THE LONG WAY OF A VISCOUS VORTEX DIPOLE
MICHELE DOLCE AND THIERRY GALLAY

ABSTRACT. We consider the evolution of a viscous vortex dipole in R? originating from a pair
of point vortices with opposite circulations. At high Reynolds number Re > 1, the dipole
can travel a very long way, compared to the distance between the vortex centers, before being
slowed down and eventually destroyed by diffusion. In this regime we construct an accurate
approximation of the solution in the form of a two-parameter asymptotic expansion involving
the aspect ratio of the dipole and the inverse Reynolds number. We then show that the exact
solution of the Navier-Stokes equations remains close to the approximation on a time interval
of length O(Re”), where o < 1 is arbitrary. This improves upon previous results which were
essentially restricted to o = 0. As an application, we provide a rigorous justification of an
existing formula which gives the leading order correction to the translation speed of the dipole
due to finite size effects.

1. INTRODUCTION

Numerical investigations of freely decaying two-dimensional turbulence show that the distri-
bution of vorticity tends to concentrate in a relatively small fraction of the spatial domain, so
as to form a collection of coherent vortices which interact over a long period of time and grow
in size due to diffusion and merging [23, 10]. In contrast, the small scales of the flow correspond
to thin filaments of vorticity, which may be created during rare events such as vortex mergers.
A precise description of vortex interactions thus appears as a necessary step toward a better
understanding of the dynamics of two-dimensional flows at high Reynolds number [19, 24].

As long as the distances between the vortex centers remain substantially larger than the sizes
of the vortex cores, the dynamics of a finite collection of vortices in R? is well approximated by
the point vortex system:

(1) = Z% (é((tt)) —z]-((?))\Q . ij=1,...,N, (1.1)
j#i J

where z1(t),...,2zn(t) € R? denote the positions of the vortex centers and I'y,...,I'y € R
are the circulations of the corresponding vortices. The ODE system (1.1), which was already
studied by Helmholtz and Kirchhoff, can be rigorously derived as an asymptotic model for
the evolution of sharply concentrated solutions of the two-dimensional Euler or Navier-Stokes
equations [22, 21, 12, 6]. Note that (1.1) only makes sense if z;(t) # z;(t) when i # j, but this
condition is not always preserved under evolution. Indeed, if N > 3 and if the circulations I'; do
not have the same sign, there are examples of solutions of (1.1) for which three vortices collide
in finite time [22]. However, the set of initial data leading to such collisions is negligible in the
sense of Lebesgue’s measure.

To formulate more precisely the relation between the point vortex system (1.1) and the
fundamental equations of fluid motion, we start from the two-dimensional vorticity equation

Ow(x,t) + u(x,t) - Vw(z,t) = vAw(z,t), reR?, >0, (1.2)

where u(z,t) = (ui(z,t),uz(z,t)) € R? denotes the velocity of the fluid at point # € R? and
time ¢t > 0, and w := diug — Oouq is the associated vorticity. The constant parameter v > 0
represents the kinematic viscosity of the fluid. The velocity field w is divergence-free, and can
be expressed in terms of the vorticity w by the Biot-Savart formula u(-,t) = BS[w(-,t)], where
1 (z —y)* 2
BSlw|(z) == — — = w(y)d reR”. 1.3
@) = 5= [ T el dy. (13)
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As in (1.1), if # = (21,22) € R?, we denote - = (—x2,71) and |z|?> = 2?2 + 3. The most
important conserved quantities for the dynamics of (1.2) are the mean M[w] and the linear
momentum mw] = (m1[w], me[w]) defined by

Mw] = /]1%2 w(x)dez, m;w| = /RQ zw(x) de, i=1,2. (1.4)

It is known that the Cauchy problem for the evolution equation (1.2) is globally well-posed if
the initial vorticity w'” is a finite Radon measure on R? [11, 2]. In particular, given any integer
N > 1, we can consider the discrete measure

' N
Wt =Y T — ), (1.5)
=1

which represents a finite collection of point vortices of circulations I'y,...,I'y € R located at
the positions z1,...,2xy € R2. Without loss of generality, we assume that I'; # 0 and that
x; # x; when i # j. The point vortex system (1.1) with initial data z;(0) = x; is then well
posed on the time interval [0, 7] for some T' > 0, and we denote
d := min min|z(t) — z;(t)] > 0, IT| := [Ty +---+|Tn|] > 0. (1.6)
te[0,T] i#j

The following statement is the starting point of our analysis.
Theorem 1.1. [12] Assume that the point vortex system (1.1) with circulations I'; and initial

positions x; is well posed on the time interval [0,T]. There exists a constant Cy > 0 such that
the unique solution w” of the vorticity equation (1.2) with initial data (1.5) satisfies

1
IT| Jr2

N
L,  _le—z@l? vt
w”(z,t) — Z 47712/t e wt |dx < () 2 for all t € (0,7), (1.7)

where z1(t) ..., zn(t) is the solution of (1.1) such that z;(0) = x; fori=1,...,N.

