW̃(t, s) =

(∑d−1
j=0 Q̃′j(t)Q̃j(t)

)
W̃(t, s)

W̃(s, s) = I,
(5.35)

so that W̃(t, s)Q0(0) = Q0(0)W̃(t, s) ≡ Q0(0) and the following non trivial intertwining relations hold
for 0 ≤ j ≤ d− 1

W̃(t, s)Q̃j(s) = Q̃j(t)W̃(t, s). (5.36)

Indeed, the integration by parts argument Lemma 8.2 applies with ε = δ to X (t, s) = Ψ̃δ(t, s)P0(0),

Y(t, s) = W̃(t, 0)
(∑d−1

j=0 e
∫ t
s λ̃j(r)dr/δQ̃j(0)

)
W̃(0, s)P0(0), G(t) = W0(0, t)L̃1

tW0(t, 0)P0(0), and K(t) =∑d−1
j=0 Q̃′j(t)Q̃j(t). Since Y(t, s) is uniformly bounded in δ, Corollary 8.3 yields estimate (5.34).
Hence, in the restricted slow drive regime ε � g �

√
ε � 1, we can take advantage of (5.34) to

express Ψ̃ε/g(t, 0) in terms of the spectral data of L̃1
t , in the framework given by assumption Gen to

approximate U(t, 0)P0(0). Indeed, making use of (5.27), (5.34) for s = 0, and P0(0)Q̃j(0) = Q̃j(0), for
all 0 ≤ j ≤ d− 1, and taking into account the regime considered, we immediately get the

Corollary 5.6 Assume Reg, Gen and Split. There exist C1 <∞, ε0 > 0, g0 > 0, α0 > 0 and β0 > 0
such that for all 0 ≤ t ≤ 1, ε ≤ ε0, g ≤ g0, g2/ε ≤ α0, ε/g ≤ β0∥∥∥U(t, 0)P0(0)−W0(t, 0)W̃(t, 0)

( d−1∑
j=0

e
g
ε

∫ t
0 λ̃j(r)drQ̃j(0)

)∥∥∥ ≤ C1(g2/ε+ ε/g). (5.37)

In order to compute the transition probability between the eigenprojectors of the Hamiltonian, we make
explicit Q̃j(t), 0 ≤ j ≤ d− 1, the rank one eigenprojectors of W0(0, t)L̃1

tW0(t, 0). In keeping with (4.3),
for A,B ∈ B(H), we define a rank one operator on B(H) by∣∣A〉〉〈〈B∣∣ : C 7→

〈〈
B,C

〉〉
A = Tr(B∗C)A. (5.38)

Hence there exist νj(t), µj(t) ∈ P0(0)B(H) = Span{Pk(0), k ∈ {1, . . . , d}} such that

Q̃j(t) =
∣∣νj(t)〉〉〈〈µj(t)∣∣, where〈〈

µj(t), νj(t)
〉〉
≡ 1,

〈〈
µj(t), µj(t)

〉〉
≡ d. (5.39)

where the last identity serves normalisation purposes. Since W0(0, t)L̃1
tW0(t, 0) is smooth, these op-

erators can be chosen smooth as well. Moreover, for W̃(t, s) defined by (5.35), we have for all j ∈
{0, 1, . . . , d− 1}

W̃(t, s)(νj(s)) = νj(t)e
−

∫ t
s 〈〈µj(u),∂uνj(u)〉〉du. (5.40)
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This identity follows from (5.36) together with Q̃j(t)∂t{W̃(t, s)(νj(s))} ≡ 0.

In particular, for j = 0, the eigenprojector Q0(t) associated with λ0(t) ≡ 0 takes the form

Q̃0(t) =
∣∣ν0(t)

〉〉〈〈
I
∣∣, (5.41)

where ν0(t) = P0(0)(ν0(t)) ∈ KerW0(0, t)L̃1
tW0(t, 0). Moreover, (5.39) implies

W̃(t, s)(ν0(s)) = ν0(t), (5.42)

and the justification that µ0(t) = I stems from TrL1
t (ρ) ≡ 0, see (4.17). Equivalently, by Lemma 3.5,

ν0(t) is characterised by

L̃1
t (ν̃0(t)) = 0 where ν̃0(t) =W0(t, 0)(ν0(t)) = W (t, 0)ν0(t)W (0, t). (5.43)

Note that since <λ̃j(t) < 0 for j 6= 0, we get that for all fixed t > 0, e
g
ε

∫ t
0 λ̃j(r)dr = O((ε/g)∞).

Hence, from Corollary 5.6 and (5.43), for all fixed 0 < t < 1, and all Pj(0), we have

U(t, 0)(Pj(0)) = ν̃0(t) +O(g2/ε+ ε/g), (5.44)

which is the statement of Theorem 2.7.

Let us turn to the transition probabilities. Writing for any 1 ≤ l ≤ d

νl(t) =
∑

1≤k≤d
Tr(Pk(0)νl(t))Pk(0) :=

∑
1≤k≤d

νkl (t)Pk(0), (5.45)

we thus have
Tr{Pk(0)W̃(t, 0) ◦ Q̃l(0)(Pj(0))} = µ̄jl (0)νkl (t)e−

∫ t
0 〈〈µl(s),ν

′
l(s)〉〉ds. (5.46)

We are in a position to estimate the transition probabilities in the adiabatic regime for the reduced
evolution, to complete Theorem 2.7:

Corollary 5.7 Assume Reg, Gen and Split. Then ∀t ∈ [0, 1], j 6= k, we have for ε� g �
√
ε� 1,

Tr(Pk(t)U(t, 0)(Pj(0))) =
∑

0≤l≤d−1

eg/ε
∫ t
0 λ̃l(s)ds µ̄jl (0)νkl (t)e−

∫ t
0 〈〈µl(s),ν

′
l(s)〉〉ds +O(g2/ε+ ε/g). (5.47)

In particular, for any fixed t > 0, we have in the same regime

Tr(Pk(t)U(t, 0)(Pj(0))) = Tr(Pk(t)ν̃0(t)) +O(g2/ε+ ε/g), (5.48)

where ν̃0(t) is uniquely defined by L̃1
t (ν̃0(t)) = 0 and Tr(ν̃0(t)) = 1.

