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Abstract. We study a class of dynamical semigroups (Ln)n∈N that emerge, by a Feynman–Kac type for-

malism, from a random quantum dynamical system (Lωn ◦ · · · ◦Lω1 (ρω0 ))n∈N driven by a Markov chain

(ωn)n∈N. We show that the almost sure large time behavior of the system can be extracted from the large

n asymptotics of the semigroup, which is in turn directly related to the spectral properties of the gener-

ator L. As a physical application, we consider the case where the Lω’s are the reduced dynamical maps

describing the repeated interactions of a system S with thermal probes Eω. We study the full statistics

of the entropy in this system and derive a fluctuation theorem for the heat exchanges and the associated

linear response formulas.
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1 Introduction

Repeated Interaction Systems

From a physical perspective, a Repeated Interaction System, RIS for short, is a quantum system
S , together with a sequence1 (En)n∈N∗ of quantum probes. S , the system of interest, is de-
scribed by a Hilbert space HS . Each probe En is a quantum system characterized by a Hilbert
space HEn and a (normal) state or density matrix ρEn . All Hilbert spaces in this work are sup-
posed to be finite dimensional.

The dynamics of the compound system is defined as follows: the system S , initially in a
state ρ0, interacts for a certain time with the first probe E1 initially in its state ρE1 . Tracing
out the degrees of freedom of the first probe E1, one gets a state ρ1 for S which is then put
in contact with the next probe E2 in its initial state ρE2 . Repeating the procedure defines a
sequence (ρn)n∈N where ρn is the state of S after n interactions.

A well known example of Repeated Interaction System in physics is the one-atom maser
experiment: S is then the quantized electromagnetic field of a cavity, and the probes are
atoms coming from an oven and passing through this cavity, see, e.g., [FJM86, MWM85, RBH01,
WBKM00].

Typically, the interaction process is described as follows: the free Hamiltonian of the small
system, resp. of the probe number n, is a self-adjoint operator denoted by HS , resp. HEn , and
the interaction between S and En is induced by a coupling Vn which is a self-adjoint operator
on HS ⊗HEn . The total Hamiltonian governing the interaction of S and En is thus

Hn := HS ⊗ 1+ 1⊗HEn +Vn (1.1)

acting on HS ⊗HEn . In the sequel, we will drop the symbols ⊗1 and 1⊗ when the context is
clear. The reduced propagator Ln , obtained by tracing out the probe’s degrees of freedom,

Lnρ := trHEn
(e−iτn Hn (ρ⊗ρEn )eiτn Hn ),

describes the evolution of the state of S due to its interaction with En for a duration τn > 0.
By construction, Ln is a Completely Positive Trace Preserving (CPTP for short) map on the

set B1(HS ) of trace class operators on HS . Consequently, the state ρn of the system S after
interacting with the first n probes is given by

ρn :=Ln . . .L1ρ0.

RIS have been introduced and developed in the non-exhaustive list of papers [AP06, BJM06,
BJM08, BP09, BJM10b, BDBP11, NP12, Bru14, BJM14, HJPR17, HJPR18, BB20, MS19, MS20].

To take into account the uncontrollable odds that may affect the probes and their interac-
tion with the system in real physical applications, it makes sense to generalize the above setup
and consider random dynamical systems

ρn(ω) :=Lωn · · ·Lω1ρω0 , (1.2)

1We denote byN∗ the positive integers and byN=N∗∪ {0} the non-negative ones.
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where Ω 3 ω 7→ ρω ∈ B1(HS ), Ω 3 ω 7→ Lω takes its values in CPTP-maps on B1(HS ) and
ω= (ωn)n∈N ∈ΩN denotes the sample path of a stochastic process.

One way to think about this setup is to consider that, according to some probabilistic rules,
the probes are drawn from a pool which is partitioned into a family (Rω)ω∈Ω, each Rω con-
taining identical probes. Assuming that all the probes are in thermal equilibrium, the physical
situation is then close to the one of a small system S interacting with several thermal reservoirs
Rω. We shall henceforth call the Rω’s reservoirs. For a given ω, Lω represents the effect on S

of an interaction with the reservoir Rω.
As an example, consider the previously mentioned one-atom maser. The interaction times

τn depend on the flight velocities of the atoms which fluctuate. In this case, a reasonable model
would be

Lτρ := trHE
(e−iτHρ⊗ρE eiτH ),

the probe Hilbert space HE , the total Hamiltonian H and the probe state ρE being indepen-
dent of n, and τ= (τn)n∈N∗ being an i.i.d. sequence of random variables. Now assume that the

atoms are in thermal equilibrium with the oven, i.e., ρβ
E
= e−βHE /tr(e−βHE ) whereβ denotes the

oven’s inverse temperature. To take fluctuations of the latter into account, we should consider
a process where ωn = (τn ,βn) and

L(τ,β)ρ := trHE
(e−iτH ρ⊗ρβ

E
eiτH ).

In this case, it may be more realistic to allow for some correlations between successive probes.
The purpose of this article is to study the large n behavior of the random dynamical sys-

tem (1.2) when the driving stochastic process is a Markov chain with a transition matrix P and
initial probability vector π on a finite state space Ω. We will call such a system a Markovian
Repeated Interaction System, MRIS for short. We will first consider (1.2) in the abstract set-
ting where (Lω)ω∈Ω is a family of arbitrary CPTP-maps on B1(HS ) for a finite dimensional
Hilbert space HS . From a mathematical perspective, our main result is a pointwise ergodic
theorem for MRIS. We will then apply this abstract result to the more concrete and physically
motivated case where each Lω describes the interaction of a system S with a probe Eω. We
shall restrict our attention to MRIS with thermal reservoirs, i.e., to the cases where each probe
Eω is in thermal equilibrium at a given inverse temperature βω. This specific setting allows us
to develop the nonequilibrium thermodynamics of MRIS, using tools from information theory
and dynamical systems. We investigate energy transfers between the system S and the reser-
voirs and the induced entropy production. Under microscopic time-reversibility, and invoking
results of [CJPS19], we will derive a strong and detailed form of nonequilibrium fluctuation re-
lations, in the spirit of [DHP20]. Following [Gal96], we will show how these relations reduce to
linear response theory near (appropriately defined) thermal equilibrium. To achieve this, we
need to consider repeated two-time measurements of the probes, and hence to deal with quan-
tum trajectories naturally associated to the random dynamical system (1.2). In this respect, our
results are complementary to [KM04, Kü06, AGPS15, CP15, CP16].

Our framework also allows us to consider situations where the driving Markov chain is not
homogeneous in time, meaning that the transition matrix P depends on the time step. As-
suming the variations between successive transition matrices is small, we derive the large time
asymptotics of the corresponding random dynamical system, in this instance of the adiabatic
regime.

Several limiting cases of MRIS have been addressed in previous works: these are the de-
terministic case with a single reservoir, the periodic case where P is a cyclic permutation ma-
trix, and the i.i.d. case where ω is a sequence of independent and identically distributed ran-
dom variables. The deterministic case — the simplest example of RIS — was introduced and
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developed in [AP06, BJM06]. In particular, the latter reference shows the strict positivity of
entropy production even in this simple setup. The periodic case, mentioned in [BJM14], pro-
vides another toy model of RIS allowing for a study of its nonequilibrium thermodynamics. The
i.i.d. case has been analyzed in [BJM08, BJM10a], see also [NP12]. The nonequilibrium thermo-
dynamics of both these models has been recently investigated in [BB20]. The papers [MS19,
MS20] address more general abstract situations where the underlying stochastic process is an
ergodic dynamical system, and the large time asymptotics of the states is investigated by means
of methods of dynamical systems.

Remark. We consider Markovian randomness in the RIS framework to take into account clas-
sical correlations between fluctuating probes. The case of quantum entanglement between the
probes has been studied, for instance, in [HJ17, Raq20, AJR21].

Feynman–Kac Formalism

In quantum mechanics one is generally interested in quantum expectation values of observ-
ables which can depend on time and, in particular, in the large time behavior of those expec-
tations. In our model we will focus on observables which depend on which reservoir S is
currently interacting with. Consequently, we will study the large n properties of

tr(ρn(ω) X (ωn+1)), (1.3)

where Ω 3ω 7→ X (ω) ∈B(HS ). The idea to deal with this model is to work in the Hilbert space

K = `2(Ω;HS )

of square-summable, HS -valued functions on Ω. Considering the C∗-algebra A ⊂ B(K ) of
functions X :Ω→B(HS ) acting as a multiplication operator on K , a straightforward compu-
tation shows that

E
[
tr

(
ρn(ω)X (ωn+1)

)]= trK

(
XLnR

)
, (1.4)

where E denotes the expectation w.r.t. the Markov chain, and L is a CPTP map on B1(K ), con-
structed with the maps Lω and the transition matrix P , see (2.9), and2

R(ω) := E[ρω0 1{ω1=ω}].

Consequently, the dynamics of S can be modeled with the discrete time semigroup (Ln)n∈N.
This structure is called a Feynman–Kac formalism. Following [Pil85, Pil86b, Pil86a], it turns the
study of the large n behavior of (1.3) into a spectral problem for L. See also [KS09] for a dis-
cussion of a somewhat related problem concerning random time dependent Lindbladians. We
note that, in the periodic and i.i.d. cases mentioned above, the MRIS dynamics can be modeled
by a semigroup acting on B1(HS ), that is, without the need for a Feynman–Kac formalism.

In the i.i.d. case, it has been proved in [BJM08] that, if the random CPTP map Lω0 is prim-
itive with nonzero probability, then (1.3) converges almost surely in Cesàro mean to the de-
terministic value tr(ρ+E[X (ω0)]), ρ+ being the unique invariant state of the CPTP map E[Lω0 ].
This result was extended to a more general class of i.i.d. random dynamical systems in [BB20].
In our Markovian framework, we shall see in Theorem 3.3 that the mere irreducibility of L im-
plies that (1.3) converges almost surely in Cesàro mean to tr(R+X ), where R+ is the unique in-
variant state of L. This is in keeping with the recent results in [MS19, MS20] about ergodic posi-
tive linear map valued processes. However, our spectral point of view allowed by the Feynman–
Kac formalism is distinct from the approach there, which makes essential use of positivity prop-
erties. Moreover, the spectral approach turns out to be instrumental in the subsequent analysis
of the thermodynamic properties of MRIS.

2We shall denote by 1A the indicator function of a set A.
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A natural extension of the above results concern the case of an inhomogeneous Markov
chain. A first step in this direction, dealt with in Section 3.2, is the case of a Markov chain whose
transition matrix changes infinitely slowly with time, the so-called adiabatic inhomogeneous
case. Making use of the analogy with the adiabatic RIS studied in [HJPR17, HJPR18], we get
Theorem 3.4, that describes the large n asymptotics of the expectation (1.4) in this framework.

At last, the MRIS framework is well suited to study nonequilibrium thermodynamic prop-
erties of RIS when each reservoir Rω is in thermal equilibrium. In Section 4, we derive the
entropy balance relation of MRIS process and investigate its consequences. We study the large
time asymptotics of the full statistics of entropy and energy transfers and give sufficient con-
ditions ensuring the validity of entropic fluctuation relations. For processes running near ap-
propriately defined equilibrium, we derive the main ingredients of linear response theory —
Green–Kubo formula, Onsager reciprocity relations and fluctuation-dissipation relations.

Organization of the Paper

The core of this article is organized as follows. After setting up some conventions and nota-
tions, Section 2 introduces the Feynman–Kac formalism associated to the abstract framework
of Markovian repeated interaction quantum systems. The section ends with a few useful re-
sults on the spectral properties of the Feynman–Kac generator L. In Section 3, we formulate
and prove our main results on abstract MRIS: a pointwise ergodic theorem and an adiabatic
theorem. The nonequilibrium thermodynamics of concrete MRIS is the subject of Section 4,
while Section 5 is devoted to the proofs.

Acknowledgements. We thank Tristan Benoist for a insightful discussion. The research of J.-
F.B. was partially funded by the Agence Nationale de la Recherche under the programme “In-
vestissements d’avenir” (ANR-15-IDEX-02), Cross Disciplinary Program “Quantum Engineer-
ing Grenoble”. A.J. and C.-A.P. acknowledge support from Agence Nationale de la Recherche
grant NONSTOPS (ANR-17-CE40-0006-01).

2 The Feynman–Kac Formalism of MRIS

2.1 Notations and Conventions

We start by setting up some notations and conventions that will be used in this work. We also
recall some basic definitions concerning positive maps on C∗-algebras and their state spaces.

Let H be a complex Hilbert space. The inner product of two vectors ϕ,ψ ∈ H will be de-
noted by 〈ϕ,ψ〉, and supposed to be anti-linear in the first argument and linear in the second
one.

B(H ) is the C∗-algebra of all linear operators on H , 1 denotes its unit, and sp(X ) is the
spectrum of X ∈B(H ). Self-adjoint elements of B(H ) with spectrum inR+ are said to be non-
negative. B(H ) is ordered by the proper convex cone B+(H ) of these non-negative elements,
i.e., X ≥ Y iff X −Y ∈B+(H ). If X ≥ δ1 for some δ> 0 we say that X is positive and write X > 0.

The ∗-ideal of all trace class operators on B(H ) is denoted B1(H ). Equipped with the
trace norm ‖α‖1 := tr(

p
α∗α), B1(H ) is a Banach space, the predual of B(H ). We write the

corresponding duality as
〈α, X 〉 := tr(α∗X ). (2.1)

Since H is finite dimensional, B1(H ) and B(H ) are identical topological vector spaces, but
are distinct normed vector spaces. B1(H ) is ordered by the proper convex cone B1+(H ) of
its non-negative elements. A state on B(H ) is an element ρ ∈ B1+(H ) normalized by ‖ρ‖1 =
〈ρ,1〉 = 1. We denote by B1

+1(H ) the closed convex set of these states. Its elements are also
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known as density matrices or statistical operators. A state ρ is said to be faithful whenever
ρ > 0, and pure whenever it is of rank one.

More generally, if A ⊂ B(H ) is a unital C∗-subalgebra3, we denote by A+ := A ∩B+(H )
the proper cone of non-negative elements of A , by A∗ its predual and by A∗+1 the set of states
of A . The duality (2.1) allows us to identify A∗ with the vector space A equipped with the trace
norm, and A∗+1 with the subset of density matrices in A .

A linear mapΦ : A →A is positivity preserving, or simply positive, writtenΦ≥ 0, whenever
Φ(A+) ⊂ A+. Φ is positivity improving, written Φ > 0, if Φ(X ) > 0 for X ≥ 0, X 6= 0. A positive
map Φ is said to be primitive if Φn > 0 for some (and hence all sufficiently large) n ∈ N, and
irreducible if etΦ > 0 for some (and hence all) t > 0. Note that positivity improving implies
primitivity, which implies irreducibility.

A positive map Φ on A is said to be completely positive when Φ⊗ Id is a positive map on
A ⊗B(Cn) for all n ∈N. In view of the identification of A ⊗B(Cn) with the set Mn(A ) of n×n-
matrices with entries in A , the complete positivity of Φ means that for any finite set J and any
square matrix A = [Ai j ]i , j∈J associated to a non-negative map on H ⊗CJ , the map associated to
the matrix [Φ(Ai j )]i , j∈J is non-negative. One easily shows that the latter condition is equivalent
to ∑

i , j∈J
B∗

i Φ(A∗
i A j )B j ≥ 0 (2.2)

for any finite families (A j ) j∈J and (B j ) j∈J in A [Tak79, Corollary 3.4]. Any CP map Φ on A has
a (non-unique) Kraus representation4

Φ(A) = ∑
j∈J

V ∗
j AV j ,

where the finite family V = (V j ) j∈J ⊂ B(H ) is called a Kraus family of Φ. V is said to be irre-
ducible whenever any non-zero element of H is cyclic for the algebra generated by V ∪ {1}. V

is primitive when there exists n > 0 such that any non-zero element of H is cyclic for the lin-
ear span of V n := {V j1 · · ·V jn | j1, . . . , jn ∈ J }. The CP map Φ is irreducible/primitive iff one (and
hence any) of its Kraus family is irreducible/primitive.

