Incompressible limit and non-isentropic fluids

Didier Bresch

Laboratoire de Mathématiques, UMR5127 CNRS, Université de Savoie
73000 Le Bourget du lac cedex, FRANCE
Didier.Bresch@univ-savoie.fr

Joint works with : B. DESJARDINS (Momagroup, ENS Paris), E. GRENIER (ENSL).

Keywords: Transversality, crossing eigenvalues, resonant set, oscillatory limit, singular flows, low mach (low Froude) number limits.

March 2008
Introduction

Generalities: Incompressible flows equations justification:

- From compressible Navier–Stokes or Euler equations (shallow-water system)
- Flow velocity field small compared to sound velocity

Limit = incompressible equations.
Correction = acoustic waves, gravity waves.....

Small parameter = Mach number, Froude number
For instance $\varepsilon = \text{Mach} = \frac{\text{fluid velocity}}{\text{sound velocity}}$

- Car: $50 \text{ km/h} / 120 \text{ km/h} = 1/20$
- Plane: $800 \text{ km/h} / 1200 \text{ km/h} = 0.66$

velocity motions $< 150 \text{ km}$ are essentially incompressible

Difference = Noise (waves..)
Compressible isentropic Euler equations:

\[\partial_t \rho + \text{div}(\rho u) = 0 \]
\[\partial_t (\rho u) + \text{div}(\rho u \otimes u) + \nabla p(\rho) = 0 \]

Scaling:

\[u(t, x) = \varepsilon U(\varepsilon t, x) \]
gives

\[\partial_t \rho + \text{div}(\rho U) = 0 \]
\[\partial_t (\rho U) + \text{div}(\rho U \otimes U) + \frac{\nabla p(\rho)}{\varepsilon^2} = 0 \]

Then limit \(\varepsilon \to 0 \) provides

\[\nabla p(\rho) = 0. \]

Thus, using the mass equation, \(\rho \) is a constant \(\rho = 1 \quad \Rightarrow \quad \text{divergence free condition} \)
\[\text{div} U = 0 \ (U \text{ denoted } u \text{ in the sequel}). \]
Introduction

Wave equation:

\[\psi = \frac{\rho - 1}{\varepsilon} \]

gives

\[\partial_t \psi + \text{div}(\psi u) + \frac{\text{div}u}{\varepsilon} = 0 \]

\[\partial_t u + \text{div}(u \otimes u) + h(\psi) + p'(1) \frac{\nabla \psi}{\varepsilon} = 0 \]

Combinaison of a wave equation

\[\partial_t \sigma + \text{div}v = 0 \]

\[\partial_t v + p'(1) \nabla \sigma = 0 \]

with a nonlinear equation.

Time scales:
* \(O(1) \): Fluid evolution
* \(O(\varepsilon) \): Wave evolution (wave propagation velocity \(= 1/\varepsilon \)).

Attended result: If we look the incompressible part of \(u \)

\[\implies \text{convergence to incompressible Euler} \]
Introduction

Non-exhaustive bibliography:

- S. Klainerman, A. Majda: Existence on a time interval independent on Mach number.
- S. Klainerman, A. Majda: Convergence with well prepared data ($\psi = O(\varepsilon)$).
- S. Ukai: Whole space and waves going to infinity in times $O(\varepsilon)$.
- S. Schochet: Incompressible limit, general initial data.
- E. Grenier: Rotating fluids, general initial data.
- I. Gallagher: Oscillating limit parabolic systems.
- B. Desjardins, E. Grenier: Incompressible limit with Strichartz on weak solutions.
Introduction

Main ideas: Periodic and whole space case

Step 1: wave group
\(\mathcal{L}(t)(\sigma_0, v_0) \) group solutions of

\[
\begin{align*}
\partial_t \sigma + \text{div} v &= 0 \\
\partial_t v + \nabla \sigma &= 0
\end{align*}
\]

with initial data \((\sigma_0, v_0)\).
\(\mathcal{L}(t) \) is an isometry from \(H^s \) into \(H^s \) for