Remark 5.8 The first statement stems from Corollary 5.6, while the second one takes advantage of

eg/ε
∫ t
0 λ̃j(s)ds = O((ε/g)∞) for j > 0 if t > 0 is independent of ε/g, since <λ̃j(s) < 0 for such j’s. The

reformulation of the leading order is a consequence of the considerations above and W0(t, s)P0(s) being
trace preserving.
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5.4 Back to the perturbative regime

Finally, we briefly check that Corollary 5.4 reduces to a statement of Proposition 3.9 in the perturbative
regime g � ε. We note that the definition (5.15) allows for an approach of Ψ̃δ via Dyson series which
gives for δ = ε/g � 1,

Ψ̃δ(t, 0) = I +
1

δ

∫ t

0
W0(0, s)L̃1

sW0(s, 0)ds+O(1/δ2), (5.49)

since ‖Ψ̃δ(t, s)‖τ is uniformly bounded in 0 ≤ s ≤ t ≤ 1 and δ. Hence, given the definition of L̃1
s,

W0(t, 0)Ψ̃ε/g(t, 0)P0(0) =W0(t, 0)P0(0) +W0(t, 0)
g

ε

∫ t

0
W0(0, s)L̃1

sW0(s, 0)P0(0)ds+O(g2/ε2)

=W0(t, 0)P0(0) +
g

ε
W0(t, 0)

∫ t

0
P0(0)W0(0, s)L1

sW0(s, 0)P0(0)ds+O(g2/ε2).

(5.50)

Since σj(t) = {ej(t)} for all 1 ≤ j ≤ d and all t ∈ [0, 1], Remark 3.8 applies which, noting the
intertwining relation (2.21), yields for any 0 ≤ s ≤ t ≤ 1,

W0(t, s)P0(s) = V0(t, s)P0(s), (5.51)

where V0(t, s) is defined in (3.15). Thus, further assuming g � ε in Corollary 5.4, we recover the
perturbative regime estimate of Proposition (3.9) for N = 1 under the form

Corollary 5.9 Assume Reg and Spec with σj(t) = {ej(t)}, for all 1 ≤ j ≤ d and all t ∈ [0, 1]. In the
regime (ε, g)→ (0, 0) and g/ε→ 0, (5.27) yields

U(t, 0)P0(0) = V0(t, 0)P0(0) +
g

ε

∫ t

0
P0(t)V0(t, s)L1

sV0(s, 0)P0(0)ds+O(ε+ (g/ε)2), (5.52)

where V0(t, s)P0(s) = P0(t)V0(t, s) = P0(t)W0(t, s)P0(s) is independent of ε.

Remark 5.10 i) The error term is smaller than the explicit integral term for ε2 � g � ε.
ii) We recover this way the second statement of Theorem 2.5.

6 Example

We consider here a two-level system or Qubit, for which the reduced dynamics Ψ̃δ(t, s) can be computed
explicitly under some symmetry of the Lindblad operators. Beyond its intrinsic interest, this example
allows us to illustrate the different regimes we encountered in the general case.

We assume Reg and Gen and with the notations introduced so far, for H = C2, we consider the
two-level Hamiltonian

H(t) =
∑

1≤j≤2

ej(t)Pj(t), with Pj(t) = |ϕj(t)〉〈ϕj(t)|, (6.1)
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and ϕj(t) = W (t, 0)ϕj(0), W (t, 0) being the unitary Kato operator. We assume the dissipator

L1
t (·) =

∑
l∈I

(
Γl(t) · Γ∗l (t)−

1

2

{
Γ∗l (t)Γl(t), ·

})
, (6.2)

has jump operators in B(C2) satisfying the symmetry condition∑
l∈I
|〈ϕ1(t)|Γl(t)ϕ2(t)〉|2 =

∑
l∈I
|〈ϕ2(t)|Γl(t)ϕ1(t)〉|2. (6.3)

This is the case in particular if all jump operators are self-adjoint. Note that condition (6.3) is inde-
pendent of the normalised basis of eigenvectors of H(t) used to express it.

Then we have:

Proposition 6.1 Let H = C2, and assume Reg and Gen for d = 2. Further suppose the dissipator
satisfies the symmetry condition (6.3) and set γ(t) =

∑
l∈I |〈ϕ1(t)|Γl(t)ϕ2(t)〉|2 ∈ R+. Then, for any

δ > 0, the reduced dynamics takes the explicit form in the ordered basis {P1(0), P2(0)} of P0(0):

Ψ̃δ(t, s)| Span{P1(0),P2(0)} =
1

2

(
1 1
1 1

)
+ e−

2
δ

∫ t
s γ(u)du 1

2

(
1 −1
−1 1

)
. (6.4)

Hence, in the regime g �
√
ε� 1, for any initial state ρ0 = ρ1(0)P1(0) + ρ2(0)P2(0), any t ∈ [0, 1],

U(t, 0)(ρ0) = ρ̃1(t)P1(t) + ρ̃2(t)P2(t) +O(ε+ g + g2/ε), (6.5)

where

ρ̃1(t) =
1

2

(
1 + e−2 g

ε

∫ t
0 γ(s)ds(ρ1(0)− ρ2(0))

)
,

ρ̃2(t) =
1

2

(
1 + e−2 g

ε

∫ t
0 γ(s)ds(ρ2(0)− ρ1(0))

)
. (6.6)