In view of the above mentioned identification of the sets A and A∗, the various notions of
positivity just introduced on endomorphisms of A also apply to linear maps L : A∗ → A∗. A
linear map on A is unital whenΦ(1) = 1 and CPU when completely positive and unital. A linear
map on A∗ is trace preserving when tr◦Φ = tr, and CPTP when completely positive and trace
preserving.

Decomposing α ∈ A∗ into the positive and negative parts of its real and imaginary parts,
one easily shows that any affine map L : A∗+1 →A∗+1 has a unique linear extension to A∗. By
construction, this extension is positive and trace preserving. Reciprocally, any linear, positive
and trace preserving map on A∗ restricts to an affine map on A∗+1. Hence, we shall identify
these two kinds of maps in the following. Denoting by L ∗ : A →A the adjoint of L : A∗ →A∗
w.r.t. the duality (2.1), L ∗ is positive (resp. CPU) iff L is positive (resp. CPTP).

When A is associated to a quantum mechanical system, self-adjoint elements X of A are
observables of this system and density matrices ρ ∈A∗+1 describe its physical states. The phys-
ical quantity described by the observable X can only take numerical values in sp(X ). Denoting
EX (I ) the spectral projection of X to the part of its spectrum contained in I , when the system’s

3Any finite dimensional unital C∗-algebra can be realized in this way.
4The Kraus representation of CP maps on B(Cn ) is discussed in any textbook on quantum information, see, e.g.,

[Pet08, Theorem 2.2]. It is a simple corollary of Stinespring’s dilation theorem [Tak79, Theorem 3.6]. The slightly
more general form used here is a direct consequence of Arveson’s extension theorem [Arv69, Theorem 1.2.3] which
asserts that Φ extends to a CP map on B(H ).
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state is ρ, the probability to observe the value of X in I is given by 〈ρ,EX (I )〉. In particular, the
quantum mechanical expectation value of X in the state ρ is given by 〈ρ, X 〉.

We shall consider finite matrices P ∈CJ×J as linear maps on the vector spaceCJ interpreted
as the commutative unital C∗-algebra of diagonal J × J-matrices. The unit of this algebra is
1 = (1, . . . ,1) ∈ CJ . In this context, P is positive (resp. positivity improving) whenever Pi j ≥ 0
(resp. Pi j > 0) for all i , j ∈ J . We note that these are also the conditions of the classical Perron–
Frobenius theory. We observe also that, due to the commutativity of the underlying C∗-algebra
(see [Tak79, Corollary 3.5]), P is completely positive iff it is positive and CPU iff it is a right
stochastic matrix.

Given a Banach space X , a finite set Ω and p ∈ [1,∞], we denote by `p (Ω;X ) the vector
space XΩ equipped with the p-norm

‖x‖p :=


( ∑
ω∈Ω

‖x(ω)‖p

)1/p

for p <∞;

max
ω∈Ω

‖x(ω)‖ for p =∞.

We note that if X ∗ is dual to X , with duality X ∗ ×X 3 (ϕ, x) 7→ 〈ϕ, x〉 and 1
p + 1

q = 1, then

`q (Ω;X ∗) is dual to `p (Ω;X ) with duality
∑
ω∈Ω〈ϕ(ω), x(ω)〉.

The product topology induced on Ω = ΩN by the discrete topology of the finite set Ω is
metrizable, the compatible metric

d((ωk )k∈N, (νk )k∈N) := 2− inf{k∈N|ωk 6=νk }

makesΩ a compact metric space. We denote by On the finite algebra generated by the cylinder
sets

[ν0 · · ·νn] := {ω ∈Ω |ωk = νk for 0 ≤ k ≤ n}, (ν0, . . . ,νn ∈Ω),

and by
O := ∨

n∈N
On

the generated σ-algebra.5 We recall that O coincides with the Borel σ-algebra ofΩ.6

Denote by C (Ω) the Banach space of continuous real functions onΩ, and by P (Ω) the set
of probability measures on (Ω,O ), equipped with the weak-∗ topology. We write the associated
duality as

〈 f ,µ〉 =
∫
Ω

f (ω)µ(dω).

We denote by µ|On the restriction of µ ∈P (Ω) to On . Let φ be the left shift onΩ, and Pφ(Ω) the
set of φ-invariant elements of P (Ω).

For two probability measures ν, µ on the same measurable space, we write ν¿µwhenever
ν is absolutely continuous w.r.t. µ, denoting by dν

dµ the corresponding Radon–Nikodym deriva-
tive. In this case, the relative entropy of ν w.r.t. µ is

Ent(ν|µ) :=
∫

log

(
dν

dµ

)
dν,

and for α ∈R, their relative Rényi α-entropy is

Entα(ν|µ) := log
∫ (

dν

dµ

)α
dµ.

We recall that Ent(ν|µ) ≥ 0, with equality iff ν=µ.

5By convention the cylinder with empty base [ ] isΩ.
6We will use the same notation, with the obvious modifications, wheneverΩ=ΩZ orΩ=ΩN∗

.
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2.2 Markovian Repeated Interaction Quantum Systems

Let S be a quantum mechanical system described by a finite dimensional Hilbert space HS ,
denote by A = B(HS ) the associated C∗-algebra, set A∗ = B1(HS ), let (ρω)ω∈Ω ⊂ A∗ be a
finite family of states and (Lω)ω∈Ω a finite family of CPTP maps on A∗.

For a probability vector π ∈ RΩ, and a right stochastic matrix P ∈ RΩ×Ω, we consider the
probability space (Ω,O ,P), where P ∈ P (Ω) is the homogeneous Markov measure uniquely
determined by

P([ω0 · · ·ωn]) :=πω0 Pω0ω1 . . .Pωn−1ωn , (2.3)

for any cylinder [ω0 · · ·ωn] ∈ On . In particular, the probability vector π(n) describing the distri-
bution of the random variable ωn is given by

π(n)
ν =P(ωn = ν) = ∑

ω0,...,ωn−1∈Ω
P([ω0 · · ·ωn−1ν]) = (πP n)ν.

We denote by E[ · ] the expectation functional associated with P. Given A ∈O , 1A is the charac-
teristic function of A and E[ · |A] = E[ ·1A]/E[1A] is the conditional expectation given A. Finally,
we recall that whenever π is a left eigenvector of P to the eigenvalue 1, then P ∈Pφ(Ω), i.e., the
Markov chain is stationary.

We associate to (π,P, (ρω)ω∈Ω, (Lω)ω∈Ω) a random dynamics on the system S as follows:
Each sample pathω ∈Ω of our Markov chain induces a sequence of states (ρn(ω))n∈N, where

ρn(ω) :=Lωn · · ·Lω1ρω0 ,

is the state of S started in ρω0 after interacting with the sequence of reservoirs Rω1 , . . . ,Rωn .
By Stinespring’s dilation Theorem [Tak79, Theorem 3.6], any such random dynamical sys-

tem describes a MRIS, i.e., there exists a family of probes (Eω)ω∈Ω such that

Lω(ρ) = trHEω
(Uω(ρ⊗ρEω)U∗

ω)

for some probe states ρEω ∈B1
+1(HEω), unitary propagators Uω on HS ⊗HEω and all ω ∈Ω.

2.3 Extended Observables and Extended States

The natural semigroup structure of autonomous dynamical systems gets lost in this random
setting. However, using the Markov property, it is possible to restore this structure at the level
of “classical” expectations. To this end, let us introduce the extended Hilbert space of HS -
valued functions on the noise space Ω

K = `2(Ω;HS ).

Identifying K with HS ⊗CΩ leads to the identification of B(K ) with AΩ×Ω, the C∗-algebra
of Ω×Ω matrices with entries in A . Further, identifying X ∈ `∞(Ω;A ) with a diagonal matrix
in AΩ×Ω gives a natural isometric injection

A= `∞(Ω;A ) ,→B(K ), (2.4)

which makes A a C∗-subalgebra of B(K ). We shall say that elements of A are extended ob-
servables of the MRIS associated with (π,P, (ρω)ω∈Ω, (Lω)ω∈Ω). The map

X 7→ Tr X := ∑
ω∈Ω

tr X (ω),

is the restriction to A of the trace of B(K ) and defines a trace on A, i.e., a positive linear func-
tional such that Tr(X Y ) = Tr(Y X ) for all X ,Y ∈A.

8
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Dual to the injection (2.4) is the surjection

B1(K ) →A∗ = `1(Ω;A∗), (2.5)

which sends R = [Rων]ω,ν∈Ω ∈ AΩ×Ω∗ to the diagonal map ω 7→ Rωω. Note that elements of
B1

+1(K ) are sent to positive valued elements of `1(Ω;A∗) of 1-norm 1. These are precisely the
states of A w.r.t. the duality

〈R, X 〉 := Tr(R∗X ) = ∑
ω∈Ω

〈R(ω), X (ω)〉. (2.6)

Positive and normalized elements of A∗, images of states R ∈ B1
+1(K ) by (2.5), will be called

extended states of the MRIS, the set of these extended states is denotedA∗+1. We shall associate
to (π,P, (ρω)ω∈Ω, (Lω)ω∈Ω) the sequence of extended state (Rn)n∈N defined by

Rn(ω) :=π(n+1)
ω E[ρn(ω) |ωn+1 =ω] = E[ρn(ω)1ωn+1=ω],

and in particular
R0(ω) = ∑

ν∈Ω
πνPνωρν. (2.7)

Observe that these states have “marginals”

π(n+1)
ω = trRn(ω), ρ̄n = E[ρn(ω)] = ∑

ω∈Ω
Rn(ω).

2.4 The Semigroup

Lemma 2.1. Let (Rn)n∈N ⊂ A∗ be the sequence of extended states of the MRIS associated to
(π,P, (ρω)ω∈Ω, (Lω)ω∈Ω). Then, for n ∈N, one has

Rn = LnR0, (2.8)

where L :A∗ →A∗ is the CPTP map defined by

(LR)(ω) := ∑
ν∈Ω

PνωLνR(ν). (2.9)

In particular, given an extended observable X ∈A, one has

E[〈ρn(ω), X (ωn+1)〉] = 〈LnR0, X 〉. (2.10)

Proof. The relation (2.8) clearly holds for n = 0. For any n ∈N∗ and ω ∈Ω one has

Rn(ω) = ∑
ω0,...,ωn∈Ω

πω0 Pω0ω1 · · ·PωnωLωn · · ·Lω1ρω0

= ∑
ωn∈Ω

PωnωLωn

∑
ω0,...,ωn−1∈Ω

πω0 Pω0ω1 · · ·Pωn−1ωn Lωn−1 · · ·Lω1ρω0

= ∑
ωn∈Ω

PωnωLωn Rn−1(ωn) = (LRn−1)(ω),

which implies (2.8) for all n ∈N. Consequently, one has7

E[〈ρn(ω), X (ωn+1)〉] = E[〈E[ρn(ω) |ωn+1], X (ωn+1)〉]
= ∑
ω∈Ω

π(n+1)
ω 〈E[ρn(ω) |ωn+1 =ω], X (ω)〉

= ∑
ω∈Ω

〈Rn(ω), X (ω)〉 = 〈LnR0, X 〉,

7We denote by E[ · |ωn ] the conditional expectation w.r.t. the random variable ωn .
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which proves (2.10). An elementary calculation shows that the adjoint ofLw.r.t. the duality (2.6)
is given by

(L∗X )(ω) = ∑
ν∈Ω

PωνL
∗
ωX (ν).

One also easily checks (e.g., using (2.2)) that L∗ is a CPU-map on A. By duality, L is a CPTP-map
on A∗.

By Brouwer’s fixed point theorem, L has a fixed point on the convex set A∗+1 of extended
states. Such a fixed point will be called Extended Steady State (ESS) of the MRIS.

Let R+ ∈A∗+1 be an ESS, and set

π+ω := trR+(ω), ρ+ω :=


LωR+(ω)

π+ω
if π+ω 6= 0,

1

tr1
otherwise.

(2.11)

Since R+ is positive with TrR+ = 1, π+ is a probability vector, and it follows from

π+ω = trR+(ω) = tr(LR+)(ω) = ∑
ν∈Ω

Pνω trLνR+(ν) = ∑
ν∈Ω

Pνω trR+(ν) = ∑
ν∈Ω

π+νPνω

that it is an invariant probability for the driving Markov chain. By construction, ρ+ = (ρ+ω)ω∈Ω
is a family of states on A . Since R+(ω) ≥ 0, R+(ω) = 0 whenever π+ω = 0, so that the identity
LωR+(ω) =π+ωρ+ω holds for all ω ∈Ω. The formula∑

ν∈Ω
Pνωπ+νρ+ν =

∑
ν∈Ω

PνωLνR+(ν) = (LR+)(ω) = R+(ω), (2.12)

thus allows to reconstruct the ESS R+ from the invariant probability π+ and the family ρ+.
Denoting by P+ the stationary Markov measure on (Ω,O ) associated to (π+,P ), one has,

with ρ+n(ω) :=Lωn · · ·Lω1ρ+ω0 ,

E+[ρ+n(ω)1ωn+1=ω] = ∑
ω0,...,ωn∈Ω

π+ω0 Pω0ω1 · · ·PωnωLωn · · ·Lω1ρ+ω0

= ∑
ω0,...,ωn∈Ω

PωnωLωn · · ·Pω0ω1Lω0 R+(ω0)

= (Ln+1R+)(ω) = R+(ω)

so that
E+[〈ρ+n(ω), X (ωn+1)〉] = 〈R+, X 〉, (2.13)

for all X ∈A and n ∈N.

Definition 2.2. We shall say that the MRIS associated to (π+,P, (ρ+ω)ω∈Ω, (Lω)ω∈Ω) is the sta-
tionary MRIS induced by the ESS R+.

Remark. Given a P-invariant probability π+ and a family of states (ρ+ω)ω∈Ω on A such that

Lω

∑
µ∈Ω

Pµωπ+µρ+µ =π+ωρ+ω

for all ω ∈Ω, the extended state R+ defined by (2.12) satisfies

(LR+)(ω) = ∑
ν∈Ω

PνωLν

∑
µ∈Ω

Pµνπ+µρ+µ =
∑
ν∈Ω

Pνωπ+νρ+ν = R+(ω).

10
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2.5 Primitivity and Irreducibility as Ergodic Properties

The irreducibility and primitivity properties of CP maps Φ will play a central role in our ap-
proach. As introduced in Section 2.1, they are intimately linked to the natural order structure
of a C∗-algebra. In this section, we recall their important connections with the spectral prop-
erties of Φ and the ergodic properties of the semigroup (Φn)n∈N. We also discuss some issues
more specific to the CPTP map (2.9).

Let Φ be a CPTP map on the predual C∗ of the finite dimensional C∗-algebra C ⊂ B(H ).
The following statements are well known (see, e.g., [EHK78] for details):

(i) sp(Φ) is a subset of the closed unit disk containing 1, and the eigenspace of Φ associated
to the eigenvalue 1 contains a state ρ.

(ii) Φ is irreducible iff its eigenvalue 1 is simple. In this case, the eigenspace of Φ associated
to the eigenvalue 1 contains a unique state ρ. Moreover, ρ is faithful and for any R ∈ C∗
one has ∣∣∣∣∣ 1

n

n−1∑
k=0

Φk (R)−〈R,1〉ρ
∣∣∣∣∣= ‖R‖O (n−1),

as n →∞.