- periodic box
- whole space

Step 2: conjugate process
We conjugate \(\mathcal{L}(t) \) posing

\[
(\bar{\psi}, \bar{u}) = \mathcal{L}(-t/\varepsilon)(\psi, u)
\]

and we get the equation under the form

\[
\partial_t (\bar{\psi}, \bar{u}) + \mathcal{L}(-t/\varepsilon)Q(\mathcal{L}(t/\varepsilon)(\bar{\psi}, \bar{u})) = 0
\]
Introduction

Step 3: Limit process
\(\partial_t (\bar{\rho}, \bar{u}) \) is bounded (No problem with compactness in space).
Non-isentropic fluids

The equations read:

\[\partial_t \rho + \text{div}(\rho u) = 0, \]

\[\rho(\partial_t u + u \cdot \nabla u) + \nabla p = 0, \]

with

\[\partial_t S + u \cdot \nabla S = 0. \]

where \(S \) entropy, \(p \) given by the state law \(\rho = R(p, S) \).

Example: \(\rho = p^{1/\gamma} e^{-S/\gamma} \).

Change of variable: Let \((p, u)\) then denoting \(p = \bar{p} \exp^{\varepsilon q} \), we get

\[a(\partial_t q + u \cdot \nabla q) + \frac{1}{\varepsilon} \text{div} u = 0, \]

\[r(\partial_t u + u \cdot \nabla u) + \frac{1}{\varepsilon} \nabla q = 0 \]

\[\partial_t S + u \cdot \nabla S = 0 \]
Non-isentropic fluids

Formal limit

From mass and momentum equations:
\(\text{div} u = 0 \) and \(\nabla q = 0 \) then

\[
\text{div} u = 0, \\
r(\partial_t u + u \cdot \nabla u) + \nabla \Pi = 0 \\
\partial_t S + u \cdot \nabla S = 0
\]

with \(\rho = R(\bar{\rho}, S) \) and \(r(S) \).

Wave equation:

\[
\partial_t (\sigma, v) = \mathcal{A}(\sigma, v)
\]

with

\[
\mathcal{A} = \begin{pmatrix}
0 & a^{-1}(S)\nabla \\
r^{-1}(S)\nabla & 0
\end{pmatrix}.
\]

which gives

\[
\partial_{tt} \sigma - \text{div}(S(t, x)^{-1} \nabla \sigma) = 0.
\]

Remark: \(\partial_t S \) is bounded but wave equation with variable coefficients.
Step 1: Wave equation

\[\partial_t^2 \sigma - \varepsilon^{-2} \text{div}(S(t, x)^{-1} \nabla \sigma) = 0. \]

Let \(\mathcal{L}(t) \) the solutions group. We want that \(\mathcal{L}(t) \) is bounded uniformly from \(H^s \) into \(H^s \).

Energy estimates:

* \(L^2 \): Energy gives uniform bound in \(L^2 \).
* \(H^1 \): \(\partial_t \) satisfies a wave equation with unbounded source term with respect to \(\varepsilon \).

Spectral decomposition

Problem: Variable coefficients with respect to time!

Problem: Multi-eigenvalues possibility!

Problem: Crossing eigenvalues possibility!

\[\implies \text{bad behavior possibility} \ldots \ldots \]

Generic results: "for almost all initial data"
Non-isentropic fluids

Two questions:

- Solve equations on some time interval which is independent of Mach number?
- Characterization of the limit when Mach goes to zero?