In particular, the transition probabilities read in the same regime

Tr(P2(t)U(t, 0)(P1(0))) = Tr(P1(t)U(t, 0)(P2(0))) =
1

2

(
1− e−2 g

ε

∫ t
0 γ(s)ds

)
+O(ε+ g + g2/ε). (6.7)

Remark 6.2 i) For 0 < t ≤ 1 fixed such that
∫ t

0 γ(s)ds > 0, if ε� g �
√
ε� 1,

U(t, 0)(ρ0) =
1

2
I +O(g2/ε+ (ε/g)∞), (6.8)

which corresponds to Theorem 2.7. Note that I spans Ker L̃1
t |P0(t)H.

ii) If g � ε�
√
ε� 1,

U(t, 0)(ρ0) =ρ1(0)P1(t) + ρ2(0)P2(t)

− g

ε

∫ t

0
γ(s)ds (ρ1(0)− ρ2(0))(P1(t)− P2(t)) +O(ε+ g2/ε2) (6.9)

which corresponds to Corollary 5.9 and Theorem 2.5.

iii) The state U(t, 0)(ρ0) is determined by the asymptotics of the scalar factor e−2 g
ε

∫ t
0 γ(s)ds. In case

g ' ε, i.e. g = αε, for some fixed α > 0, the leading order of U(t, 0)(ρ0) takes the form of any diagonal

state with respect to the eigenbasis of H(t), depending on the value of e−2α
∫ t
0 γ(s)ds.

iv) The Markov process interpretation of Lemma 5.5 remains in force here, with Ψ̃δ(t, 0)|Span{P0(0)B(C2)}
being bistochastic.
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Proof: The arguments leading to Lemma 5.5 show that the generator of the reduced dynamics
W0(0, t)L̃1

tW0(t, 0) has the following matrix form in the basis {P1(0), P2(0)} (dropping the variable t
from the notation)

L̃ =
∑
l∈I

(
|〈ϕ1|Γlϕ1〉|2 − ‖Γlϕ1‖2 |〈ϕ1|Γlϕ2〉|2

|〈ϕ2|Γlϕ1〉|2 |〈ϕ2|Γlϕ2〉|2 − ‖Γlϕ2‖2
)

=
∑
l∈I

(
−|〈ϕ2|Γlϕ1〉|2 |〈ϕ1|Γlϕ2〉|2
|〈ϕ2|Γlϕ1〉|2 −|〈ϕ1|Γlϕ2〉|2

)
,

(6.10)

thanks to property (4.16). The assumed symmetry (6.3) allows us to get (restoring the time variable)

L̃(t) =
∑
l∈I
|〈ϕ2(t)|Γl(t)ϕ1(t)〉|2

(
−1 1
1 −1

)
= γ(t)

(
−1 1
1 −1

)
. (6.11)

Therefore, in the same basis, the reduced dynamics solution to (5.15) with δ > 0 reads

Ψ̃δ(t, s)| Span{P1(0),P2(0)} =
1

2

(
1 1
1 1

)
+ e−

2
δ

∫ t
s γ(u)du 1

2

(
1 −1
−1 1

)
. (6.12)

Then, Corollary 5.4 together with Remark 3.6 i), yield (6.5) and (6.7). �

7 Generalisation

We present here a generalisation of the results concerning the perturbative regime to arbitrary high
order in the adiabatic parameter. This is made possible by the use of a systematic improvement of the
adiabatic approximations of the Schrödinger propagator U(t, s) (3.2), allowed by our general setup, see
e.g. [ASY, N2, JP2]. We briefly present here the approach of [JP2] based on a hierarchy labelled by
q ∈ N of smooth hamiltonians in B(H), before spelling out the improvement it brings to the leading
order results of Section 3.

7.1 Higher order adiabatics

Set

H0(t) = H(t) (7.1)

P 0
j (t) = Pj(t), ∀1 ≤ j ≤ d (7.2)

K0(t) = K(t). (7.3)

and define the self-adjoint operator

H1(t) = H(t)− iεK0(t). (7.4)

For ε small enough, the gap hypothesis Spec holds for all t ∈ [0, 1], and we set for all j ∈ {1, . . . , d}, ε
small enough, with ′ denoting the time derivative,

P 1
j (t) = − 1

2πi

∫
γj

(H1(t)− z)−1 dz, (7.5)

K1(t) =
∑

1≤j≤d
P 1
j
′
(t)P 1

j (t). (7.6)
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Note that H1, P 1, and K1 are ε-dependent and smooth on [0, 1]. We define inductively, for ε small
enough, the following hierarchy of operators for q ≥ 1, and all j ∈ {1, . . . , d}

Hq(t) = H(t)− iεKq−1(t) (7.7)

P qj (t) = − 1

2πi

∫
γj

(Hq(t)− z)−1 dz, (7.8)

Kq(t) =
∑

1≤j≤d
P qj
′
(t)P qj (t). (7.9)

It is proven in [JP2], see also [JP3], that in our C∞ framework, the following holds:

Proposition 7.1 For any q ∈ N∗, there exists εq > 0 and Cq, κq < ∞, such that for all ε ≤ εq,
t ∈ [0, 1], j ∈ {1, . . . , d}, Hn(t), Pnj (t),Kn(t) are well defined and smooth for all 0 ≤ n ≤ q. Moreover,
these operators and all their derivatives admit an asymptotic expansion in powers of ε and the following
estimates hold

‖Kq(t)−Kq−1(t)‖ ≤ Cqεq (7.10)

‖Kq(t)‖ ≤ κq. (7.11)

Remark 7.2 i) The hierarchy above was actually designed to reach exponential accuracy in the adiabatic
approximation, in an analytic framework, in which case it provides an estimate on the behaviour in q
of the constant Cq.
ii) At t = 0, the second point of assumption Reg ensures that for all q ∈ N∗, Hq(0) = H(0) and
P q(0) = P (0).
iii) For any time t, q ∈ N∗, 1 ≤ j ≤ d, P qj (t) = Pj(t) +O(ε), by perturbation theory.