(iii) Φ is primitive, iff its simple eigenvalue 1 is gapped, i.e.,

∆=− logmax{|z| | z ∈ sp(Φ) \ {1}} > 0.

Moreover, for any R ∈C∗ and ε> 0 one has

|Φn(R)−〈R,1〉ρ| = ‖R‖O (e−n(∆−ε)),

as n →∞.

We conclude this section with some useful connections between the properties of P and
Lω and that of L.

Lemma 2.3. Set
L̄ := ∑

ω∈Ω
πωLω,

where π is a faithful probability vector, and note that L̄ is a CPTP map on A∗.
(i) L is positivity improving iff P and every Lω are.

(ii) If L is irreducible (resp. primitive), so are P and L̄ .

(iii) If P is positivity improving, then L is irreducible (resp. primitive) iff L̄ is.

(iv) If every Lω is positivity improving, then L is irreducible (resp. primitive) iff P is.

Proof. (i) Assume that P and each Lω are positivity improving. Given non-zero R ∈ A∗+ and
X ∈ A+, there exists ω,ν ∈Ω such that both R(ω) and X (ν) are non-negative and non-zero. It
follows that LωR(ω) > 0 and hence

〈LR, X 〉 ≥ Pων〈LωR(ω), X (ν)〉 > 0,

which shows that L is positivity improving. Reciprocally, let L be positivity improving, ξ,η ∈Ω,
and ρ ∈A∗+, A ∈A+ be non-zero. With R(ω) = δωξρ and X (ω) = δωηA, one has

0 < 〈LR, X 〉 = Pξη〈Lξρ, A〉,

from which we can conclude that P and all Lω are positivity improving.

11
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(ii) For R ∈A∗ and n ∈N one easily checks that

(LnR)(ω) = ∑
ω1,...,ωn∈Ω

Pω1ω2 · · ·PωnωLωn · · ·Lω1 R(ω1). (2.14)

For u ∈ RΩ, let us set Ru(ω) := uωρ and Xu(ω) := uω1 where ρ is an arbitrary density matrix.
Formula (2.14) gives that

〈LnRu , Xv 〉 = 〈u,P n v〉
for any u, v ∈ RΩ and n ∈ N, and it follows that P is irreducible (resp. primitive) if L is. Setting
R(ω) :=πωρ and ε := minωπω, and using the fact that the matrix elements of P are all bounded
above by 1, we further deduce from (2.14)

(LnR)(ω) ≤ ∑
ω1,...,ωn∈Ω

Lωn · · ·Lω1πω1ρ

≤ ε−n+1
∑

ω1,...,ωn∈Ω
πωn Lωn · · ·πω1Lω1ρ = ε−n+1L̄ nρ,

from which one easily concludes that L̄ is irreducible (resp. primitive) whenever L is.

(iii) If P is positivity improving, then there exists δ such that 0 < δ≤ Pνω for all ω,ν ∈Ω. Setting
again R(ω) :=πωρ, it follows from (2.14) that

δnL̄ nρ ≤ (LnR)(ω),

from which it follows that L is irreducible (resp. primitive) whenever L̄ is. The reciprocal prop-
erty follows from Part (ii).

(iv) Let R ∈A∗+ be non-zero, so that R(ν) is non-zero for some ν ∈Ω. Formula (2.14) yields

(LnR)(ω) ≥ ∑
ω2,...,ωn∈Ω

Pνω2 · · ·PωnωLωn · · ·Lω2LνR(ν),

and if every Lω is positivity improving, then

δ := min
ω2,...,ωn∈Ω

minsp(Lωn · · ·Lω2LνR(ν)) > 0,

so that
(LnR)(ω) ≥ (P n)νωδ1,

from which we can conclude that L is irreducible (resp. primitive) whenever P is. The reciprocal
property again follows from Part (ii).

3 Main Abstract Results

3.1 A Pointwise Ergodic Theorem

Central to our results are consequences of spectral properties of the map L on the large time
behavior of MRIS. Below, we formulate a pointwise ergodic theorem for MRIS which applies
when the driving Markov chain is stationary. The case of an inhomogeneous driving process is
considered in Section 3.2 in the adiabatic limit. Applications of these results to the nonequilib-
rium thermodynamic properties of MRIS will be given in the subsequent Section 4.

Our ergodic theorem relies on the minimal

Assumption (STAT). Either the Markov chain is stationary, i.e., πP = π, or it admits a faithful
stationary state π+.

We note that whenever L is irreducible (or primitive, or positivity improving), then, by
Lemma 2.3 (ii), the unique left eigenvector of P is faithful, so that Assumption (STAT) is sat-
isfied.

We shall invoke the following vector-valued random ergodic theorem of Beck and Schwartz.

12
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Theorem 3.1 ([BS57, Theorem 2]). Let X be a reflexive Banach-space and let (S,Σ,m) be a σ-
finite measure space. Let there be defined a strongly measurable function S 3 s 7→ Ts with values
in the Banach-space B(X ) of bounded linear operators on X . Suppose that ‖Ts‖ ≤ 1 for all s ∈ S.
Let h be a measure-preserving transformation on (S,Σ,m). Then for each X ∈ L1(S,X ) there is
an X̄ ∈ L1(S,X ) such that

lim
N→∞

1

N

N−1∑
n=0

TsTh(s) · · ·Thn−1(s)X (hn(s)) = X̄ (s),

strongly in X , a.e. in S, and
X̄ (s) = Ts(X̄ (h(s)))

a.e. in S. Moreover, if m(S) <∞, then X is also the limit in the mean of order 1.

Let us start by assuming that the Markov chain is stationary. A direct application of Theo-
rem 3.1 shows that P-a.e. and in L1(Ω,P;A) the limit

X̄ (ω) := lim
N→∞

1

N

N−1∑
n=0

L ∗
ω1

· · ·L ∗
ωn

X (ωn+1)

exists for all X ∈A. Moreover, the covariance relation X̄ (ω) =L ∗
ω1

X̄ ◦φ(ω) implies

¯̄X (ω) :=E[X̄ (ω) |ω1 =ω]

=E[L ∗
ω1

X̄ (φ(ω)) |ω1 =ω]

=L ∗
ωE[X̄ (φ(ω)) |ω1 =ω]

=L ∗
ωE[X̄ (ω) |ω0 =ω]

=L ∗
ωE[E[X̄ (ω) |ω1] |ω0 =ω]

=L ∗
ωE[ ¯̄X (ω1) |ω0 =ω]

= ∑
ν∈Ω

PωνL
∗
ω

¯̄X (ν) = (L∗ ¯̄X )(ω).

Assuming now that π+ is a faithful stationary state, i.e., π+P = π+ > 0, then the stationary
Markov measure P+ on (Ω,O ) with transition matrix P and faithful invariant probability π+
satisfies

dP

dP+
(ω) = π(ω0)

π+(ω0)
,

which gives that P is absolutely continuous w.r.t. P+. Consequently, any P+-a.s. property also
holds P-almost surely. Summarizing, we have proved

Theorem 3.2. Under Assumption (STAT), the limit

X̄ (ω) := lim
N→∞

1

N

N−1∑
n=0

L ∗
ω1

· · ·L ∗
ωn

X (ωn+1) (3.1)

exists P-almost surely and in L1(Ω,P;A) for any X ∈A. The limiting function is such that

L ∗
ω1

X̄ (φ(ω)) = X̄ (ω). (3.2)

Moreover, the extended observable ¯̄X ∈A defined by

¯̄X (ω) := E[X̄ (ω) |ω1 =ω],

satisfies
L∗ ¯̄X = ¯̄X . (3.3)

13
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As an immediate corollary, we get that

lim
N→∞

1

N

N−1∑
n=0

〈ρn(ω), X (ωn+1)〉 = 〈ρω0 , X̄ (ω)〉 = 〈ρk (ω), X̄ ◦φk (ω)〉 (3.4)

P-almost surely and in L1(Ω,P), for any k ∈N.
A less immediate corollary of Theorem 3.2 is the following, which only requires spectral

properties of the map L.

Theorem 3.3. If L is irreducible, its unique ESS R+ is faithful and for any X ∈A one has 8

X̄ (ω) = lim
N→+∞

1

N

N−1∑
n=0

L ∗
ω1

· · ·L ∗
ωn

X (ωn+1) = 〈R+, X 〉1

for P-almost everyω ∈Ω and in L1(Ω,P;A). In particular, for any initial state ρ ∈A∗+1 and any
X ∈A,

lim
N→+∞

1

N

N−1∑
n=0

〈ρn(ω), X (ωn+1)〉 = 〈R+, X 〉

holds P-almost surely and in L1(Ω,P). Moreover, if L is primitive, then

lim
n→∞E+[〈ρn(ω), X (ωn+1)〉] = 〈R+, X 〉.

Proof. Since L is irreducible, so is P by Lemma 2.3 (ii), and hence Assumption (STAT) is satis-
fied and Theorem 3.2 applies. Moreover, the measure P+ is φ-ergodic [Wal81, Theorem 1.19].
Iterating the covariance relation (3.2) and invoking the Markov property lead us to

E+[X̄ (ω) |On] = E+[L ∗
ω1

· · ·L ∗
ωn−1

X̄ ◦φn−1(ω) |On]

=L ∗
ω1

· · ·L ∗
ωn−1

E+[X̄ ◦φn−1(ω) |ωn]

=L ∗
ω1

· · ·L ∗
ωn−1

¯̄X (ωn).

(3.5)

L being irreducible, it has a simple eigenvalue 1 with left/right eigenvector 1/R+.9 From L∗1= 1
and (3.3) we deduce that ¯̄X = 〈λ, X 〉1 for some λ ∈A∗. Relation (3.5) further yields

E+[X̄ (ω) |On] = 〈λ, X 〉1,

for all n ∈N. Letting n →∞ we get [Bre92, Corollary 5.22]

X̄ (ω) = lim
n→∞E+[X̄ (ω) |On] = 〈λ, X 〉1,

and in particular,
〈ρω0 , X̄ (ω)〉 = 〈λ, X 〉〈ρω0 ,1〉 = 〈λ, X 〉.

Finally, using (2.10) and invoking the mean ergodic theorem gives

E[〈ρω0 , X̄ (ω)〉] = lim
N→∞

1

N

N−1∑
n=0

E[〈ρn(ω), X (ωn+1)] = lim
N→∞

1

N

N−1∑
n=0

〈LnR0, X 〉 = 〈R+, X 〉,

from which we conclude that λ= R+ and X̄ (ω) = 〈R+, X 〉1. The remaining statements are obvi-
ous.

8When L is irreducible, we sometimes omit to mention the dependence of X̄ (ω) on ω and write its P-a.s. value
as X̄ .

9Here, 1 denotes the unit of A.
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3.2 Inhomogeneous MRIS in the Adiabatic Limit

In this section, we consider the possibility of driving our MRIS with an inhomogeneous Markov
chain, i.e., we allow the transition matrix P to depend on the time step. More specifically, we
address the regime of slow variation from one time step to the next, known as the adiabatic
regime, by applying the results of [HJPR17, HJPR18] to control the expectations

E[〈ρn(ω), X (ωn+1)〉]
when n goes to infinity.

Notice that the whole construction that has been made in Section 2 does not rely on the
homogeneity of the Markov chain, so that, given a sequence (P (n))n∈N∗ of right stochastic ma-
trices, we can replace (2.3) with

P([ω0 · · ·ωn]) :=πω0 P (1)
ω0ω1

P (2)
ω1ω2

· · ·P (n)
ωn−1ωn

.

Further, defining the sequence (Ln)n∈N∗ by

(LnR)(ω) := ∑
ν∈Ω

P (n)
νωLνR(ν),

one can write, in analogy with Lemma 2.1,

E[〈ρn(ω), X (ωn+1)〉] = 〈Ln · · ·L1R0, X 〉. (3.6)

At such a level of generality, not much can be said of (3.6). Hence, we consider an adiabatic
regime in which successive transition matrices are obtained by sampling a smooth family of
transition matrices defined on [0,1], with smaller and smaller variations between successive
transition matrices, following [HJPR17, HJPR18].

As before, let (Lω)ω∈Ω be a finite family of CPTP maps on A∗. Let [0,1] 3 s 7→ P (s) be a C 2

function taking its values in the set of right stochastic Ω×Ω-matrices. Define

(L(s)R)(ω) := ∑
ν∈Ω

Pνω(s)LνR(ν)

so that [0,1] 3 s 7→ L(s) is also of class C 2. For ε = 1/N denote by Pε the Markov probability
measure on ΩN+1 defined as

Pε(ω= (ω0, . . . ,ωN )) =πω0 Pω0ω1 (0)Pω1ω2 (ε) · · ·PωN−1ωN ((N −1)ε).

It was shown in [HJPR18] that, under spectral hypotheses on the family (L(s))s∈[0,1], the product

L(n)
ε = L(nε)L((n −1)ε) · · ·L(ε)

admits an asymptotics for n ∈ {0, . . . , N }, in the adiabatic limit ε ↓ 0. More precisely, we have

Theorem 3.4 ([HJPR18, Corollary 3.14]). Assume that, for all s ∈ [0,1], L(s) is primitive. Denote
by R+(s) its unique (and faithful) invariant state, and fix R ∈ A∗+1. Then, there exist 0 < l < 1,
0 < ε0 < 1 and C <∞, such that, for all ε ∈]0,ε0] with 1/ε ∈N, and all n ∈ {0, . . . ,1/ε} ⊂N,

‖L(n)
ε R −R+(nε)‖ ≤C

(
ε

(1− l )
+ l n+1

)
.

In particular, for any X ∈A,

Eε[〈ρn(ω), X (ωn+1)〉] = 〈R+(nε), X 〉+‖X ‖O(ε/(1− l )+ l n+1).

If, moreover, we write n = t/ε, with 0 < t < 1, then

Eε[〈ρ t
ε
(ω), X (ω t+ε

ε
)〉] = 〈R+(t ), X 〉+‖X ‖O(ε).

Remark. A similar statement holds when the L(s)’s are irreducible, with a more complicated
expression for the asymptotic state, in terms of all eigenvectors corresponding to the peripheral
eigenvalues.
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4 Entropic Fluctuations and Linear Response Theory

This section is devoted to applications to linear response theory and entropic fluctuations
within our Markovian framework, generalizing [BB20] which addresses these aspects for pe-
riodic and uniform i.i.d. repeated interaction systems.

Within our setup, a periodic RIS (called cyclic in [BB20]) is a MRIS such that P is the per-
mutation matrix associated to a cycle (12 · · ·m) ∈ Sm , so that ω is the repetition of the word
12 · · ·m with probability 1. A i.i.d. RIS corresponds to the case Pνω = πω for all ω ∈Ω where π
is a probability vector. In this case ω is a sequence of independent random variables [BJM14].
The special case of uniform distribution is simply called a Random RIS in [BB20].

In both cases, the reduced dynamics of the small system yields a discrete time quantum
dynamical semigroup on A∗ =B1(HS ), with dimHS <∞. Indeed, in the periodic case,

ρnm(ω) = (Lm · · ·L1)nρ

while, in the random case,

E[ρn(ω)] =
(

1

|Ω|
∑
ω∈Ω

Lω

)n

ρ.

The results of [BB20] are largely based on this semigroup structure. We shall invoke Lemma 2.1,
to extend these results to the MRIS framework.