First question:

Second question:

- G. Métivier and S. Schochet: Whole space and Euler.
- T. Alazard: Exterior domain and Euler; whole space and full CNS eqs.
Non-isentropic fluids

Relies on theorem:

\[\varepsilon^2 \partial_t (a^\varepsilon(t, x) \partial_t \phi^\varepsilon) - \text{div}(b^\varepsilon(t, x) \nabla \phi^\varepsilon) = \varepsilon f^\varepsilon(t, x) \]

where

\(\phi^\varepsilon \) is bounded in \(C^0([0, T]; H^2(\mathcal{R}^d)) \), \(f^\varepsilon \) is bounded in \(L^2([0, T]; L^2(\mathcal{R}^d)) \),

\(a^\varepsilon \) and \(b^\varepsilon \) decay to zero at spatial infinity in same similar manner:

\(a^\varepsilon(t, x) \geq c \), \(|a^\varepsilon(t, x) - a| = O(|x|^{-1-\delta}) \), \(|\nabla a^\varepsilon(t, x)| = O(|x|^{-2-\delta}) \),

Then \(\phi^\varepsilon \) converges strongly to 0 in \(L^2_{\text{loc}}([0, T] \times \mathcal{R}^d) \) to \((0, 0) \).
Non-isentropic fluids

Singular limit and nonisentropic Euler or NS systems.

Non-isentropic fluids

Averaged equation for non-isentropic NS equations:

\[
\begin{align*}
\partial_t \bar{\rho} + \text{div} (\bar{\rho} \bar{u}) &= 0, \\
\text{div} \bar{u} &= 0, \\
\bar{\rho} \bar{a} &= 1,
\end{align*}
\]

\[
\partial_t (\bar{\rho} \bar{u}) + \text{div} (\bar{\rho} \bar{u} \otimes \bar{u}) + \nabla \bar{P} - \mu \Delta \bar{u}
\]

\[
= \sum_{\ell, m} \frac{\alpha_\ell^+ \alpha_m^- + \alpha_\ell^- \alpha_m^+}{2} \left(\nabla (\Psi_m \Psi_\ell) - \frac{\bar{a}}{\lambda_\ell^2} \nabla (\nabla \Psi_\ell \cdot \nabla \Psi_m) \right)
\]

with \((\lambda_j^2, \Psi_j) \) denote the eigenvectors of the nonlinear wave equation

\[
- \text{div} (\bar{a} \nabla \Psi_j) = \lambda_j^2 \Psi_j \quad \text{and} \quad \varphi_j(t) = \int_0^t \lambda_j(s) \, ds.
\]
Non-isentropic fluids

The coefficients $\alpha_{k}^{\sigma_k}$ with $\sigma_k \in \{+, -\}$ denote the components of the acoustic waves on a basis depending on $\{\Psi_j\}_{j \in \mathbb{N}}$. They are governed by the dynamical system

$$
\frac{d\alpha_{k}^{\sigma_k}}{dt} + \frac{\lambda_k^2 (\lambda + 2\mu)}{2} \alpha_{k}^{\sigma_k} + \sum_{\ell} \mu \frac{\alpha_{\ell}^{\sigma_k}}{2\lambda_k^2} \int \text{curl}(\bar{a} \nabla \Psi_k) \cdot \text{curl}(\bar{a} \nabla \Psi_{\ell}) \, dx
$$

$$
= \sum_{\ell} \frac{\alpha_{\ell}^{\sigma_k}}{2} \int \left\{ \Psi_{\ell} \partial_t \Psi_k + \frac{\nabla \Psi_{\ell}}{\lambda_k} \partial_t \left(\frac{\bar{a} \nabla \Psi_k}{\lambda_k} \right) \right\} \, dx
$$

$$
+ \frac{(\gamma - 1)}{4\sqrt{2}} \sum_{\ell, m, \sigma_\ell, \sigma_m} \frac{i\sigma_k \lambda_k \alpha_{\ell}^{\sigma_{\ell}} \alpha_{m}^{\sigma_{m}}}{\sigma_\ell \varphi_{\ell} + \sigma_m \varphi_{m} = \sigma_k \varphi_k} \int \Psi_k \Psi_m \Psi_{\ell} \, dx
$$

$$
- \sum_{\ell} \frac{\alpha_{\ell}^{\sigma_k}}{2\lambda_k^2} \int \bar{a} \ \text{div} \ (\bar{u} \otimes \nabla \Psi_{\ell} + \nabla \Psi_{\ell} \otimes \bar{u}) \cdot \nabla \Psi_k \, dx
$$