Let ε < εq and consider the unitary propagator Vq(t, s)0≤s,t≤1, defined as the solution to{
iε∂tVq(t, s) = (Hq(t) + iεKq(t))Vq(t, s),
Vq(s, s) = I, 0 ≤ s, t ≤ 1.

(7.12)

As is well known, see [K2, Kr], Vq also satisfies

Vq(t, s)P
q
j (s) = P qj (t)Vq(t, s), 0 ≤ s, t ≤ 1. (7.13)

Note that since Hq = H − iεKq−1, we get that

Hq(t) + iεKq(t) = H(t) + iε(Kq(t)−Kq−1(t)) (7.14)

is a smooth perturbation of H(t). Thus, the difference between U(t, s) and Vq(t, s) reads

U(t, s)− Vq(t, s) = −
∫ t

s
Vq(t, r)(K

q(r)−Kq−1(r))U(r, s)dr. (7.15)

This identity and the previous proposition immediately yield

‖U(t, s)− Vq(t, s)‖ ≤ Cq|t− s|εq. (7.16)
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We improve the error term to O(εq+1) by performing an integration by parts on (7.15) (see the Ap-
pendix), at the cost of slightly altering the definition of Vq: Let V̂q(t, s) be the unitary solution to{

iε∂tV̂q(t, s) = (Hq(t) + iε(Kq(t)) +DqKq−1(t))V̂q(t, s),

V̂q(s, s) = I, 0 ≤ s, t ≤ 1,
(7.17)

where
DqKq−1(t) =

∑
1≤j≤d

P qj (t)Kq−1(t)P qj (t), (7.18)

and, by convention, K−1 = 0 to recover V̂0 = V . This allows us to get the following generalisations of
(3.7) and (3.8), see [JP3].

Proposition 7.3 Under assumptions Reg and Spec, for all q ∈ N, there exists εq > 0 and cq < ∞
such that for all ε < εq, all j ∈ {1, . . . , d}, and for all (t, s) ∈ [0, 1]2

V̂q(t, s)P
q
j (s) = P qj (t)V̂q(t, s)

‖U(t, s)− V̂q(t, s)‖ ≤ cqεq+1 (7.19)

Remark 7.4 i) As a consequence, the quantum evolution follows the instantaneous subspace P qj (t)H,

up to an error of order εq+1: ‖P qk (t)U(t, s)P qj (s)‖ = O(εq+1) if j 6= k.
ii) The loss of factor |t− s| stems from the integration by parts procedure, see (7.16). Again, for s = 0,
we have ‖U(t, 0)− V̂q(t, 0)‖ ≤ cqtεq+1.
iii) For s = 0, j 6= k, ‖P qk (t)U(t, 0)Pj(0)‖ = O(tεq+1), since P qj (0) = Pj(0).

7.2 Higher Order Adiabatic Dyson expansion

Making use of the adiabatic approximation V̂q(t, s) of U(t, s) on H leads to an approximation of U0(t, s)
on T (H) to order O(εq+1) and to the improvement of Proposition 3.9 given in Proposition 7.5.

Let ε ≤ εq and define the isometric operator on T (H) (and on B(H))

V0
q (t, s)(ρ) = V̂q(t, s)ρV̂q

∗(t, s), ρ ∈ T (H). (7.20)

Then, for cq given in Proposition 7.3, we get

‖U0(t, s)− V0
q (t, s)‖τ ≤ 2cqε

q+1, (7.21)

and the same holds for the subordinate operator norm on B(H). If dimPj(0) <∞, then P qj (t) belongs
to T (H) for all t ∈ [0, 1] and q ≥ 0, so that

U0(t, s)(P qj (s)) = P qj (t) +O(εq+1), (7.22)

U0(t, 0)(Pj(0)) = P qj (t) +O(tεq+1), (7.23)

see Remark ii), 7.4. If Pj(0) is not trace class, the estimates above hold in operator norm. Conse-
quently, the first equality in equation (3.5) and the above yields the following estimate of the propagator
(U(t, s))0≤s≤t≤1:
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Proposition 7.5 Under assumptions Reg and Spec, for any N ≥ 1, any q ≥ 1, there exist εq > 0,
cq < ∞ (given in Propositions 7.1 and 7.3), such that for all 0 ≤ s ≤ t ≤ 1, for all ε < εq, all g ≥ 0,
the propagator U(t, s) ∈ B(T (H)) satisfies (with the convention s0 = t),

U(t, s) = V0
q (t, s)

+
N∑
n=1

(g/ε)n
∫ t

s

∫ s1

s
· · ·
∫ sn−1

s
V0
q (t, s1) ◦ L1

s1 ◦ V
0
q (s1, s2) ◦ L1

s2 · · · ◦ L
1
sn ◦ V

0
q (sn, s)dsn . . . ds2ds1

+RqN+1(t, s, ε, g) (7.24)

where, with L1 = sup0≤s≤1 ‖L1
s‖τ ,

‖RqN+1(t, s, ε, g)‖τ ≤ 2cqε
q+1e2(t−s)L1(1+2cqεq+1)g/ε +

(L1(t− s))N+1

(N + 1)!
(g/ε)N+1. (7.25)

In particular, if g/ε ≤ 1 and εq+1 ≤ 1/(2cq),

‖RqN+1(t, s, ε, g)‖τ ≤ 2e4L1
(
cqε

q+1 + ((t− s)g/ε)N+1
)

= Oq(εq+1 + (g/ε)N+1). (7.26)

where the notation stresses the dependence in the sole order q of the constants involved.