Remark. Continuous time semigroups of CPTP maps, often also called quantum Markov semi-
groups, are generated by Lindbladians. As dynamics of a small quantum system S inter-
acting with several extended thermal reservoirs, they emerge in the van Hove weak coupling
limit [Dav74, Dav76a, Dav75, Dav76b]. The interested reader should consult [LS78, JPW14] for
discussions of the nonequilibrium thermodynamics of such systems.

4.1 Entropy Balance

Returning to the concrete MRIS with CPTP and dual CPU maps

Lωρ := trHEω

(
Uω(ρ⊗ρEω)U∗

ω

)
, L ∗

ωX = trHEω

(
U∗
ω(X ⊗ 1)Uω(1⊗ρEω)

)
,

where Uω := e−iτω(HS +HEω+Vω), we shall now assume that the reservoirs are in thermal equilib-
rium, more precisely

Assumption (KMS). There is β= (βω)ω∈Ω ∈RΩ+ such that, for all ω ∈Ω,

ρEω = e−βω(HEω−Fω),

where

Fω :=− 1

βω

logtr
(
e−βωHEω

)
is the free energy of a probe from reservoir Rω.

Remark. Given β ∈RΩ+ and assuming each ρEω to be faithful, it is of course possible to redefine
the probe Hamiltonians in such a way that (KMS) holds, at the cost of absorbing the change
of HEω in the interaction Vω. However, thermodynamic considerations require the propagators
Uω to be independent of β, so that such circumstances are excluded in the following.

The energy lost by the system S during the n +1th interaction, which we interpret as the
amount of heat dumped in the reservoir Rωn+1 , is

∆Qn+1(ω) := tr
(
ρn(ω)⊗ρEωn+1

(U∗
ωn+1

HEωn+1
Uωn+1 −HEωn+1

)
)
=−〈ρn(ω), J (ωn+1)〉
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with

J (ω) := trHEω
(U∗

ω[Uω, HEω ](1⊗ρEω)).

Further setting

Jν :Ω 3ω 7→ δνω J (ν), (4.1)

yields an extended observable Jν ∈ A describing the energy transferred from reservoir Rν to
the system S during a single interaction.

Accordingly, the time-averaged quantum mechanical expectation values of the heat ex-
tracted from the reservoir Rν during a single interaction is given by

lim
N→∞

1

N

N−1∑
n=0

〈ρn(ω), Jν(ωn+1)〉. (4.2)

If L is irreducible, then Theorem 3.3 implies that this limit exists for P-almost everyω ∈Ω, and
coincides with the ESS ensemble average

〈R+, Jν〉 = E+[〈ρ+(ω0), Jν(ω1)〉]. (4.3)

The von Neumann entropy [Pet08, Section 3.3] of the system S after completion of the nth

interaction is

S(ρn(ω)) :=−〈ρn(ω), logρn(ω)〉,
so that, during the n +1th interaction, the system entropy decreases by

∆Sn+1(ω) := S(ρn(ω))−S(ρn+1(ω)).

Recall that the relative entropy of a state µ ∈A∗ relatively to another state ρ ∈A∗ is

Ent(µ|ρ) :=
{

tr(µ(logµ− logρ)) if Ranµ⊂ Ranρ;

+∞ otherwise,

and that Ent(µ|ρ) ≥ 0 with equality iff µ= ρ (see [Pet08, Section 3.4]). Setting

epn(ω) := Ent
(
Uωn+1

(
ρn(ω)⊗ρEωn+1

)
U∗
ωn+1

∣∣∣ρn+1(ω)⊗ρEωn+1

)
,

an elementary calculation yields

epn(ω) =−Sn(ω)−βωn+1 tr
((
ρn(ω)⊗ρEωn+1

)
(HEωn+1

−Fωn+1 )
)

+Sn+1(ω)+βωn+1 tr
((
ρn(ω)⊗ρEωn+1

)
U∗
ωn+1

(HEωn+1
−Fωn+1 )Uωn+1

)
,

which can be rewritten as the one-step entropy balance relation

∆Sn+1(ω)+epn(ω) =βωn+1∆Qn+1(ω). (4.4)

Identifying the right-hand side of this identity with the amount of entropy dissipated in the
reservoir Rωn+1 , epn(ω) can be interpreted as the entropy produced by the interaction process.
The inequality epn(ω) ≥ 0 thus becomes the expression of the 2nd–law of thermodynamics, and
yields Landauer’s lower bound

∆Qn+1(ω) ≥ ∆Sn+1(ω)

βωn+1

,
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on the energetic cost of a reduction of the system entropy (see [RW14, JP14, HJPR17, HJPR18]
for more details and discussions). Summing over n we get

S0(ω)−SN (ω)

N
+ 1

N

N−1∑
n=0

epn(ω) =− ∑
ν∈Ω

βν
1

N

N−1∑
n=0

〈ρn(ω), Jν(ωn+1)〉.

Observing that 0 ≤ Sn(ω) ≤ logdimHS and recalling (3.4), we deduce that whenever the limit (4.2)
exists, the following expression of the time-averaged entropy production

ep(ω) := lim
N→∞

1

N

N−1∑
n=0

epn(ω) =− ∑
ν∈Ω

βν〈ρω0 , J̄ν(ω)〉 ≥ 0 (4.5)

holds, where J̄ν is the ergodic average (3.1). This applies, in particular, under Assumption (STAT),
and expresses then the 2nd–law in the context of steady-state thermodynamics. If, moreover, L
is irreducible, then (4.3) yields

ep(ω) =− ∑
ν∈Ω

βν〈R+, Jν〉 (4.6)

P-a.s.

Remark. Assuming (STAT) but replacing Assumption (KMS) by the faithfulness of the probe
states ρEω , setting10

JS(ω) := trHEω

(
U∗
ω[SEω ,Uω](1⊗ρEω)

)
, SEω :=− logρEω ,

and repeating the previous calculation leads to the entropy balance equation

∆Sn+1(ω)+epn(ω) = 〈ρn(ω), JS(ωn+1)〉 (4.7)

with the time-average

ep(ω) = lim
N→∞

1

N

N−1∑
n=0

epn(ω) = 〈ρω0 , J S(ω)〉.

The irreducibility of L further leads to the P-a.s. identity

ep(ω) = 〈R+, JS〉. (4.8)

The extended observable JS describes the entropy dumped into the reservoirs during a single
interaction.

The vanishing of entropy production is a signature of thermodynamic equilibrium, as such,
it will play a central role in our discussion of linear response in Section 4.4. Our next result is
a quite general necessary and sufficient condition for the vanishing of entropy production in
MRIS (see Section 5.1 for the proof).

Proposition 4.1. Assume that the probe states ρEω are faithful and that L is irreducible. Then,
the time averaged entropy production (4.8) vanishes P-a.s. iff the family of states (ρ+ω)ω∈Ω asso-
ciated with the unique ESS R+ in (2.11) satisfies

Uω(ρ+ν⊗ρEω)U∗
ω = ρ+ω⊗ρEω (4.9)

for all pairs (ν,ω) ∈Ω×Ω such that Pνω > 0. In this case, further assuming (KMS), the entropy
balance equation

S(ρ+ωn+1 )−S(ρ+ωn ) =βωn+1〈ρ+ωn , J (ωn+1)〉 = 0. (4.10)

holds P+-a.s., and in particular,
J̄ν = 〈R+, Jν〉 = 0 (4.11)

for all ν ∈Ω.

10Recall the convention made after (1.1)
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Remarks. 1. Whenever Pνω > 0 and Pν′ω > 0, it follows from (4.9) that ρ+ν = ρ+ν′ .

2. The very special case where all reservoirs are identical in the sense that all the CPTP maps
Lω coincide with some L will be of interest in Section 4.4. One easily checks that in this cir-
cumstance the mean state

ρ̄+ := ∑
ω∈Ω

R+(ω) = ∑
ω∈Ω

π+ωρ+ω

satisfies L ρ̄+ = ρ̄+. Setting R(ω) =π+ωρ̄+, we derive

(LR)(ω) = ∑
ν∈Ω

PνωL R(ν) = ∑
ν∈Ω

π+νPνωL ρ̄+ = ∑
ν∈Ω

π+νPνωρ̄+ =π+ωρ̄+ = R(ω).

If L is irreducible, then we can conclude that R = R+, and (2.11) yields

π+ωρ+ω =L R(ω) =π+ωL ρ̄+ =π+ωρ̄+,

so that the states ρ+ω all coincide with ρ̄+.

4.2 Full Statistics of Entropy

While the entropy balance equation (4.4) and the related Landauer bound are clearly support-
ing the proposed interpretation of the quantum expectation value of the observable Jν, as de-
fined in (4.1), the fact that a real measurement of the energy transfer between the system S

and the reservoir Rν is unlikely to proceed through an “instantaneous” measurement of Jν
casts some doubts on the physical meaning of its higher moments, and more generally of its
spectral measure. This issue is not specific to RIS but is relevant to more general open quan-
tum systems (see [TLH07] and [JOPP12, Section 5.10]). In this section, we adopt an operational
point of view and consider a two-time measurement protocol of the entropy observables

SEω :=− logρEω =βω(HEω −Fω). (4.12)

Set Σ :=∪ω∈Ω sp(SEω) and for s ∈Σ let Πs(ω) denote the spectral projection of SEω for the eigen-
value s.11

Let the state of the joint system just before the coupling of S to Eωn+1 be the product state
ρ = ρS ⊗ρEωn+1

. A first measurement of SEωn+1
before the n+1th interaction thus yields the value

s ∈Σ with probability
p(s) = tr

(
ρΠs(ωn+1)

)
and leaves the joint system in the state

ρ|s = Πs(ωn+1)ρΠs(ωn+1)

tr
(
ρΠs(ωn+1)

) .

Once the interaction between Eωn+1 and S is complete, the state of the joint system has evolved
to

ρ′
|s =Uωn+1ρ|sU∗

ωn+1
= Uωn+1Πs(ωn+1)ρΠs(ωn+1)U∗

ωn+1

tr
(
ρΠs(ωn+1)

)
and the probability for the outcome of a second measurement of SEωn+1

to be s′ ∈Σ is

p(s′ | s) = tr(ρ′
|sΠs′(ωn+1)) = tr

(
Uωn+1Πs(ωn+1)ρΠs(ωn+1)U∗

ωn+1
Πs′(ωn+1)

)
tr

(
ρΠs(ωn+1)

) ,

11The convention here is that Πs (ω) = 0 whenever s 6∈ sp(SEω ).
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the second measurement reducing the state of the joint system to

ρ|ss′ =
Πs′(ωn+1)Uωn+1Πs(ωn+1)ρΠs(ωn+1)U∗

ωn+1
Πs′(ωn+1)

tr
(
Uωn+1Πs(ωn+1)ρΠs(ωn+1)U∗

ωn+1
Πs′(ωn+1)

) .

Applying Bayes’ rule, we conclude that the joint probability for the two successive measure-
ments of SEωn+1

to have the outcome ξ= (s, s′) ∈Σ×Σ is

p(ξ) = p(s′ | s)p(s) = tr
(
Uωn+1Πs(ωn+1)ρΠs(ωn+1)U∗

ωn+1
Πs′(ωn+1)

)= trHS
(Lωn+1,ξρS ),

where Lω,ξ is the CP map defined by

Lω,ξρ := e−s trHEω
((1⊗Πs′(ω))Uω(ρ⊗Πs(ω))U∗

ω). (4.13)

Moreover, the state of the system S after the two measurements is

ρ′
S = trHEωn+1

(ρ′
|ss′) =

Lωn+1,ξρS

trHS
(Lωn+1,ξρS )

.

Collecting the Markov sample path ω1,ω2, . . . and the sequence ξ1,ξ2, . . . of measurement out-
comes into a single extended quantum trajectory x = (xk )k∈N∗ , with

xk = (ωk ,ξk ) ∈X := ⋃
ω∈Ω

{ω}×Ξω, Ξω := sp(SEω)× sp(SEω),

yields the Entropy Process, a stochastic process with path space X :=XN
∗

and law QR0 ∈P (X)
determined by12

QR0 ([x1 · · ·xn]) := ∑
ω0∈Ω

πω0 Pω0ω1 · · ·Pωn−1ωn tr(Lωn ,ξn · · ·Lω1,ξ1ρω0 )

= Pω1ω2 · · ·Pωn−1ωn tr(Lωn ,ξn · · ·Lω1,ξ1 R0(ω1)).

According to a widely used physical terminology, the measure QR0 on the σ-algebra X is the
Full Statistics of Entropy, we denote the associated expectation functional by ER0 .

Observing that ∑
x1∈X

QR0 ([x1 · · ·xn]) =QLR0 ([x2 · · ·xn])

we conclude that if R0 is an ESS, then the entropy process is stationary,QR0 ∈Pφ(X).

4.2.1 Level-1: Entropy Production

In this section, we consider the statistical properties of the entropy increments. To this end, we
set

Σ×Σ 3 ξ= (s, s′) 7→ δξ := s′− s,

and for f ∈C (X,Rd ),

Sn f =
n−1∑
k=0

f ◦φk .

Introducing the functions

J= (Jω)ω∈Ω ∈C (X,RΩ), Jω(x) = 1{ω1=ω}δξ1,

12Recall (2.7).
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the total entropy increments in each reservoir during the first N interactions is described by
the random vector SNJ. Our next results concern the large N asymptotics of the sequence
(SNJ)N∈N∗ . We shall see, in particular, that at the level of expectations this asymptotics is gov-
erned by the observables (4.1). To formulate these results we need to introduce a few new
objects. For α ∈R let

L [α]
ω := ∑

ξ∈Ξω
e−αδξLω,ξ, (4.14)

and forα= (αν)ν∈Ω ∈RΩ, define a CP map on A∗ by

(L[α]R)(ω) := ∑
ν∈Ω

PνωL
[αν]
ν R(ν). (4.15)

Finally, denote by `(α) the spectral radius of L[α], which coincides with its dominant eigen-
value. The next two theorems summarize the asymptotic properties of the entropy increments,
their proofs will be given in Section 5.2.

Theorem 4.2 (Limit Theorems and Large Deviations Principle). Let R0 be an arbitrary extended
state in A∗+1.

(i) Under Assumption (STAT), for all ν ∈Ω, one has

lim
N→∞

ER0

[
1

N
SNJν

]
=−βνE[〈ρω0 , J̄ν(ω)〉].

In the following, we assume that L is irreducible, with ESS R+.

(ii) The strong law of large numbers holds, i.e.,QR0 -a.s.,

lim
N→∞

1

N
SNJν =−βν〈R+, Jν〉.

(iii) The limit13

e(α) := lim
N→∞

1

N
logER0 [e−α·SNJ] = log`(α) (4.16)

is a real-analytic convex function on RΩ.

(iv) The central limit theorem holds, i.e., as N →∞
1p
N

(
SNJ−ER0 [SNJ]

)
converges in law towards a centered Gaussian vector with covariance matrix

Cων = `ων−`ω`ν, (4.17)

where
`ω := (∂αω`)(0), `ων := (∂αν∂αω`)(0).

(v) The steady measureQR+ is φ-mixing, in particular

w∗−lim
n→∞ QR0 ◦φ−n =QR+ , (4.18)

for any R0 ∈A∗+1.

13Here and in the sequel “ ·” denotes the Euclidean inner product.
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(vi) For any Borel set G ⊂RΩ, the following large deviation estimates hold:

− inf
s∈G̊

I (s) ≤ liminf
N→∞

1

N
logQR0

(
1

N
SNJ ∈G

)
≤ limsup

N→∞
1

N
logQR0

(
1

N
SNJ ∈G

)
≤− inf

s∈G
I (s),

(4.19)

where G̊/G denote the interior/closure of G and the good rate function s 7→ I (s) is given by
the Legendre–Fenchel transform of the functionα 7→ e(−α),

I (s) := sup
α∈RΩ

(α · s −e(−α)) . (4.20)

4.2.2 Level-3: The Entropy Process

The empirical measures of the entropy process is the family (µn)n∈N∗ of P (X)-valued random
variables

X 3 x 7→µn := 1

n

n−1∑
k=0

δφk (x).