$$
- \sum_{\ell, m, \sigma_\ell, \sigma_m} \frac{i\alpha_{\ell}^{\sigma_{\ell}} \alpha_{m}^{\sigma_{m}}}{2\sqrt{2}} \frac{1}{\sigma_k \lambda_k \sigma_\ell \lambda_\ell \sigma_m \lambda_m} \int \bar{a} \ \text{div} \ (\bar{a} \nabla \Psi_{\ell} \otimes \nabla \Psi_m) \cdot \nabla \Psi_k \, dx.
$$
Non-isentropic fluids

Some comments:

- Nonhomogeneity \implies extra streaming term $\bar{a} \nabla (\nabla \Psi_l \cdot \nabla \Psi_m)$
- Energy exchange between main contribution and waves
- More complex than anelastic limit
- For weak and local process (difficulties): regularity and vanishing properties on \bar{a}?

References: anelastic limit with non-vanishing heterogeneity profile

Non-isentropic fluids

Non-constant coefficients limit...... Some examples in environmental problems.

Rigid lid approximation for bilayers models

- bi-layers shallow water systems.
- Sedimentation.
- Fluide-Structure interaction.

⇒ time dependent parameter.

An example.

\[
\begin{aligned}
\partial_t h + \text{div}(hv) &= 0, \\
\partial_t (hv) + \text{div}(hv \otimes v) + h \frac{\nabla (h + z_b)}{\text{Fr}^2} &= 0, \\
\partial_t z_b + \text{div}(q_b(h, v)) &= 0
\end{aligned}
\]

where \(z_b \) is the movable bed thickness. Formulas in literature for \(q_b \): Grass equation, Meyer-Peter and Muller equation, formulas of Nielsen, Fernández Luque and Van Beek.....

- Grass model: Solid transport given by

\[
q_b(h, v) = A_g |v|^{m_g} v, \quad 0 \leq m_g \leq 3
\]
Non-isentropic fluids

Transversality and crossing of eigenvalues.

Several papers: C. Fermanian, P. Gérard, Y. Colin de Verdière.... etc..
Non-isentropic fluids

Spectral decomposition

Let

\[\partial_t^2 \sigma - \varepsilon^{-2} \text{div}(S(x)^{-1} \nabla \sigma) = 0 \]

forgetting time dependency

Spectrum:

\(-\text{div}(S(x)^{-1} \nabla \cdot)\) is a self-adjoint operator

Eigenvalues \(\lambda_j\) (with eventual multiplicity)

\(\Pi_j\) its corresponding eigenspace and \(\psi_j\) orthonormal basis.

Eigenspaces geometry:

Double eigenvalues

\[\Sigma_{j,k} = \left\{ \lambda_j(S) = \lambda_k(S) \right\}. \]

In a neighborhood of a double eigenvalue,

\[\Pi_j + \Pi_k \]

is continuous, but not \(\psi_j\), nor \(\psi_k\).
Non-isentropic fluids

Is $\Sigma_{j,k}$ of codimension 2?

A matrix model:

Symmetric matrices with eigenvalue at least double are of co-dimension 2 in the symmetric matrices set.

In dimension 2

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

Characteristic polynomial

$$X^2 - (a + c)X + ac - b^2$$

Eigenvalues:

$$\frac{a + c}{2} \pm \frac{\sqrt{(a - c)^2 + b^2}}{2}$$

Then

$$\Sigma_{j,k} = \{ b = 0, a = c \}$$

line in a three dimensional space.

The eigenvectors do not depend on $x - \Pi x$ where Π is the projection on $\Sigma_{j,k}$.
Non-isentropic fluids

Is $\Sigma_{j,k}$ of codimension 2?

It seems that all have to be done!!

Question:

$$
\mu \left(S \mid \lambda_j(S) - \lambda_k(S) < \varepsilon \right) \leq C\varepsilon^2
$$

Difficulties:

- Definition of the measure μ in infinite dimension space?
- Uniformity with respect to the approximation?