Remark 7.6 If one keeps U0 instead of V0
q in the first term of the RHS of (7.24), the estimate on the

remainder reads ‖RqN+1(t, s, ε, g)‖τ = Oq((g/ε)(εq+1 + (g/ε)N )).

Proof: We replace U0 by its approximation V0
q in each term of the Dyson series, and collect the error

terms. With ∆q = ‖U0(t, s)− V0
q (t, s)‖τ , the trace norm of the difference of the term of order n ≥ 1 in

(3.5) with that of order n in (7.24) is bounded above as in (3.31) with ∆q in place of ∆. Then, summing
over all n ∈ N yields the first term in (7.25), while the second one stems from the term of order N + 1
in (3.5). The second estimate is a consequence of g/ε ≤ 1, t− s ≤ 1, 1 + 2cqε

q+1 ≤ 2 and αm

m! ≤ e
α, for

all m ≥ 1, α > 0. �

Specialising to the leading order term in g/ε, and taking into account Remark 7.6 above, we get

Corollary 7.7 Under the assumptions of Proposition 7.5, for ε ≤ ε̃q = min(εq, 1/(2cq)
1/(q+1)) and

g/ε ≤ 1,

U(t, s) = U0(t, s) +
g

ε

∫ t

s
V0
q (t, s1) ◦ L1

s1 ◦ V
0
q (s1, s)ds1 +O(gεq + g2/ε2). (7.27)

Let 0 ≤ ρj ∈ T (H) be a state such that ρj = Pj(0)ρjPj(0), and recall the definition (2.1) of the
dissipator. For any q ∈ N, the transition probability between P qj (0)H = Pj(0)H and P qk (t)H, j 6= k,
induced by the Lindbladian dynamics (2.3) reads Tr(P qk (t)U(t, 0)(ρj)), since at initial time s = 0, one
has Pj(0) = P qj (0). Using (7.20) and Proposition 7.3, we have

V0
q (s, 0)(ρj) = V̂q(s, 0)ρj V̂q(0, s) = P qj (s)V̂q(s, 0)ρj V̂q(0, s)P

q
j (s), (7.28)
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so that with P qj (t)P qk (t) = 0, we get from (7.27)

Tr(P qk (t)U(t, 0)(ρj)) = Tr(P qk (t)U0(t, 0)(ρj)) (7.29)

+
g

ε

∑
l∈I

∫ t

0
Tr(P qk (s)Γl(s)V̂q(s, 0)ρj V̂q(0, s)Γ

∗
l (s)P

q
k (s))ds+O(gεq + g2/ε2).

The Hamiltonian adiabatic transition probability between these subspaces is of order ε2(q+1) according to
(7.19), whereas the effect of the environment is of order g/ε: due to (7.21), V0

q (t, 0)(ρj) = V0(t, 0)(ρj) +

O(ε) in trace norm, so that by Lemma 3.7 the dependence in ε of V̂q(s, 0)ρj V̂q(0, s) disappears to leading
order when σj(t) = {ej(t)}. In case Pj(0) has finite rank, choosing ρj = Pj(0)/ dim(Pj(0)) yields the
integrand (see iii), Remark 7.2) :

Tr(P qk (s)Γl(s)P
q
j (s)Γ∗l (s)P

q
k (s)) = Tr(Pk(s)Γl(s)Pj(s)Γ

∗
l (s)Pk(s)) +O(ε). (7.30)

Hence, the correction term prevents the solution from following the instantaneous subspace P qj (t) up to

an error of order ε(q+1), unless g ' εq+2.

The coherences with respect to the iterated projectors of the integral term in (7.27) also vanish to
leading order, thanks to (7.21) and Lemma 3.12:

Lemma 7.8 Assume Reg, Spec and let ρj = Pj(0)ρjPj(0) be a state and suppose σj(t) = {ej(t)} for
all t ∈ [0, 1]. For any 1 ≤ n 6= m ≤ d, and q ≥ 0, for ε small enough

g

ε
P qn(t)

∫ t

0
V0
q (t, s) ◦ L1

s ◦ V0
q (s, 0)(ρj)dsP

q
m(t) = O(g). (7.31)

Without going into the details, we note that a similar result holds for each term in (7.24).

Let us close this section by justifying the adiabatic expressions used throughout the paper for the
populations and coherences of U0(t, 0)(ρj), making use of the hierarchy (7.7).

Proof of Proposition 3.14:
Thanks to (7.21) and Proposition 7.3 for q = 2 we have

Pk(t)U0(t, 0)(ρj)Pk(t) = Pk(t)P
2
j (t)V̂2(t, 0)ρj V̂2(0, t)P 2

j (t)Pk(t) +O(ε3)

= Pk(t)P
2
j (t)V0

2 (t, 0)(ρj)P
2
j (t)Pk(t) +O(ε3). (7.32)

For j 6= k, we have (dropping the variable t in the notation)

PkP
2
j = Pk(P

2
j − Pj) = Pk(P

2
j − P 1

j + P 1
j − Pj). (7.33)

By perturbation theory see e.g. [K2], Proposition 7.1 implies for ε small enough,

P qj − P
q−1
j = O(Hq −Hq−1) = O(ε(Kq−1 −Kq−2)) = O(εq), (7.34)

so that

PkP
2
j = Pk(P

1
j − Pj) +O(ε2). (7.35)
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Then, H1 = H − iεK with K given by (2.9) yields,

P 1
j − Pj = − ε

2π

∮
γj

R(z)KR(z)dz +O(ε2) (7.36)

so that making use of (7.21), to write V0
2 (t, 0)(ρj) = V0(t, 0)(ρj) +O(ε), we have

PkP
2
j V0

2 (ρj)P
2
j Pk = − ε2

(2π)2
Pk

∮
γj

R(z)P ′kR(z)dz V0(ρj)

∮
γj

R(z)P ′kR(z)dzPk +O(ε3). (7.37)

Hence we get (3.40) with V0(t, 0)(ρj) in place of ρ̃j(t), as in Remark 3.15. Finally, assuming σj(t) =
{ej(t)}, Lemma 3.7 yields (3.40). In case HPk = ekPk and HPj = ejPj , so that R(z)Pn = Pn/(en − z)
for n ∈ {j, k} and z ∈ ρ(H), a direct application of Cauchy formula yield (3.41).