We denote by
Xfin = ⋃

k≥0
Xk

the set of finite words x = x1 · · ·xn on the alphabet X, and let |x | = n be the length of x .

Theorem 4.3. Assume that L is irreducible with ESS R+, and let R0 ∈A∗+1.
(i) For f ∈C (X), the limit

Q( f ) := lim
n→∞

1

n
logER0

[
en〈 f ,µn〉

]
(4.21)

exists, defines a 1-Lipschitz function on C (X), and does not depend on the choice of R0.

(ii) For any Borel set M ⊂P (X), the following large deviation estimates hold:

− inf
µ∈M̊

I(µ) ≤ liminf
n→∞

1

n
logQR0

(
µn ∈ M

)≤ limsup
n→∞

1

n
logQR0

(
µn ∈ M

)≤− inf
µ∈M

I(µ), (4.22)

where M̊/M denote the interior/closure of M and the good convex rate function µ 7→ I(µ) is
the restriction of the Legendre–Fenchel transform of the function f 7→Q( f ) to P (X), i.e.,

I(µ) := sup
f ∈C (X)

(〈 f ,µ〉−Q( f )
)

, (4.23)

and satisfies I(µ) =+∞ for µ ∈P (X) \Pφ(X).

(iii) For µ ∈Pφ(X), the limit

ς(µ) := lim
n→∞〈− 1

n
log(QR+|Xn ),µ〉 =− lim

n→∞
1

n

∑
x∈Xfin
|x |=n

log(QR+([x]))µ([x]),

exists and defines a lower-semicontinuous affine map Pφ(X) 3µ 7→ ς(µ) such that ς(QR+) =
h(QR+), the Kolmogorov–Sinai entropy of QR+ w.r.t. the shift φ. Moreover,

I(µ) = ς(µ)−h(µ)

holds for any µ ∈Pφ(X).
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4.3 The Fluctuation Theorem

We are now in position to formulate the Fluctuation Relations (FRs for short) satisfied by the
full statistics (SNJ)N∈N∗ . The first FR dates back to 1905 and the celebrated work of Einstein
on Brownian motion. The reader is referred to [RMM07] for an overview of the subsequent de-
velopments pertaining to classical physical systems. We shall follow the mathematical formu-
lation of FRs through large deviation estimates initiated by Gallavotti and Cohen in their foun-
dational works on steady-state FRs in chaotic dynamics [GC95a, GC95b]. See also [JPRB11] for
a general approach to transient and steady-state FRs in the framework of classical dynamical
systems. The direct quantization of a classical observable obeying a FR fails to satisfy a “quan-
tum FR”, see [JOPP12, Section 5.10] for concrete examples. In fact, to obtain an operationally
meaningful extension of FRs to the quantum regime, one has to take into account the peculiar
status of measurements in quantum mechanics. This precludes, in particular, the existence of
steady-state FRs at the quantum scale. We refer the interested reader to [EHM09, CHT11] for
exhaustive reviews and extensive lists of references to the physics literature. The mathemati-
cally oriented reader can also consult [DRM06, DDRM08, CM12, JPW14] for a study of entropic
FRs in the Markovian approximation of open quantum systems, [DR09, JLP13, JPPP15, BJP+15,
BPR19, BPP20] for studies of two-time measurement protocols and to [BJPP18, BCJP21] for ex-
tensions to repeated quantum measurements.

Fluctuation relations are deeply linked with microscopic time-reversal invariance, as is al-
ready apparent in Onsager’s theory of irreversible processes [Ons31a, Ons31b]. Hence, we need
to assume that our MRIS has some form of time-reversal invariance.

The driving Markov chain (π,P ) is said to be reversible whenever the probability P is invari-
ant upon reversing the chronological order of events, that is, for any cylinder [ω0, . . . ,ωn] one
has

P([ω0, . . . ,ωn]) =P([ωn , . . . ,ω0]).

It is well known, and straightforward to check, that reversibility is equivalent to the so-called
Detailed Balance condition, namely:

πωPων =πνPνω

for allω,ν ∈Ω. Note that under this condition one hasπP =π, so that the following assumption
implies (STAT).

Assumption (DB). The driving Markov chain (π,P ) satisfies detailed balance.

Our second, complementary assumption ensures the reversibility of the interaction pro-
cesses.

Assumption (TRI). There are anti-unitary involutions θ and θω acting on HS and HEω , such
that

θωHEω = HEωθω, (θ⊗θω)Uω =U∗
ω(θ⊗θω),

for all ω ∈Ω.

Whenever Assumption (TRI) holds, we denote Θ : X 7→ θXθ the map induced on A and on
A.

Theorem 4.4 (Fluctuation Theorem). If L is irreducible, then Assumptions (TRI) and (DB) imply
that the rate function of the large deviation principle (4.19) satisfies the Fluctuation Relation

I (−s)− I (s) = 1 · s,
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for all s ∈ RΩ, where 1 = (1,1, . . . ,1). This relation is associated with the following symmetry of
the cumulant generating function

e(1−α) = e(α), (4.24)

for allα ∈RΩ.

Since SNJν accounts for the entropy produced by the interaction with reservoir Rν during
the N first interactions, the total entropy produced during this period is given by

σN = ∑
ν∈Ω

SNJν = SN 1 ·J.

Applying the contraction principle [DZ10, Theorem 4.2.1] to the map J 7→ 1 ·J immediately
yields the following

Corollary 4.5. Under the assumptions of Theorem 4.4 the sequence of entropy production ran-
dom variable (σN )N∈N∗ satisfies a large deviation principle

− inf
s∈S̊

Ī (s) ≤ liminf
N→∞

1

N
logQR0

(σN

N
∈ S

)
≤ limsup

N→∞
1

N
logQR0

(σN

N
∈ S

)
≤− inf

s∈S
Ī (s),

for any R0 ∈A∗+1 and any Borel set S ⊂R, with the rate function

Ī (s) := inf{I (s) | s ∈RΩ,1 · s = s}

satisfying the Fluctuation Relation
Ī (−s)− Ī (s) = s.

The last relation implies

lim
δ↓0

lim
N→∞

(
QR0

(∣∣σN
N + s

∣∣< δ)
QR0

(∣∣σN
N − s

∣∣< δ))1/N

= e−s ,

which is often written as
QR0

(σN
N =−s

)
QR0

(σN
N = s

) ' e−sN

in the physics literature. It shows that negative values of the entropy production rate are expo-
nentially suppressed relative to positive values, thus providing a deep refinement of the Second
Law (4.5).

Remark. Theorems 4.2 and 4.4 as well as Corollary 4.5 concern the full statistics of entropy
fluxes into the reservoirs. Relation (4.12) links entropy to energy and can be used to convert
these results into statements on the full statistics of the energy fluxes i = (iω)ω∈Ω, where iω =
−Jω/βω. We shall leave the details of this alternative formulation to the reader.

We provide a proof of Theorem 4.4 based on the spectral properties of L[α] in Section 5.3.
In the remaining part of this section, we discuss some other consequences of time-reversal in-
variance for the full statistics process and the information theoretic interpretation of the Fluc-
tuation Theorem. We assume both Conditions (TRI) and (DB).

We start with two general constructions associated to any stationary processQ ∈Pφ(X).
• Setting ξ= (s, s′) 7→ ξ̂= (s′, s) and x = (ω,ξ) 7→ x̂ = (ω, ξ̂), the involution of Xfin defined by

x = x1 · · ·xn 7→ x̂ = x̂n · · · x̂1 implements time reversal. One easily checks that

Q̂([x]) :=Q([x̂]),

uniquely extends to probability measure Q̂ ∈Pφ(X): the time-reversed process.
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• Let X :=XZ. There is a unique probability measureQ ∈Pφ(X)14 such that

Q(Z ) =Q◦φn(Z )

for any finite cylinder Z ⊂X such that φn(Z ) is X -measurable.
One easily checks that the time-reversed and two-sided measures Q̂ andQ are related by

Q̂=Q◦ϑ,

where ϑ is the time-reversal involution of X defined by ϑ(x)n = x̂−n . The expectation func-
tional ER+ of the two-sided measure QR+ associated to QR+ will be particularly useful to write
the Green–Kubo formula, in Theorem 4.7 (ix) below, in a simple and standard form.

Theorem 4.6. Let L be irreducible, with ESS R+. Under Assumptions (TRI) and (DB), the fol-
lowing hold.

(i) The two measuresQR+|Xn and Q̂R+|Xn are equivalent for all n and the log-likelihood ratio

σ̃n(x) := log
dQR+|Xn

dQ̂R+|Xn

(x),

satisfies
sup
x∈X

|σn(x)− σ̃n(x)| ≤ c, (4.25)

for some constant c.

(ii) For α ∈R, one has

lim
n→∞

1

n
Entα[Q̂R+ |Xn |QR+ |Xn ] = e(α1).

(iii) ep = 0 iff Q̂R+ =QR+ .

(iv) The level-3 fluctuation relation

I(Q̂) = I(Q)+〈σ1,Q〉,
holds for allQ ∈Pφ(X).

Remark. The estimate (4.25) expresses a strong form of equivalence between the steady state
thermodynamic entropy production σN and the information theoretic quantity σ̃N . Techni-
cally, these two sequences of random variables have exponentially equivalent laws, so that,
by [DZ10, Theorem 4.2.13], Corollary 4.5 holds whenσN is replaced by σ̃N . By continuity of the
map Q 7→ 〈σ1,Q〉, starting with Part (iv) of the last theorem, the contraction principle [DZ10,
Theorem 4.2.1] provides an alternative proof of this version of Corollary 4.5. We also observe
that, by an elementary feature of Rényi’s relative α-entropy, the function

ẽN (α) = logER+[e−ασ̃N ] = Entα[Q̂R+ |XN |QR+ |XN ],

satisfies the symmetry ẽN (1−α) = ẽN (α). By Part (ii) of the previous theorem, this symmetry is
inherited by the functionα 7→ e(α1), a characteristic of the fluctuation theorem in Corollary 4.5
(σ̃N is called canonical entropy production in [JPS17], where it plays a central role).

We close this section with a brief mention of hypothesis testing of time’s arrow, which deals
with the empirical distinguishability of the two measures QR+ and Q̂R+ when ep > 0. In the
limit of large sample, this is asymptotically quantified by various exponents (Stein’s, Chernoff’s
and Hoeffding’s). Not surprisingly, these exponents are all related to the generating function
e(α). We shall not discuss the details of these relations here since they are identical to the one
described in [BJPP18, Sections 2.5 and 2.9].

14We use the same symbol φ to denote the left shift on X and X.
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4.4 Linear Response

In this section, we show that, as explained in [Gal96], the Fluctuation Theorem 4.4 can be
viewed as an extension to far from equilibrium regimes of Linear Response Theory. The latter
deals with the reaction of physical systems to a small deviation from a thermal equilibrium sit-
uation, characterized by a well-defined temperature and vanishing entropy production. Since
RIS in general, and MRIS in particular, evolve according to a time-dependent Hamiltonian,
they are not expected to reach thermal equilibrium, even when all reservoirs are in thermal
equilibrium at the same temperature. In this section we study a class of MRIS admitting a
steady state qualifying as a thermal equilibrium in the above sense. Moreover, we shall see that
the usual linear response properties near thermal equilibrium, Green–Kubo Formula, Onsager
Reciprocity Relations and Fluctuation–Dissipation Relations, hold in these cases, and can be
derived from Theorem 4.4.

Our starting point is a MRIS satisfying the following equilibrium conditions

Assumption (EQU).
• (KMS) is satisfied with all reservoirs at the same temperature: β= β̄1.

• L is irreducible, with the unique ESS R+.

• Entropy production vanishes: 〈R+, JS〉 = β̄
∑
ω∈Ω

〈R+, Jω〉 = 0.

We consider the family of MRIS obtained from the previous one by modifying the reservoir
temperatures, i.e., by replacing the “equilibrium” probe states by the family

ρEω,ζ := e−(β̄−ζω)(HEω−Fω,ζ), Fω,ζ :=− 1

β̄−ζω
logtre−(β̄−ζω)HEω ,

parametrized by ζ ∈ RΩ. To express the dependence of a quantity A w.r.t. the parameter ζ, we
will write Aζ. In particular, A0 denotes an equilibrium quantity.

As the name suggest, linear response theory aims at expressing the changes of various prop-
erties of the perturbed ESS R+ζ to first order in the perturbation parameter ζ. Of particular
interest are the so-called kinetic coefficients

Lων := ∂ζν J̄ωζ|ζ=0,

where (recall (4.2) (4.3))
J̄ωζ = 〈R+ζ, Jωζ〉

is the steady-state ensemble average of the energy flux into reservoir Rω.

Theorem 4.7. Under Assumption (EQU), the following statements hold for all ζ ∈RΩ:
(i) Lζ is irreducible. It is primitive whenever L is.

(ii) For P-almost everyω ∈Ω one has ∑
ν∈Ω

J̄νζ(ω) = 0.

(iii) With β−1 = ((β̄−ζω)−1)ω∈Ω, the limit

lim
N→∞

1

N
β−1 ·SNJζ = 0

holds QR0ζ-a.s.
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(iv) The Gaussian measure obtained in Theorem 4.2 (iii) as the limiting law of

1p
N

(
SNJζ−ER+ζ

[
SNJζ

])
as N →∞ is supported by the hyperplane

Zζ := {ς ∈RΩ |β−1 ·ς= 0}.

(v) The cumulant generating function (4.16) satisfies the translation symmetry

eζ(α+γβ−1) = eζ(α) (4.26)

for allα ∈RΩ and γ ∈R.

(vi) The rate function of the LDP (4.19) satisfies

Iζ(s) =+∞

whenever s 6∈Zζ.

Assuming also that the time-reversal symmetries (TRI) and (DB) hold, one further has:

(vii)

Lων = 1

2β̄2
(∂αν∂αωe0)(0). (4.27)

(viii) The Onsager Reciprocity Relations
Lων = Lνω,

hold. In addition, the kinetic coefficients are related to the covariance matrix of the limit-
ing Gaussian measure in Theorem 4.2 (iii) by the Fluctuation–Dissipation Relations

Lων = 1

2β̄2
Cων.

(ix) The Green–Kubo formula

Lων = lim
ε↓0

1

β̄2

∑
n∈Z

e−|n|εER+ [Jω ◦φnJν] (4.28)

holds, all the quantities on the right-hand side of the equality (4.28) being evaluated at
equilibrium ζ= 0.

5 Proofs

5.1 Proof of Proposition 4.1

Since L is irreducible, it has a unique ESS R+ and the transition matrix P has the unique and
faithful invariant probability π+. We set Qνω = π+ωPωνπ−1+ν, observing that Q is again a right
stochastic matrix with unique and faithful invariant probability π+. Define the following maps
on A∗,

(L R)(ω) := LωR(ω), (ΠR)(ω) := π+ωR(ω),

(P R)(ω) := ∑
ν∈Ω

PνωR(ν), (QR)(ω) := ∑
ν∈ΩQνωR(ν),

(5.1)
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so that the factorizations L=P L and Q =ΠP ∗Π−1 hold.