Let Π_N projection on finite dimension space (Galerkin)

Let

$$
\Sigma_{j,k} = \{ S = \Pi_N(S) \mid |\lambda_j(S) - \lambda_k(S)| < \varepsilon \}
$$

On \mathbb{R}^N the measure of Besov type

$$
\mu_N = \bigotimes_{k=1}^N \frac{k^s}{2} 1_{[-1/k^s,1/k^s]}
$$
Non-isentropic fluids

Measure of neighborhoods of $\Sigma_{j,k}$

$$\Sigma_{j,k}^{N,\varepsilon} = \{ S = \Pi_N(S) \mid |\lambda_j(S) - \lambda_k(S)| < \varepsilon \}$$

$$\mu_N = \bigotimes_{k=1}^{N} \frac{k^s}{2} \left[-\frac{1}{k^s}, \frac{1}{k^s} \right]$$

Theorem 0. Under hypothesis of non degeneracy, there exists a constant C_0 such that

$$\mu_N(\Sigma_{j,k}^{N,\varepsilon}) \leq C_0 \varepsilon^2$$

for all N and all ε.

Proof

Effect of regularity: $\Sigma_{j,k}$ is a graph with respect to the first components $\Pi_N x$.

Remarks:

- Codimension 2 notion "in the measure μ_N sense".
- $\Sigma_{j,k}$ has a null measure too, but what is important is its approximation.
Non-isentropic fluids

Measure of neighborhoods of $\Sigma_{j,k}$

- Approximate diagonalisation
- Ansatz on (ψ_j, ψ_k):

If $S_0 \in \Sigma_{j,k}$ then $\lambda_j(S_0 + S)$ and $\lambda_k(S_0 + S)$ are given by

$$
\frac{\lambda_j(S_0) + \lambda_k(S_0)}{2} + \frac{1}{2} \left(\int S|\nabla \psi_j|^2 + \int S|\nabla \psi_k|^2 \right)
$$

$$
\pm \frac{1}{2} \sqrt{\left(\int S|\nabla \psi_j|^2 - \int S|\nabla \psi_l|^2 \right)^2 + 4 \left(\int S \nabla \psi_j \nabla \psi_k \right)^2} + O(|S|_{H^s}^2).
$$

gives informations locally.

- Simple eigenvalues are Lipschitzian

$$
\nabla_S \lambda_j(S_0) . S = - \int S|\nabla \psi_j|^2.
$$

- Eigenvalues cannot be closed too quickly.
- When they are closed ... Above ansatz.
Non-isentropic fluids

Outside $\Sigma_{j,k}$

$$\partial_t^2 \sigma - \varepsilon^{-2} \text{div}(S(t,x)^{-1} \nabla \sigma) = 0$$

We decompose

$$\sigma(t) = \sum_j \alpha_j(t) \psi_j(S(t)) \exp\left(\varepsilon^{-2} \int_0^t \lambda_j(S(t))\right).$$

We get

$$\partial_t \alpha_j = -\left(\sum_k \alpha_k(t) \nabla \psi_k(S(t)) \cdot S'(t) \mid \psi_j(S(t))\right).$$

This is correctly bounded from above!

As soon as $S(t)$ avoids double eigenvalues, \mathcal{L} is bounded.
Non-isentropic fluids

Is it possible to avoid $\Sigma_{j,k}$?

Geometry of the problem:

Find initial data which avoid a codimension 2 subset.