The expressions (3.42) for the coherences are proven quite similarly. �

8 Appendix: Integration by Parts

We present here a reformulation of the integration by parts argument used in [ASY] to prove the
adiabatic theorem of quantum mechanics, suited to our setup.

Let Z be a Banach space and assume G : [0, 1] → B(Z), K : [0, 1] → B(Z) are bounded operator
valued C∞ functions on [0, 1], in the norm sense. Let ε > 0, and consider the two-parameter propagators
(X (t, s))1≤s≤t≤1 and (Y(t, s))1≤s≤t≤1, solution to the equations{

ε∂tX (t, s) = G(t)X (t, s),
X (s, s) = I, 0 ≤ s ≤ t ≤ 1,

(8.1)

and {
ε∂tY(t, s) = (G(t) + εK(t))Y(t, s),
Y(s, s) = I, 0 ≤ s ≤ t ≤ 1.

(8.2)

The smooth propagators X (t, s) and Y(t, s) are determined by the corresponding Dyson series, both
depend on ε > 0 with norms that diverge as ε→ 0, a priori . Moreover, they satisfy the integral relation

X (t, r) = Y(t, r)−
∫ t

r
Y(t, s)K(s)X (s, r)ds, ∀1 ≥ t ≥ r ≥ 0. (8.3)

Assume the existence of gaps in the spectrum of G(t), uniformly in t ∈ [0, 1]. For d ∈ N∗,

σ(G(t)) = ∪1≤j≤d σj(t) ⊂ C, inf
t∈[0,1],1≤j 6=k≤d

dist(σj(t), σk(t)) ≥ G > 0. (8.4)

Consider the corresponding spectral projector

Pj(t) = − 1

2πi

∫
γj

(G(s)− z)−1dz, (8.5)

where γj is a simple loop in ρ(G(t)), the resolvent set of G(t), encircling σj(t) and such that for all
k 6= j, intγj ∩ σk(t) = ∅. For B : [0, 1]→ B(Z), a smooth bounded operator valued function, define for
any t ∈ [0, 1]

Rj(B)(t) = − 1

2πi

∮
γj

(G(t)− z)−1B(t)(G(t)− z)−1dz, (8.6)
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with the same loop γj as in (8.5). This operator is smooth as well, and satisfies the identity

[G(t),Rj(B)(t)] = [B(t),Pj(t)]. (8.7)

Remark 8.1 If σk(t) = {gk(t)} for all 1 ≤ k ≤ d, (G(t)− z)−1 =
∑

1≤k≤d Pk(t)/(gk(t)− z), and

Rj(B)(t) =
∑

1≤k≤d
k 6=j

Pj(t)B(t)Pk(t) + Pk(t)B(t)Pj(t)
gk(t)− gj(t)

. (8.8)

Lemma 8.2 Suppose K(t) is off-diagonal for all t ∈ [0, 1], i.e. s.t. Pj(t)K(t)Pj(t) ≡ 0, ∀1 ≤ j ≤ d.
Then

X (t, r)− Y(t, r) =
1

2

∑
1≤j≤d

ε
(
Rj([K,Pj ])(t)X (t, r)− Y(t, r)Rj([K,Pj ])(r)

)
(8.9)

+
1

2

∑
1≤j≤d

ε

∫ t

r

{
Y(t, s)K(s)[G(s),Rj([K,Pj ])(s)]X (s, r)− Y(t, s)(∂sRj([K,Pj ])(s))X (s, r)

}
ds.

Proof: The operator K being off-diagonal and (8.7) give

K(t) =
1

2

∑
1≤j≤d

[
[K(t),Pj(t)

]
,Pj(t)] =

1

2

∑
1≤j≤d

[
G(t),Rj([K,Pj ])(t)

]
. (8.10)

Hence, using (8.3), (8.1) and (8.2),

X (t, r)− Y(t, r) =− 1

2

∑
1≤j≤d

∫ t

r
Y(t, s)

[
G(s),Rj([K,Pj ])(s)

]
X (s, r)ds (8.11)

where, for each integral in the summand

−
∫ t

r
Y(t, s)[G(s),Rj([K,Pj ])(s)]X (s, r)ds

=ε

∫ t

r

{
(∂sY (t, s))Rj([K,Pj ])(s)X (s, r) + Y(t, s)K(s)

[
G(s),Rj([K,Pj ])(s)

]
X (s, r)

+ Y(t, s)Rj([K,Pj ])(s)∂sX (s, r)
}
ds. (8.12)

Thanks to the smoothness of all operators in the integrand, we have

(∂sY(t, s))Rj([K,Pj ])(s)X (s, r) + Y(t, s)Rj([K,Pj ])(s)∂sX (s, r)

= ∂s(Y(t, s)Rj([K,Pj ])(s)X (s, r))− Y(t, s)(∂sRj([K,Pj ])(s))X (s, r), (8.13)

which yields the sought for identity. �

As a corollary of Lemma (8.2), if one of the propagators (X (t, s))0≤s≤t≤1 or (Y(t, s))0≤s≤t≤1 is
uniformly bounded in ε, so is the other, and their difference goes to zero with ε:
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Corollary 8.3 Assume ∃ ε1 > 0, C1 <∞ such that sup 0<ε≤ε1
0≤s≤t≤1

‖X (t, s)‖ ≤ C1. Then, ∃ ε2 > 0, C2 <∞
such that sup 0<ε≤ε2

0≤s≤t≤1

‖Y(t, s)‖ ≤ C2. The same statement holds for X and Y exchanged. Moreover,

∃ C3 <∞ such that for all ε < ε2,

sup
0≤s≤t≤1

‖X (t, s)− Y(t, s)‖ ≤ C3ε, (8.14)

and, whenever K(0) = 0, there exists C4 <∞ so that for all t ∈ [0, 1]

‖X (t, 0)− Y(t, 0)‖ ≤ C4tε. (8.15)

Remark 8.4 If both X (t, s) and Y(t, s) are a priori uniformly bounded, estimate (8.14) holds for all ε.