(⇐) If Pνω > 0 implies (4.9), then it follows from (2.12) and (4.8) that the time-averaged entropy
production vanishes P-almost surely

ep(ω) = 〈R+, JS〉 =
∑
ω∈Ω

tr
(
(R+(ω)⊗ρEω)U∗

ω[SEω ,Uω]
)

= ∑
ω,ν∈Ω

π+νPνω tr
(
(Uω(ρ+ν⊗ρEω)U∗

ω−ρ+ν⊗ρEω)SEω

)
= ∑
ω,ν∈Ω

π+νPνω tr
(
(ρ+ω−ρ+ν)⊗ρEωSEω

)= 0.

(⇒) Assuming now that the time-averaged entropy production vanishes P-almost surely, we
get, using (4.8), (2.13) and the entropy balance (4.7),

0 = ep(ω) = 〈R+, JS〉 = E+[〈ρ+ω0 , JS(ω1)〉]
= E+[Ent(Uω1 (ρ+ω0 ⊗ρEω1

)U∗
ω1
|Lω1ρ+ω0 ⊗ρEω1

)+S(ρ+ω0 )−S(Lω1ρ+ω0 )].
(5.2)

Recalling the definition of the right stochastic matrix Q, we can write

E+[S(Lω1ρ+ω0 )] = ∑
ν,ω∈Ω

π+νPνωS(Lωρ+ν) = ∑
ω∈Ω

π+ω
∑
ν∈Ω

QωνS(Lωρ+ν).

Invoking the concavity of the entropy map ρ 7→ S(ρ) [Pet08, Theorem 3.7], we derive

E+[S(Lω1ρ+ω0 )] ≤ ∑
ω∈Ω

π+ωS

( ∑
ν∈Ω

QωνLωρ+ν

)
= ∑
ω∈Ω

π+ωS((LQ∗ρ+)(ω)).

By (2.11), we have

LQ∗ρ+ =LQ∗Π−1L R+ =LΠ−1P L R+ =Π−1L LR+ =Π−1L R+ = ρ+, (5.3)

so that
E+[S(Lω1ρ+ω0 )] ≤ E+[S(ρ+ω0 )].

It follows that E+[S(ρ+ω0 )−S(Lω1ρ+ω0 )] ≥ 0. This inequality, together with the non-negativity
of relative entropy, allow us to deduce from (5.2) that

E+[Ent(Uω1 (ρ+ω0 ⊗ρEω1
)U∗

ω1
|Lω1ρ+ω0 ⊗ρEω1

)] = 0 = E+[S(ρ+ω0 )−S(Lω1ρ+ω0 )]. (5.4)

Writing the second identity as

∑
ω∈Ω

π+ω

(
S

( ∑
ν∈Ω

QωνLωρ+ν

)
− ∑
ν∈Ω

QωνS(Lωρ+ν)

)
= 0,

and combining the facts that von Neumann’s entropy is strictly convex [Car10, Theorem 2.10]
and π+ faithful, we derive that for all ν,ω ∈Ω such that Qων > 0, one has

Lωρ+ν =
∑
µ∈Ω

QωµLωρ+µ = ρ+ω,

where we used (5.3) to justify the last identity.
Since Qων > 0 iff Pνω > 0, the first equality in (5.4) further yields that

Uω(ρ+ν⊗ρEω)U∗
ω =Lωρ+ν⊗ρEω = ρ+ω⊗ρEω ,
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provided Pνω > 0. Thus, the family of states (ρ+ω)ω∈Ω has the required property.
The first equality in (4.10) follows from the fact that, wheneverρk (ω) = ρ+ωk for k ∈ {n,n+1},

then the previous identity implies that epn(ω) = 0. Assuming (KMS), the simple calculation

〈ρ+ν, J (ω)〉 = tr
(
(ρ+ν⊗ρEω)(HEω −U∗

ωHEωUω)
)

= tr
(
(ρ+ν−ρ+ω)⊗ρEωHEω

)= 0,

shows that the same identity leads to the second equality in (4.10). Finally, (4.3) immediately
leads to (4.11).

Remark. If L is irreducible and the family of states (κω)ω∈Ω satisfies

Uω(κν⊗ρEω)U∗
ω =κω⊗ρEω

for all pairs (ν,ω) ∈Ω×Ω such that Pνω > 0, then κω = ρ+ω for all ω ∈Ω.
To see this, we first note that

PνωLωπ+νκν = Pνωπ+νκω,

for any pair (ν,ω) ∈Ω×Ω. Summing both sides of this identity over ν yields

L PΠκ =Πκ, (5.5)

from which we deduce

L(PΠκ) =P (L PΠκ) =PΠκ,

and since L is irreducible, we can conclude that its unique fixed point in A∗+1 is R+ = PΠκ.
The second relation in (2.11) further gives

ρ+ =LΠ−1R+ =LΠ−1PΠκ

which, combined with (5.5) yields

κ =Π−1L PΠκ =LΠ−1PΠκ = ρ+.

5.2 Proofs of Theorem 4.2 and 4.3

We need some preparations. The next proposition summarizes the spectral properties of irre-
ducible CP maps on A∗ and their adjoints. Recall that, denoting r the spectral radius of such
a map, its peripheral spectrum is that part of its spectrum lying on the circle of radius r . Fol-
lowing the definition in usage in spectral theory (see, e.g., [Kat80, Section I.4]), we say that an
eigenvalue is simple when its algebraic multiplicity is 1.15

Proposition 5.1. Let Φ be an irreducible CP map on A∗ with spectral radius r > 0.
(i) r is an eigenvalue of Φ, with a unique faithful eigenvector R0 ∈ A∗+1. Moreover, to this

eigenvalue, the adjoint map Φ∗ has a unique eigenvector M0 > 0, such that 〈R0, M0〉 = 1.

(ii) There is p ∈N∗, the period of Φ, and a primitive pth root of unity ζ, such that the peripheral
spectrum of Φ is given by {rζk | 0 ≤ k < p}, each peripheral eigenvalue being simple.

15Note that this condition is stronger than the one used in many studies of the subject where eigenvalues are
called simple when their geometric multiplicity is 1 (as, e.g., in [EHK78, Sch06]).
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Proof. These results on CP maps are scattered through the literature, see, e.g., [EHK78, Gro81,
Sch06, FP09]. For the reader’s convenience we give some more precise indications.

(i) is well known, see, e.g., [EHK78, Section 2] or [Sch06, Theorem 3.1].

(ii) Following [EHK78] and setting

Ψ(X ) = 1

r
M−1/2

0 Φ∗(M 1/2
0 X M 1/2

0 )M−1/2
0 ,

defines a CPU map on A, such that sp(Φ) = r sp(Ψ), including algebraic and geometric multi-
plicities. Up to the simplicity of the peripheral eigenvalues, the statement follows from [EHK78,
Theorem 4.2]. From the latter, we infer the existence of a unitary U ∈A such thatΨ(U k ) = ζkU k

for k ∈ {0, . . . , p − 1}. Moreover, by [EHK78, Lemma 4.1], Ψ(U k X ) = ζkU kΨ(X ) holds for any
X ∈A and k ∈ Z. Denoting by R = M 1/2

0 R0M 1/2
0 the eigenvector of Ψ∗ to its eigenvalue 1, nor-

malized by 〈R,1〉 = 1, we can write

〈ζkU−k R, X 〉 = ζ−k〈Ψ∗(R),U k X 〉 = ζ−k〈R,Ψ(U k X )〉 = 〈R,U kΨ(X )〉 = 〈Ψ∗(U−k R), X 〉,
for all X ∈A, from which we deduce that Ψ∗(U−k R) = ζkU−k R. To show that peripheral eigen-
values ofΨ are simple, we follow the argument of the proof of [CP15, Lemma 5.3]. Suppose that
ζk , as an eigenvalue of Ψ, is not simple. The Jordan normal form of Ψ implies that, for some
Y ∈A, Ψ(U k Y ) = ζkU k Y +U k . It follows that

ζk〈R,Y 〉 = ζk〈U k R,U k Y 〉 = 〈Ψ∗(U k R),U k Y 〉
= 〈U k R,Ψ(U k Y )〉 = 〈U k R,ζkU k Y +U k〉 = ζk〈R,Y 〉+1,

which is absurd.

Lemma 5.2. L[α] is irreducible/primitive for allα ∈RΩ iff L is.

Proof. Forω ∈Ωdenote by (ϕω,s)s∈Σω an orthonormal eigenbasis of SEω , with SEωϕω,s = ςω,sϕω,s .
One easily derives the following Kraus representation of the TPCP-map Lω

Lωρ = ∑
s,s′∈Σω

Vω,s,s′ρV ∗
ω,s,s′ ,

where Vω,s,s′ ∈B(HS ) is the operator associated to the sesquilinear form

〈χ,Vω,s,s′ψ〉 := e−ςω,s /2〈χ⊗ϕω,s′ ,Uωψ⊗ϕω,s〉.
Further setting

Vω,s,s′,ν := p∗
ω

√
PνωVν,s,s′pν, (5.6)

where pω : `2(Ω;HS ) 3ψ 7→ψ(ω) ∈HS , we can write a Kraus decomposition of L as

LR = ∑
ω,ν∈Ω

s,s′∈Σν

Vω,s,s′,νRV∗
ω,s,s′,ν.

Recalling (4.14) and (4.15), forα ·Jn =∑
ω∈ΩαωJn,ω, and X ∈A one has

EQ[e−α·Jn X (ωn+1)] = E
[

tr
(

X (ωn+1)L
[αωn ]
ωn

· · ·L [αω1 ]
ω1

ρω0

)]
= 〈L[α]nR, X 〉

where L[α] has the representation

L[α]R = ∑
ω,ν∈Ω

s,s′∈Σν

e−αν(ςν,s′−ςν,s )Vω,s,s′,νRV∗
ω,s,s′,ν.

Note that this representation extends L[α] to a CP map on B1(HS ) whose range is in A∗. In
particular, the left/right eigenvectors of L[α] to non-zero eigenvalues are in A/A∗. Comparing
the Kraus families of L and L[α] yields the claim.
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Lemma 5.3. Let K be a CPTP map on A∗.
(i) If K is positivity improving and R ∈A∗+, then there exists a constant `R > 0 such that

KS ≥ `R〈S,1〉R,

holds for all S ∈A∗+.

(ii) If KR+ = R+ for some faithful R+ ∈A∗+1, then there exists a constant ¯̀R+ , which does not
depend onK, and such that

KS ≤ ¯̀
R+〈S,1〉R+,

holds for all S ∈A∗+.

Proof. (i) It suffices to prove the claim for R 6= 0 and S ∈R = {S ∈A∗+ | 1 ≤ Tr(S) ≤ Tr(1)}. Setting

`(S) = minsp(S),

one has `(KS) > 0, and since R is compact,

`= inf
S∈R

`(KS) = min
S∈R

`(KS) > 0.

Invoking the spectral representation of S, we can write

S = ∑
s∈sp(S)

sPs ≥ s̄P s̄ ,

with s̄ = maxsp(S) > 0. It follows that, with r̄ = maxsp(R),

KS ≥ s̄KP s̄ ≥ s̄`1≥ Tr(S)

Tr(1)
`1≥ `Tr(S)

Tr(1)

R

r̄
= `R〈S,1〉R.

(ii) For S ∈A∗+, with r+ = minsp(R+) > 0, one has

S = ∑
s∈sp(S)

sPs ≤
∑

s∈sp(S)
s 1≤ Tr(S)1= 〈S,1〉1≤ 1

r+
〈S,1〉R+,

and hence

KS ≤ 1

r+
〈S,1〉KR+ = ¯̀R+〈S,1〉R+.

For P,Q ∈ P (X) we write P 4 Q whenever there exists a constant 1 ≤ C < ∞ such that
P(A) ≤CQ(A) for all A ∈X . Note that this implies 〈 f ,P〉 ≤C〈 f ,Q〉 for all non-negative f ∈C (X)
as well as P¿Q.

Lemma 5.4. If L is irreducible with ESS R+, then the following hold.
(i) QR0 4QR+ for any R0 ∈A∗+1.

(ii) If R0 is faithful, thenQR+ 4QR0 , and in particularQR0 andQR+ are equivalent.

Proof. (i) Since R+ is faithful, one has

R = R1/2
+ (R−1/2

+ RR−1/2
+ )R1/2

+ ≤ ‖R1/2R−1/2
+ ‖2R+ =C R+

from which we deduce that

Pω1ω2 · · ·Pωn−1ωn tr(Lωn ,ξn · · ·Lω1,ξ1 R0(ω1)) ≤C Pω1ω2 · · ·Pωn−1ωn tr(Lωn ,ξn · · ·Lω1,ξ1 R+(ω1)),
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and hence QR0 (A) ≤CQR+(A) for all A = [x1 · · ·xn] in the semi-algebra of finite cylinders. Since
elements of the algebra X0 generated by finite cylinders are finite disjoint unions of such cylin-
ders [Wal81, Theorem 0.1], this inequality extends by additivity to any A ∈X0. Define the prob-
ability Q̄= 1

2 (QR0+QR+) and let A ∈X , theσ-algebra generated by X0. By [Wal81, Theorem 0.7],
for any ε > 0 there exists B ∈ X0 such that Q̄(A∆B) < ε/2. It follows that QR0 (A∆B) < ε and
QR+(A∆B) < ε and hence

|QR0 (A)−QR0 (B)| < ε, |QR+(A)−QR+(B)| < ε.

We conclude that

QR0 (A) =QR0 (B)+ (QR0 (A)−QR0 (B))

≤CQR+(B)+ε
≤CQR+(A)+C (QR+(B)−QR+(A))+ε
≤CQR+(A)+ (C +1)ε,

which shows thatQR0 (A) ≤CQR+(A).
The same argument provides a proof of (ii).

We write the concatenation of two finite words x , y ∈ Xfin as x y . The following Lemma
establishes some decoupling properties of the full statistics QR0 which are central to [CJPS19]
and will allow us to invoke their main results.

Lemma 5.5. Assume that L is irreducible, with ESS R+. The following hold for any R0 ∈A∗+1.
(i) The Selective Lower Decoupling property: There are constants τ ∈ N and C > 0 such that,

for any x , y ∈Xfin there is z ∈Xfin, with |z | ≤ τ, and

QR0 ([x z y]) ≥CQR0 ([x])QR+([y]). (5.7)

(ii) The Upper Decoupling property: Their is a constant C such that, for all N ∈ N and all
x , y , z ∈Xfin with |z | = N ,

QR+([x z y]) ≤ ∑
w∈Xfin
|w |=N

QR+([xw y]) ≤CQR+([x])QR+([y]). (5.8)

(iii) There is a constant c such that, for any x ∈Xfin and any k ∈N, there is z ∈Xfin with |z | = k
and

QR0 ([x z]) ≥ e−ckQR0 ([x]).

Proof. (i) Since, for any τ ∈N,∑
z∈Xfin
|z |≤τ

QR0 ([x z y]) ≤ |{z ∈Xfin | |z | ≤ τ}| max
z∈Xfin
|z |≤τ

QR0 ([x z y]),

it suffices to show that the sum at the left-hand side is bounded below by the right-hand side
of (5.7). With xk = (ωk ,ξk ), yk = (νk ,ηk ) and zk = (µk ,ρk ), we have

QR0 ([x z y]) =(Pω1ω2 · · ·Pωn−1ωn )Pωnµ1 (Pµ1µ2 · · ·Pµl−1µl )Pµlν1 (Pν1ν2 · · ·Pνm−1νm )

〈(Lνm ,ηm · · ·Lν1,η1 )(Lµl ,ρl · · ·Lµ1,ρ1 )(Lωn ,ξn · · ·Lω1,ξ1 )R0(ω1),1〉,
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and using the fact that
∑
ξ∈Ξω Lωξ =Lω, we get∑

ρ1,...,ρl

QR0 ([x z y]) =(Pω1ω2 · · ·Pωn−1ωn )Pωnµ1 (Pµ1µ2 · · ·Pµl−1µl )Pµlν1 (Pν1ν2 · · ·Pνm−1νm )

〈(Lνm ,ηm · · ·Lν1,η1 )(Lµl · · ·Lµ1 )(Lωn ,ξn · · ·Lω1,ξ1 )R0(ω1),1〉.