Regular flow case in finite dimension

$\Theta(t_1, t_2)$ flow, Σ of codimension 2 to be avoided

We have to evaluate

$$A_\varepsilon = \{x \mid \exists 0 \leq t \leq T \Theta(0, t)x \in \Sigma_\varepsilon\}.$$

$$= \bigcup_t \{x \mid \Theta(0, t)x \in \Sigma_\varepsilon\}.$$

Two hypothesis:

- Flow with bounded divergence
- Bounded flow

$$\mu(A_\varepsilon) \leq C\varepsilon T.$$

Problem: The flow is not regular!!!
Non-isentropic fluids

Limit equation

Well prepared data:

Waves with $O(\varepsilon)$ size. Limit = incompressible non-homogeneous Euler equations

Ill prepared data:

- Waves with $O(1)$ size.
- Limit = Euler with a source term: wave interactions.
- Source term = combinaison of terms involving $\psi_j(S) \implies$ singular around to $\Sigma_{j,k}$.

Type equation

ODE of the form

$$\partial_t \phi + Q(\phi) = R\left(\frac{x - \Pi x}{\|x - \Pi x\|}\right)$$

with Π projection on a codimension 2 variety.
Non-isentropic fluids

Dimension 2 example

\[\dot{x} = \phi\left(\frac{x}{|x|}\right) \]

with \(\phi \) continuous defined from the unit circle to \(\mathbb{R}^2 \).

Polar coordinates:

\[x(t) = \rho(t)e^{i\theta(t)} \]

with

\[\rho \dot{\theta} = \chi(\theta) \]
\[\dot{\rho} = \psi(\theta) \]

with \(\chi(\theta) = \text{Im}(\phi(e^{i\theta})e^{-i\theta}) \). Change of time gives

\[\dot{\theta} = \chi(\theta) \]
\[\dot{\rho} = \psi(\theta)\rho. \]
Non-isentropic fluids

Discussion

- Possible asymptots: θ with $\chi(\theta) = \theta$.
- Stability depends on χ'.
- Multiple possibility in function of sign of ψ.

Flow:

- The flow is discontinuous: We pass on the left or on the right of the singularity
- or we enter directly in the singularity in finite time.

Divergence:

Through calculation, if A set

$$\mu(\Theta(t)(A)) \leq C\mu(A)$$

with C' independent on t and on A.
Non-isentropic fluids

Vector field with a homogeneous degree 0 singularity

\[\dot{x} = \phi \left(x, \frac{x_h}{|x_h|} \right) \]

with \(x_h = (x_1, x_2) \).

- Perturbative arguments with respect to the dimension 2.
- Under geometrical hypothesis: Existence except for a codimension 1 subset.
Non-isentropic fluids

Resonances

\[\Sigma_{j,k,l} = \{ S \mid \lambda_j(S) + \lambda_k(S) = \lambda_l(S) \}. \]

- Heuristically \(\Sigma_{j,k,l} \) is of codimension 1.
- Codimension 1 in the measure sense

\[\mu \{ S \mid |\lambda_j(S) + \lambda_k(S) - \lambda_l(S)| < \varepsilon \} \leq C\varepsilon. \]

More precisely

Theorem 0. 2 Under non degeneracy hypothesis,

\[\mu_N \left(\Sigma_{j,k,l}^{N,\varepsilon} \right) \leq C\varepsilon. \]
Non-isentropic fluids

Proof of resonance theorem

Differential calculus

\[d(\lambda_j + \lambda_k - \lambda_l) = \left(|\nabla \psi_j|^2 + |\nabla \psi_k|^2 - |\nabla \psi_l|^2 \right) \]

The differential does not vanishes if

\[|\nabla \psi_j|^2 + |\nabla \psi_k|^2 - |\nabla \psi_l|^2 \neq 0. \]

Differential belongs to all \(H^s \): eigenvalues vary slowly when perturbate high frequencies.

Differential depends essentially of the first \(N \) components...

\(\Sigma_{j,k,l} \) is a graph with respect to its first \(N \) components if \(N \) is large enough.
Non-isentropic fluids

In progress: non-homogeneous incompressible limit

- First step: Check that the limit system has a solution for almost all initial data.
- Check that almost all initial data avoids \(\Sigma_{j,k} \).
- Conjugate nonhomogeneous incompressible NS equation with \(\mathcal{L} \).
- Pass to the limit
- Pass to the limit in the resonances.

Objective: Convergence for almost all initial data......