Proof: Set

2C0 = max
( ∑

1≤j≤d
sup

0≤s≤1
‖Rj([K,Pj ])(s)‖,

∑
1≤j≤d

sup
0≤s≤1

‖∂sRj([K,Pj ])(s)‖,

∑
1≤j≤d

sup
0≤s≤1

‖K(s)
[
G(s),Rj([K,Pj ])(s)

]
‖
)

(8.16)

and consider ε < ε1. Lemma (8.2) yields the bound

‖Y(t, r)‖ ≤ C1 + εC0(‖Y(t, r)‖+ C1) + ε2C0C1 sup
0≤s≤t≤1

‖Y(t, s)‖ (8.17)

so that, taking the supremum over 0 ≤ r ≤ t ≤ 1 and for ε < min(ε1, 1/(2C0(1 + 2C1))) := ε2, we get
in turn

sup
0≤r≤t≤1

‖Y(t, r)‖ ≤ 1

(1− εC0(1 + 2C1))
(C1(1 + εC0)) ≤ C1

3 + 4C1

1 + 2C1
≡ C2. (8.18)

Then, inserting this estimate into (8.9), one gets, uniformly in 0 ≤ s ≤ t ≤ 1,

‖X (t, s)− Y(t, s)‖ ≤ C3ε, (8.19)

with C3 = C0(C1 +C2 + 2C1C2). Finally, for the initial time s = 0, the integrated contribution in (8.9)
reduces to 1

2

∑
1≤j≤d εRj([K,Pj ])(t)X (t, 0) when K(0) = 0, and since either Rj([K,Pj ])(t) = 0 or

Rj([K,Pj ])(t) =

∫ t

0
∂sRj([K,Pj ])(s)ds, (8.20)

we have in any case ∥∥∥1

2

∑
1≤j≤d

Rj([K,Pj ])(t)
∥∥∥ ≤ tC0. (8.21)

The integral term in (8.9) is of order εt, so that the bound (8.15) holds with C4 = C0C1(1 + 2C2).
The fact that X and Y can be exchanged in all arguments above follows from the structure of the

RHS of (8.9). �
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Proof of Lemma 3.2:
We briefly prove estimate (3.7). Here the Banach space is Z = H, the propagators are X = U , Y = V ,
and the generators are constructed with G = −iH and K = K =

∑
1≤j≤d P

′
jPj .

Using P (t)P ′(t)P (t) ≡ 0 for any smooth projector P (t), one has the identities Pj(t)K(t)Pj(t) ≡ 0,
for all 1 ≤ j ≤ d, and actually both U and V are bounded a priori, since they are unitary. Moreover,
K(0) = 0, under Reg. Hence Lemma 3.2 derives from Corollary 8.3. �

Proof of Lemma 3.12:
As a second application, we derive here estimate (3.37). We need to show that

Pn(t)

∫ t

0
V0(t, s) ◦ L1

s ◦ V0(s, 0)(ρj)dsPm(t) = O(ε). (8.22)

We first note that by Lemma 3.7, V0(s, 0)(ρj) = ρ̃j(s), where ∂sρ̃j(s) = [K(s), ρ̃j(s)] is continuous in
trace norm and ε-independent. Moreover,

Pn(t)V0(t, s)(·)Pm(t) = Pn(t)
(
V0(t, 0) ◦ V0(0, s)(Pn(s) · Pm(s))

)
Pm(t), (8.23)

thanks to the intertwining property (7.19). Using the definition of L1
s , we have

Pn(s)L1
s ◦ V0(s, 0)(ρj)Pm(s) =

∑
l∈I

Pn(s)(Γl(s)ρ̃j(s)Γ
∗
l (s)Pm(s) (8.24)

− δmj
1

2
Pn(s)Γ∗l (s)Γl(s)ρ̃j(s)Pm(s)− 1

2
δnjPn(s)ρ̃j(s)Γ

∗
l (s)Γl(s)Pm(s),

where all terms are independent of ε. Hence, to get the result, we are lead to show that for a smooth
trace class operator [0, 1] 3 s→ F (s), such that ∂sF (s) ∈ T (H), independent of ε, and n 6= m,∫ t

0
V 0(0, s)Pn(s)F (s)Pm(s)V 0(s, 0)ds = O(ε). (8.25)

We have thanks to (8.7) with G = H

Pn(s)F (s)Pm(s) = [Pn(s)F (s)Pm(s), Pm(s)] = [H(s),Rm(PnFPm)(s)] (8.26)

so that, by a slight variation of Lemma 8.2∫ t

0
V 0(0, s)[H(s),Rm(PnFPm)(s)]V 0(s, 0)ds = −iεV 0(0, s)Rm(PnFPm)(s)]V 0(s, 0)|t0 (8.27)

+ iε

∫ t

0
V 0(0, s)

{
∂sRm(PnFPm)(s)−K(s)Rm(PnFPm)(s) +Rm(PnFPm)(s)K(s)

}
V 0(s, 0)ds.