Setting

R(µ|x) = (PωnµLωn ,ξn )(Pωn−1ωn Lωn−1,ξn−1 ) · · · (Pω1ω2Lω1,ξ1 )R0(ω1),

we can write∑
ρ1,...,ρl

QR0 ([x z y]) =Pµlν1 (Pν1ν2 · · ·Pνm−1νm )

〈(Lνm ,ηm · · ·Lν1,η1 )Lµl (Pµl−1µl Lµl−1 · · ·Pµ1µ2Lµ1 )R(µ1|x),1〉,

and hence∑
z1,...,zl−1,ρl

QR0 ([x z y]) = Pµlν1 (Pν1ν2 · · ·Pνm−1νm )〈(Lνm ,ηm · · ·Lν1,η1 )Lµl (Ll−1R( · |x))(µl ),1〉,
= 〈(Ll−1R( · |x))(µl ),L ∗

µl
(Pµlν1L

∗
ν1,η1

) · · · (Pνm−1νm L ∗
νm ,ηm

)1〉,
= 〈(Ll−1R( · |x))(µl ), X (µl |y)〉,

with

X (µ|y) =L ∗
µ (Pµν1L

∗
ν1,η1

) · · · (Pνm−1νm L ∗
νm ,ηm

)1.

It follows that ∑
z1,...,zl

QR0 ([x z y]) =∑
µ
〈(Ll−1R( · |x))(µ), X (µ|y)〉 = 〈Ll−1R( · |x), X ( · |y)〉. (5.9)

Since L is irreducible, there is τ ∈ N∗ such that K = ∑
k<τLk is positivity improving. Hence,

invoking Lemma 5.3 (i), we can write∑
z∈Xfin
|z |≤τ

QR0 ([x z y]) = 〈KR( · |x), X ( · |y)〉 ≥ `R+〈R( · |x),1〉〈R+, X ( · |y)〉

with

〈R( · |x),1〉 = 〈(Lωnξn )(Pωn−1ωn Lωn−1,ξn−1 ) · · · (Pω1ω2Lω1,ξ1 )R0(ω1),1〉 =QR0 ([x]),

and

〈R+, X ( · |y)〉 =∑
µ

Pν1ν2 · · ·Pνm−1νm 〈Lνm ,ηm · · ·Lν1,η1 Pµν1LµR+(µ),1〉

= Pν1ν2 · · ·Pνm−1νm 〈Lνm ,ηm · · ·Lν1,η1 (LR+)(ν1),1〉 =QR+([y]),

concluding the proof.

(ii) Note that, the first inequality in (5.8) being obvious, it suffices to derive the second one. For
x , y ∈Xfin, starting with Relation (5.9) and invoking Lemma 5.3 (ii), we get∑

w∈Xfin
|w |=N

QR+([xw y]) = 〈LN−1R( · |x), X ( · |y)〉 ≤ ¯̀R+〈R( · |x),1〉〈R+, X ( · |y)〉,

where R( · |x) and X ( · |y) are as in the proof of Part (i) (with R0 = R+). The claimed inequality
follows from the last identities in the proof of Part (i).
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(iii) This is a simple variation on the first part of [CJPS19, Lemma 3.5], including its proof. Given
x ∈Xfin and k ∈N, one has

QR0 ([x]) = ∑
z∈Xfin
|z |=k

QR0 ([x z]) ≤ |X|k max
z∈Xfin
|z |=k

QR0 ([x z]).

Thus, there is z ∈Xfin such that |z | = k and

QR0 ([x z]) ≥ |X|−kQR0 ([x]).

5.2.1 Proof of Theorem 4.2

(i) Observing that
L [α]
ω ρ = trHEω

(
(1⊗e−αSEω )Uω(ρ⊗e−(1−α)SEω )U∗

ω

)
,

it is clear that the mapα 7→ L[α] is real analytic, and differentiation yields

∂αν〈L[α]R, X 〉|α=0 = 〈LνR, X 〉, (5.10)

with
(LνR)(ω) = Pνω trHEν

(
[Uν,SEν](R(ν)⊗ρEν)U∗

ν

)
.

In particular, invoking (4.1),
〈LνR,1〉 =βν〈R, Jν〉, (5.11)

and hence

QR0 [SNJω] =−∂αωQR0 [e−α·SNJ]|α=0 =−∂αω〈L[α]N R0,1〉|α=0

=
N−1∑
k=0

〈L[α](N−k−1)(−∂αωL[α])L[α]k R0,1〉|α=0

=−
N−1∑
k=0

βω〈Lk R0, Jω〉 =−
N−1∑
k=0

βωE[〈ρk (ω), Jω(ωk+1)〉].

The assertion thus follows from Theorems 3.2 and 3.3.

(ii) Invoking Lemma 5.5 (ii), it follows from [CJPS19, Lemma A.2] that the shift φ is totally er-
godic forQR+ .16 In particular, we have

lim
N→∞

1

N
SNJ= ER+ [J],

QR+-a.s. From (i) and (4.3) we deduce ER+ [Jν] = −βνE+[〈ρω0 , J̄ν(ω)〉] = −βν〈R+, Jν〉 and the
result follows from Lemma 5.4 (i) which impliesQR0 ¿QR+ .

(iii) Applying [CJPS19, Theorem 2.7 (i)], yields that the limit

e(α) = lim
N→∞

1

N
logER+ [e−α·SNJ]

exists, is finite, and defines a Lipschitz function on RΩ. To identify the limit, we observe that

ER+[e−α·SNJ] = 〈L[α]N R+,1〉.
16Total ergodicity means thatQR+ is φn -ergodic for any n ∈N∗.
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Since L is irreducible, so is L[α] for allα ∈RΩ by Lemma 5.2. Thus, denoting by `(α) the spectral
radius of L[α], there is A∗+ 3 Rα > 0 such that L[α]Rα = `(α)Rα, and consequently

‖R1/2
α R−1/2

+ ‖−2〈L[α]N Rα,1〉 ≤ 〈L[α]N R+,1〉 ≤ ‖R1/2
+ R−1/2

α ‖2〈L[α]N Rα,1〉.

It follows that e(α) = log`(α) for allα ∈RΩ.
Next, for R0 ∈A∗+1, it follows from Lemma 5.4 (ii) that

ER0 [e−α·SNJ] ≤C1ER+ [e−α·SNJ] (5.12)

for some constant C1 > 0. Moreover, by Lemma 5.5 (i), there is M ∈N and C2 > 0 such that, for
all x ∈Xfin, ∑

z∈Xfin,|z |≤M
QR0 ([z x]) ≥C2QR+([x]),

and hence, using the fact that SM+NJ= SMJ+SNJ◦φM , and with an obvious abuse of notation,

C2ER+[e−α·SNJ] =C2
∑

x∈Xfin
|x |=N

e−α·SNJ(x)QR+([x])

≤ ∑
z∈Xfin
|z |≤M

∑
x∈Xfin
|x |=N

e−α·SNJ(x)QR0 ([z x])

≤ ∑
x∈Xfin

|x |=M+N

e−α·SM+NJ(x)eα·SMJ(x)QR0 ([x])

≤ eM |α|‖J‖∞ ER0 [e−α·SM+NJ]. (5.13)

Combining the upper and lower bounds (5.12)–(5.13) yields

lim
N→∞

1

N
logER0 [e−α·SNJ] = lim

N→∞
1

N
logER+[e−α·SNJ] = log`(α).

The convexity of RΩ 3α 7→ log`(α) is a consequence of Hölder’s inequality. Finally, forα0 ∈RΩ,
Proposition 5.1 (ii) implies that `(α0) is a simple positive eigenvalue of L[α0]. Since L[α] is an
entire analytic function ofα ∈CΩ, it follows from regular perturbation theory [Kat80, Chapter 2,
Theorem 1.8] that ` extends to an analytic function in a complex neighborhood ofα0.

(iv) Invoking regular perturbation theory for α in a sufficiently small complex neighborhood
U ⊂CΩ of 0, we can write

〈L[α]N R0,1〉 = `(α)N
p−1∑
k=0

ζkN 〈R0, Xk (α)〉〈Rk (α),1〉+〈L[α]N
< R0,1〉,

where ζ is a primitive pth-root of unity, 〈Rk (α), X j (α)〉 = δk j , R+ = R0(α)+O(α), 1= X0(α)+O(α)

and L[α]
< has spectral radius r (α) such that r (α) < 1−2δ< 1−δ< |`(α)| for some small δ> 0. It

follows that

1

N
logER0 [e−α·SNJ] = log`(α)+ 1

N
log

(
1+O(α)+O

(
1−2δ

1−δ
)N

)
, (5.14)

forα ∈U and N ∈N∗. Thus, one has

lim
N→∞

1

N
logER0 [e−α·(SNJ−ER0 [SNJ])] = log`(α)−α · (∇`)(0)

and the result follows from [Bry93, Proposition 1].
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(v) By Lemma 5.5 (ii) there is a constant C such that, for x , y ∈Xfin and n ≥ |x |,

QR+([x]∩φ−n([y])) = ∑
z∈Xfin
|x |+|z |=n

QR+([x z y]) ≤CQR+([x])QR+([y]).

A simple approximation argument, similar to the one in the proof of Lemma 5.4, gives that for
any Borel sets A,B ⊂X,

limsup
n→∞

QR+(A∩φ−n(B)) ≤CQR+(A)QR+(B). (5.15)

This estimate and a simple variation of [Orn72, Theorem 2.1] imply that QR+ is φ-mixing, from
what (4.18) immediately follows since QR0 ¿ QR+ . For the Reader’s convenience, we briefly
sketch Ornstein’s argument.

First, let us show that φ is weak-mixing forQR+ , i.e., for any A,B ∈X ,

lim
n→∞

1

n

n−1∑
k=0

∣∣∣QR+(A∩φ−k (B))−QR+(A)QR+(B)
∣∣∣= 0.

By a well known characterization of weak-mixing [Wal81, Theorem 1.26], this means that the
Koopman operator U : f 7→ f ◦φ which acts unitarily on the Hilbert space L2(X,dQR+) has
no point spectrum on the orthogonal complement of the constant functions. To prove this,
suppose that, on the contrary, Uϕ= eiθϕ for some non-vanishing ϕ⊥ 1. It follows that for any
n ∈ N we have U nϕ = einθϕ ⊥ 1. As shown in the proof of Part (ii), QR+ is φn-ergodic. Thus,
by another well known spectral characterization [Wal81, Theorem 1.6], 1 is a simple eigenvalue
of U n and hence θ ∉ 2πQ. As a consequence, φ̃ : z 7→ eiθz is a uniquely ergodic map of the
unit circle T [Wal81, Theorem 6.2], such that ϕ ◦φ = φ̃ ◦ϕ. Moreover, ergodicity and the fact
that U |ϕ| = |Uϕ| = |ϕ| imply that |ϕ| is constant. We can therefore assume w.l.o.g. that |ϕ| = 1,
which makes µ=QR+ ◦ϕ−1 a probability measure on T. It further follows from

〈 f ◦ φ̃,µ〉 = 〈 f ◦ φ̃◦ϕ,QR+〉 = 〈 f ◦ϕ◦φ,QR+〉 = 〈 f ◦ϕ,QR+〉 = 〈 f ,µ〉,

that µ is φ̃-invariant, and by unique ergodicity, thatµ is the normalized Haar measure ofT. Set-
ting Sa = {eiα | |α| < a}, Aa =ϕ−1(Sa), and using the fact that θ ∉ 2πQ, one can find a sequence
kn →∞ such that eiθkn → 1 and hence µ(Sa∆φ̃

−kn (Sa)) → 0. It follows that

limsup
n→∞

µ(Sa ∩ φ̃−n(Sa)) =µ(Sa) =QR+(Aa),

and since µ(Sa ∩φ̃−n(Sa)) =QR+(Aa ∩φ−n(Aa)), the estimate (5.15) yields, for sufficiently small
a > 0,

QR+(Aa) = limsup
n→∞

QR+(Aa ∩φ−n(Aa)) ≤CQR+(Aa)2 =Cµ(Sa)QR+(Aa) = C a

π
QR+(Aa) <QR+(Aa)

which is absurd, and establishes weak-mixing.
Next, we prove the mixing property. We shall invoke [Wal81, Theorem 1.24], which char-

acterizes weak-mixing of φ w.r.t. QR+ by the ergodicity of φ×φ w.r.t. QR+ ×QR+ . Defining the
φ×φ-invariant probability µn(A × B) = QR+(φ−n(A) ∩ B) we have to show that QR+ ×QR+ is
the unique weak-∗ limit point of the sequence (µn)n∈N. Let µ̄ be such a limit point. The esti-
mate (5.15) yields µ̄4QR+×QR+ and hence µ̄¿QR+×QR+ , and since the latter isφ×φ-ergodic,
we can conclude that µ̄=QR+ ×QR+ .

(vi) Follows from (iii) and the Gärtner–Ellis theorem [DZ10, Theorem 2.3.6].
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5.2.2 Proof of Theorem 4.3

In the stationary case R0 = R+, Lemma 5.5 allows us to invoke [CJPS19, Theorem 2.13] which
yields the existence of the limit (4.21) in Part (i), as well as Parts (ii). It remains to prove the
independence statement of Part (i), the large deviation bounds (4.22) in the non-stationary
cases, and Part (iii).

(i) Setting

QR0,n( f ) := 1

n
logER0 [en〈µn , f 〉],

we note that for f , g ∈C (X),

|QR0,n( f )−QR0,n(g )| ≤ ‖ f − g‖∞.

Given f ∈ C (X), let ( fm)m∈N ⊂ C (X) be such that fm is Xm-measurable and limm fm = f (e.g.,
fm(x) = f (x z) for |x | = m and some fixed z ∈X). One has

ER0 [en〈µn , fm〉] = ∑
x∈Xfin
|x |=n+m

e
∑n−1

k=0 fm (x1+k ,...,xm+k )PR0 ([x])

and proceeding as in the proof of Theorem 4.2 (iii), one shows

lim
n→∞QR0,n( fm) = lim

n→∞QR+,n( fm).

Finally, from

|QR0,n( f )−QR+,n( f )| ≤ |QR0,n( f )−QR0,n( fm)|+ |QR0,n( fm)−QR+,n( fm)|+ |QR+,n( fm)−QR+,n( f )|,

we derive
limsup

n→∞
|QR0,n( f )−QR+,n( f )| ≤ 2‖ f − fm‖∞,

and taking m →∞ shows that
Q( f ) = lim

n→∞QR0,n( f )

is independent of R0 and satisfies |Q( f )−Q(g )| ≤ ‖ f − g‖∞.

(ii) The proof of [CJPS19, Theorem 2.13] relies on the stationarity of the path-space measure
through the first statement of [CJPS19, Lemma 3.5]. In the non-stationary cases, this statement
can be replaced by Lemma 5.5 (iii), and the construction of the map ψn,t in [CJPS19, Proposi-
tion 3.1] modified as follows. Given integers t ≥ n ≥ 1, set

N = 2

⌊
t

2(n +τ)

⌋
, t ′ = N n,

where b ·c denotes the floor function and τ is the constant appearing in Lemma 5.5 (i). Invoking
the latter, to x = x1 · · ·x N ∈Xfin with |x i | = n, we associate z1 ∈Xfin, |z1| ≤ τ, such that

QR0 ([x1z1x2]) ≥CQR0 ([x1])QR+([x2]).