As F (s) and its derivative are trace class, the expression above is O(ε) in trace norm. �

Let us finally note that, making use of the projectors appearing (8.23), we can further integrate by parts
the last integral term, provided ∂sF (s) is continuously differentiable in trace norm, in which case∫ t

0
V 0(0, s)Pn(s)F (s)Pm(s)V 0(s, 0)ds = iε

(
Rm(PnFPm)(0)− V 0(0, t)Rm(PnFPm)(t)V 0(t, 0)

)
+O(ε2).

(8.28)
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Proof of Lemma 3.13:
For any ρ ∈ T (H), we need to consider∫ t

0

∫ s1

0
· · ·
∫ sn−1

0
V0(t, s1) ◦ L1

s1 ◦ V
0(s1, s2) ◦ L1

s2 . . .L
1
sn ◦ V

0(sn, 0)(ρ)dsn . . . ds2ds1. (8.29)

Noting with (3.15) that for any 0 ≤ s, t ≤ 1 V0(t, s)(ρ) = V0(t, 0) ◦ V0(0, s)(ρ), we can write (8.29) as
V0(t, 0)(In(t)), where In(t) ∈ T (H) is defined inductively by

In(t) =

∫ t

0
V0(0, s1) ◦ L1

s1 ◦ V
0(s1, 0)(In−1(s1))ds1,

I1(t) =

∫ t

0
V0(0, sn) ◦ L1

sn ◦ V
0(sn, 0)(ρ)dsn. (8.30)

Lemma 3.12 shows the existence of C1 <∞, such that for all 0 ≤ t ≤ 1 and ε small enough,

‖I1(t)− P0(0)(I1(t))‖1 ≤ εC1‖ρ‖1. (8.31)

Let us show by induction that for for each n, there exists Cn <∞ so that for ε small enough

‖In(t)− P0(0)(In(t))‖1 ≤ εCn‖ρ‖1. (8.32)

Assuming the result for n ≥ 1, we consider the step n+ 1. We get

In+1(t)− P0(0)(In+1(t)) =
∑

1≤j 6=k≤d
Pj(0)In+1(t)Pk(0) (8.33)

=
∑

1≤j 6=k≤d

∫ t

0
Pj(0)

{
V0(0, s) ◦ L1

s ◦ V0(s, 0)(In(s))
}
Pk(0)ds

=
∑

1≤j 6=k≤d

∫ t

0
Pj(0)

{
V0(0, s) ◦ L1

s ◦ V0(s, 0) ◦ P0(0)(In(s)))
}
Pk(0)ds+On(‖ρ‖1ε),

by the induction hypothesis and recalling the operator V0(t, s) is isometric and L1
s is uniformly bounded.

Then we observe that for any j 6= k, and any [0, 1] 3 s 7→ A(s) ∈ T (H), C1 in trace norm, see Lemmas
3.4, 3.5 and (3.23)∫ t

0
Pj(0)

{
V0(0, s)(A(s))

}
Pk(0)ds =

∫ t

0
e

i
ε

∫ s
0 (ej−ek)(u)duPj(0)

{
W0(0, s)(A(s))

}
Pk(0)ds

=
−iε

ej(s)− ek(s)
e

i
ε

∫ s
0 (ej−ek)(u)duPj(0)

{
W0(0, s)(A(s))

}
Pk(0)

∣∣∣t
0

+

∫ t

0
iεe

i
ε

∫ s
0 (ej−ek)(u)duPj(0)∂s

(W0(0, s)(A(s))

ej(s)− ek(s)

)
Pk(0)ds. (8.34)

The trace norm of the RHS is bounded above by εc(sup0≤s≤1 ‖A(s)‖1 + sup0≤s≤1 ‖∂sA(s)‖1), where c
is a constant independent of ε. The integral term of the RHS of (8.33) has the form (8.34) with

A(s) = L1
s ◦ V0(s, 0) ◦ P0(0)(In(s)) = L1

s ◦W0(s, 0) ◦ P0(0)(In(s)), (8.35)

where W0(s, 0) and L1
s are smooth, independent of ε and bounded on T (H), while In(s) and ∂tIn(s)

are continuous and bounded in trace norm by a constant (uniform in ε) time ‖ρ‖1, see (8.30), which
ends the proof. �
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[A-SF] Abou Salem, W., Fröhlich, J., Adiabatic theorems and reversible isothermal processes. Lett.
Math. Phys. 72 (2005), p. 153–163.

[ABFJ] Albert, V.V., Bradlyn, B., Fraas, M., Jiang, L., Geometry and Response of Lindbladians Phys.
Rev. X, 6, (2016), 041031.

[AE] Avron, J.E., Elgart,A., Adiabatic theorem without a gap condition, Commun. Math. Phys., 203
(1999), p. 445–463.

[AFGG1] Avron, J.E., Fraas, M., Graf, G.M., Grech, P., Adiabatic theorems for generators of contract-
ing evolutions, Commun. Math. Phys., 314 (2012), p. 163–191.

[AFGG2] Avron, J.E., Fraas, M., Graf G.M., Grech, P., Landau-Zener Tunneling for Dephasing Lind-
blad Evolutions, Commun. Math. Phys. 305 (3) (2011), p. 633-639.

[ASY] Avron, J.E., Seiler,R., Yaffe, L.G., Adiabatic theorems and applications to the quantum Hall
effect, Commun. Math. Phys., 110 (1987), p. 33–49.

[BDF] Bachmann, S., De Roeck, W., Fraas, M., The adiabatic theorem and linear response theory for
extended quantum systems, Commun. Math. Phys., 361(2018), p. 997–1027.

[BCF+] Ballesteros, M., Crawford, N., Fraas, M., Fröhlich, J, Schubnel, B., Perturbation Theory for
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[HJPR2] Hanson, E. P., Joye, A., Pautrat, Y., Raquépas, R., Landauer’s Principle for Trajectories of
Repeated Interaction Systems, Ann. H. Poincaré, 19 (2018), p. 1939–1991.
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