In a similar way, there is z2 ∈Xfin, with |z2| ≤ τ, and

QR0 ([x1z1x2z2x3]) ≥CQR0 ([x1z1x2])QR+([x3]) ≥C 2QR0 ([x1])QR+([x2])QR+([x3]).

Repeating this scheme yields z1, . . . z N−1 ∈Xfin, |z i | ≤ τ, such that

QR0 ([x1z1x2z2 · · ·z N−1x N ]) ≥C N−1QR0 ([x1])QR+([x2]) · · ·QR+([x N ]).
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Finally, invoking Lemma 5.5 (iii), we can find z N ∈Xfin such that |z1|+ · · ·+ |z N | = t − t ′ and

QR0 ([x1z1x2z2 · · ·z N−1x N z N ]) ≥ e−c|z N |QR0 ([x1z1x2z2 · · ·z N−1x N ])

≥ e−c|z N |C N−1QR0 ([x1])QR+([x2]) · · ·QR+([x N ]).

By Lemma 5.4 (i), one easily concludes that [CJPS19, Proposition 3.1] holds with P = QR0 and
the map ψn,t defined as

ψn,t (x) = x1z1x2z2 · · ·x N z N .

The remaining arguments leading to the large deviation estimates are the same as in [CJPS19].

(iii) The upper decoupling property, Lemma 5.5 (ii), allows us to invoke [CJPS19, Proposition 6.3]
which yields the required statements.

5.3 Proof of Theorem 4.4

We will use the notations introduced in (5.1), as well as the following ones

(ΘR)(ω) := ΘR(ω), (L [α]R)(ω) := L
[αω]
ω R(ω). (5.16)

It follows from Definition (4.14) and Relation (5.17) that, for any α ∈R,

L [α]
ω Θ= ∑

ξ∈Σ×Σ
e−αδξLω,ξΘ= ∑

ξ∈Σ×Σ
e(1−α)δξΘL ∗

ω,ξ̂

= ∑
ξ∈Σ×Σ

e−(1−α)δξΘL ∗
ω,ξ =ΘL [1−α]∗

ω .

This implies L [α]Θ = ΘL [1−α]∗, while, obviously, [Θ,P ] = 0. Factorizing L[α] = P L [α], we
derive from Definition (4.15)

ΘL[α]Θ=ΘP L [α]Θ=ΘPΘL [1−α]∗ =P L [1−α]∗,

for all α ∈ RΩ. Writing Assumption (DB) as P =ΠP ∗Π−1 and using the fact that [Π,L [α]] = 0
we further get

ΘL[α]Θ=ΠP ∗Π−1L [1−α]∗ =Π(L [1−α]P )∗Π−1.

Since sp(L [1−α]P ) \ {0} = sp(P L [1−α]) \ {0}, we conclude that L[α] and L[1−α] have identical
spectral radii, i.e., the symmetry (4.24) holds. Theorem 4.4 now follows from Theorem 4.2 (iv)-
(v), in particular (4.20) yields

I (−s) = sup
α∈RΩ

(−s ·α−e(−α)) ,

and the symmetry (4.24) gives,

I (−s) = sup
α∈RΩ

(−s ·α−e(1+α)) = sup
α′∈RΩ

(
s · (1+α′)−e(−α′)

)= I (s)+ s ·1,

with 1+α=−α′.
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5.4 Proof of Theorem 4.6

(i) For all ω ∈Ω, Assumption (TRI) implies [θω,SEω ] = 0, and hence [θω,Πs(ω)] = 0 for any s ∈Σ.
By definition (4.13), for ρ ∈A∗, X ∈A , and ξ= (s, s′) ∈Ξω,

〈Lω,ξΘρ, X 〉 = e−s tr
(
(X ⊗Πs′(ω))Uω(θ⊗θω)(ρ∗⊗Πs(ω))(θ⊗θω)U∗

ω

)
= e−s tr

(
(X ⊗Πs′(ω))(θ⊗θω)U∗

ω(ρ∗⊗Πs(ω))Uω(θ⊗θω)
)

= e−str
(
(ρ∗⊗Πs(ω))Uω(θ⊗θω)(X ⊗Πs′(ω))(θ⊗θω)U∗

ω

)
= eδξ〈ρ,Lω,ξ̂θXθ〉 = eδξ〈L ∗

ω,ξ̂
ρ,ΘX 〉 = 〈eδξΘL ∗

ω,ξ̂
ρ, X 〉,

so that
Lω,ξΘ= eδξΘL ∗

ω,ξ̂
. (5.17)

Assumption (DB) and Relation (5.17) further yield, for any x ∈Xfin, with |x | = n,

Q̂R+([x]) = Pωnωn−1 · · ·Pω2ω1〈1,Lω1,ξ̂1
· · ·Lωn ,ξ̂n

R+(ωn)〉
= π+ωn−1

π+ωn

Pωn−1ωn · · ·
π+ω1

π+ω2

Pω1ω2〈L ∗
ωn ,ξ̂n

· · ·L ∗
ω1,ξ̂1

1,R+(ωn)〉

= π+ω1

π+ωn

Pω1ω2 · · ·Pωn−1ωn 〈e−δξnΘLωn ,ξnΘ · · ·e−δξ1ΘLω1,ξ1Θ1,R+(ωn)〉

= e−
∑n

k=1δξk
π+ω1

π+ωn

Pω1ω2 · · ·Pωn−1ωn 〈ΘR+(ωn),Lωn ,ξn · · ·Lω1,ξ11〉.

Setting

c = log

(
maxk π+k

mink π+k

maxspR+
minspR+

)
,

we thus get

e−c+∑n
k=1δξk ≤ QR+([x])

Q̂R+([x])
≤ ec+∑n

k=1δξk ,

and since σn = Sn1 ·J=∑n
k=1δξk , taking the logarithm yields the claims.

(ii) The relative Rényi α-entropy of Q̂R+ |Xn w.r.t. QR+ |Xn is given by

Entα[Q̂R+|Xn |QR+|Xn ] = logER+

[(
dQ̂R+|Xn

dQR+|Xn

)α]
= logER+

[
e−ασ̃n

]
,

and the claim follows directly from Theorem 4.2 (iii) and the estimate (4.25).

(iii) By (4.6) and Theorem 4.2 (i), one has, taking (4.25) into account,

ep = lim
n→∞

1

n
ER+ [σn] = lim

n→∞
1

n
ER+ [σ̃n].

Since
Ent(QR+|Xn |Q̂R+|Xn ) = ER+[σ̃n], (5.18)

it immediately follows from Q̂R+ =QR+ that ep = 0.
Assuming now that ep = 0, we observe that

1

n
ER+ [σn] = ER+[σ1] → 0

implies ER+ [σn] = 0 for all n and hence by (4.25) and (5.18),

Ent(Q̂R+|Xn ×QR+ |QR+|Xn ×QR+) = Ent(Q̂R+|Xn |QR+|Xn ) = Ent(QR+|Xn |Q̂R+|Xn ) ≤ c.
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The lower semicontinuity of relative entropy thus yields

Ent(Q̂R+ |QR+) ≤ liminf
n→∞ Ent(Q̂R+|Xn ×QR+ |QR+|Xn ×QR+) ≤ c

which implies that Q̂R+ ¿ QR+ , and since QR+ is ergodic and Q̂R+ ∈ Pφ(X), we can conclude
that Q̂R+ =QR+ .

(iv) Denote by Cfin(X) the subspace of C (X) consisting of the functions that are Xm-measurable
for some m ∈ N. If f is Xm-measurable, then 〈 f ,µn〉 = Sn f is Xm+n-measurable, and using
again (4.25),

Q( f ) = lim
n→∞

1

n
log〈en〈 f ,µn〉,QR+〉

= lim
n→∞

1

n
log〈eσ̃n+m+n〈 f ,µn〉,Q̂R+〉

= lim
n→∞

1

n
log〈eσn+m+n〈 f ,µn〉,Q̂R+〉

= lim
n→∞

1

n
log〈eσm◦φn+n〈 f +σ1,µn〉,Q̂R+〉

= lim
n→∞

1

n
log〈en〈 f +σ1,µn〉,Q̂R+〉 =Q( f̂ −σ1)

where we have set f̂ (x) = f (x̂) for x ∈Xm , and used the facts that

(Sn f )(x̂) = (Sn f̂ )(x)

for x ∈Xm+n and σ̂1 =−σ1. From the density of Cfin(X) in C (X) and (4.23) we deduce

I(Q) = sup
f ∈Cfin(X)

(〈 f ,Q〉−Q( f )
)= sup

f ∈Cfin(X)

(〈 f ,Q〉−Q( f̂ −σ1)
)

= sup
f ∈Cfin(X)

(〈 f̂ −σ1,Q〉−Q( f )
)= sup

f ∈Cfin(X)

(〈 f ,Q̂〉−Q( f )
)−〈σ1,Q〉 = I(Q̂)−〈σ1,Q〉.

5.5 Proof of Theorem 4.7

(i) One has
LζR = ∑

ω,ν∈Ω
s,s′∈Σν

Vω,s,s′,ν,ζRV∗
ω,s,s′,ν,ζ

where, in terms of the Kraus family (5.6),

Vω,s,s′,ν,ζ = eζνςν,s /2β̄−(β̄−ζν)(Fν,0−Fν,ζ)Vω,s,s′,ν.

Thus, arguing as in the proof of Theorem 4.2, we conclude that Lζ is irreducible/primitive iff L
is.

(ii) Besides (5.1) and (5.16), for γ ∈R define

(RγR)(ω) := ργ/β̄
+ω R(ω)

whereρ+ = (ρ+ω)ω∈Ω is the family of states associated to the equilibrium (ζ= 0) ESS R+ via (2.11).
SettingK[α]

ζ
:=L [α]

ζ
P , we compute

(RγK
[α]
ζ

R−γR)(ω) = ∑
ν∈Ω

ρ
γ/β̄
+ω L

[αω]
ωζ

Pνωρ
−γ/β̄
+ν R(ν)

= ∑
ν∈Ω

Pνω trHEω

(
(ργ/β̄

+ω ⊗ραω
Eωζ

)Uω(ρ−γ/β̄
+ν R(ν)⊗ρ1−αω

Eωζ
)U∗

ω

)
.
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Invoking Proposition 4.1, we get

Uω(ρ−γ/β̄
+ν R(ν)⊗ρ1−αω

Eωζ
)U∗

ω =Uω(ρ+ν⊗ρEω0)−γ/β̄(R(ν)⊗ρ1−αω+γ/βω
Eωζ

)U∗
ω

= (ρ+ω⊗ρEω0)−γ/β̄Uω(R(ν)⊗ρ1−αω+γ/βω
Eωζ

)U∗
ω,

so that, with β−1 = ((β̄−ζω)−1)ω∈Ω, we derive

(RγK
[α]
ζ

R−γR)(ω) = ∑
ν∈Ω

Pνω trHEω

(
(1⊗ραω−γ/βω

Eωζ
)Uω(R(ν)⊗ρ1−αω+γ/βω

Eωζ
)U∗

ω

)
= (K[α−γβ−1]

ζ
R)(ω).

Since sp(L[α]
ζ

) \ {0} = sp(K[α]
ζ

) \ {0}, we conclude that the spectral radius of L[α]
ζ

satisfies

`ζ(α−γβ−1) = `ζ(α), (5.19)

for allα ∈RΩ, γ ∈R and ζ ∈RΩ.
As a consequence of the translation symmetry (5.19), we get

β−1 · (∇`ζ)(0) = 0.

By first order perturbation theory and Relations (5.10)-(5.11), one has

(∂αω`ζ)(0) = ∂αω〈L[α]
ζ

R+ζ,1〉|α=0 = (β̄−ζω)〈R+ζ, Jωζ〉, (5.20)

which allows us to conclude∑
ν∈Ω

J̄νζ(ω) = ∑
ν∈Ω

〈R+ζ, Jνζ〉 =β−1 · (∇`ζ)(0) = 0.

(iii) Follows immediately from (ii) and Theorem 4.2 (ii).

(iv) It follows from (5.19) that the covariance Cζ of the limiting Gaussian measure, as given by
Theorem 4.2 (iii), satisfies β−1 ∈ KerCζ, so that RanCζ ⊂Zζ.

(v) The claim follows from Theorem 4.2 (iii) and (5.19).

(vi) By Theorem 4.2 (v) and the symmetry (5.19) one has

Iζ(s) = sup
α∈RΩ

(
α · s −eζ(−α)

)
= sup
α∈RΩ

(
α · s −eζ(−α+γβ−1)

)
= sup
α∈RΩ

(
(α+γβ−1) · s −eζ(−α)

)= Iζ(ς)+γβ−1 · s

for any γ ∈R and hence β−1 · s has to vanish whenever Iζ(s) is finite.

(vii) By (5.20), one has
J̄ωζ = (β̄−ζω)−1(∂αω`ζ)(0),

and hence

Lων = β̄−1∂ζν∂αω`ζ(α)|α=ζ=0 +δωνβ̄−2∂αω`ζ(α)|α=ζ=0

= β̄−1∂ζν∂αω`ζ(α)|α=ζ=0 +δωνβ̄−1 J̄ω0

= β̄−1∂ζν∂αω`ζ(α)|α=ζ=0,
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where we have invoked (4.11). Since `ζ(α) = eeζ(α), the two symmetries (4.24) and (4.26) gives

(∂αω`ζ)(α) =−(∂αω`ζ)(1−α+γβ−1),

and hence

(∂ζν∂αω`ζ)(α) =−(∂ζν∂αω`ζ)(1−α+γβ−1)− (∂αν∂αω`ζ)(1−α+γβ−1)
γ

(β̄−ζν)2
.

Settingα= 0, ζ= 0 and γ=−β̄ yields

∂ζν∂αω`ζ(α)|α=ζ=0 =
1

2β̄
(∂αν∂αω`0)(0)

from which we conclude

Lων = 1

2β̄2
(∂αν∂αω`0)(0). (5.21)

Since, by Proposition 4.1, (∂αν`0)(0) = J̄ν0 = 0, the last indentity is equivalent to (4.27).

(viii) The Onsager reciprocity relations are a consequence of Relation (5.21) and Clairaut’s the-
orem on equality of mixed partial derivatives. In view of (4.11), the Fluctuation–Dissipation
Relations follow from combining the formulas after (4.17) with (5.20) and (5.21).

The remaining part of the proof will only involve equilibrium (ζ = 0) quantities, and to
simplify notations we will omit the subscript 0.

(ix) By the proof of Theorem 4.2 (iv), and more precisely the estimate (5.14), there is a complex
neighborhood U 3 0 such that the analytic function U 3 α 7→ eN (α) = N−1 logER+[e−α·SNJ]
satisfies

sup
α∈U ,N∈N∗

|eN (α)| <∞

and limN→∞ eN (α) = e(α) for α ∈ U ∩RΩ. It follows from Vitali’s convergence theorem (see,
e.g., [JOPP12, Theorem B.1]), that

(∂αν∂αωe)(0) = lim
N→∞

(∂αν∂αωeN )(0).

An elementary calculation, taking into account that 〈Jω,QR+〉 = 0, gives

(∂αν∂αωeN )(0) = 1

N
ER+ [(SNJω−ER+[SNJω])(SNJν−ER+ [SNJν])

= 1

N

N−1∑
n,m=0

ER+ [Jω ◦φnJν ◦φm] = 1

N

N−1∑
n,m=0

ER+[Jω ◦φn−mJν]

= 1

N

2(N−1)∑
j=0

j∑
k=− j

ER+[Jω ◦φkJν],

and the claim follows from Frobenius summation formula [PS98, Item 87].
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