This result shows that the solution w” of the vorticity equation (1.2) with initial data (1.5) can
be approximated by a superposition of Lamb-Oseen vortices whose centers follow the evolution
defined by the point vortex system. The approximation is accurate as long as the radius /vt
of the vortex cores is much smaller than the distance d between the centers. Importantly, the
constant Cp in (1.7) depends on the normalized time |I'|T'/d?, but not on the viscosity parameter
v > 0. In particular, for any fixed ¢ € (0,7, we can take the limit v — 0 in (1.7) so as to obtain
the weak convergence result

N
w”(-,t) - 2 Li6(-—2(t)), forall te[0,7], (1.8)
which provides a natural link between the dynamics of the vorticity equation (1.2) and the point
vortex system (1.1).

Interesting questions arise when trying to extend the approximation result in Theorem 1.1
to longer time scales. The first one is related to the collapse of point vortices. Assume for
instance that the solution of system (1.1) is defined on the maximal time interval [0, T}), with
three vortices collapsing at the origin as ¢ — T. In that case estimate (1.7) is valid on the
time interval (0,7") for any T' < T, but the constant Cy > 0 blows up as T" — T} because the
distance d converges to zero in this limit. So it is not clear at all if the weak convergence (1.8)
holds up to collision time, although this is certainly a reasonable conjecture. A fortiori, we do
not know if a limiting procedure as in (1.8) can be used to define a continuation of the point
vortex dynamics after collapse.

In a different direction, one may consider global solutions of the point vortex system, for
which |z;(t) —z;(t)| > d > 0 for all t > 0if ¢ # j. This is the case, for instance, if N = 2 or if the
circulations I'; are all positive [22]. Here again the approximation result (1.7) can be applied on
any time interval (0,7), but the constant Cy depends on 7" and increases rapidly as T' — +oc.
In particular, it is not clear if the solution w”(x,t) is well approximated by a superposition of
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Lamb-Oseen vortices as long as vt < d?, namely when the radius of the vortex cores is small
compared to the distance d between the centers.

The present paper is a contribution to the study of the latter question in the particular case
where N = 2 and I'y +1's = 0, which corresponds to a vortex dipole. To be specific, given I' > 0
and d > 0, we consider initial data of the form

W™ = T6(- — x) = T6(- — ), where 1z, = (—g,O), Ty = (g,O), (1.9)

so that w™ represents a pair of point vortices of circulations +I" separated by a distance d. In
that situation, the point vortex dynamics predicts a uniform translation at speed V' =T'/(27d)
in a direction normal to the line segment joining the vortex centers. More precisely, the positions
ze(t), z:(t) of the point vortices with circulation I, —I" (respectively) are given by

d d
wlt) = (=5.2:0), =0 = (5.20), (1.10)
where Z5(t) = Vt. Theorem 1.1 thus asserts that the solution w” of (1.2) with initial data (1.9)
is well approximated, on any fixed time interval (0,7"), by the viscous vortex dipole

T lo—z¢ ()| [—t
wgpp(xat) = Tt (e_ T — e v > , T € RQ, t>0, (1.11)

provided vT' < Cy L@ where the constant Cy depends on 7.

To discuss the ultimate validity of such an approximation, we introduce as in [14] the following
quantities, which play an important role in our analysis:

2 2
E(t) = @, o = %, Tadv = %, Tdiff = % (1.12)

Here €(t) is the aspect ratio of the viscous vortex dipole (1.11) at time ¢ > 0, namely the ratio
of the size of the vortex cores to the distance between the vortex centers. The dimensionless
parameter d, which measures the relative strength of the viscous and the advection effects, is
usually called the inverse Reynolds number. In view of (1.10), the advection time TLq, is the
time needed for the vortex dipole to cover the distance VT,q, = d/(27). Finally, the diffusion
time Tgige is the time at which the aspect ratio €(¢) becomes equal to one, so that the support of
both vortices strongly overlap. We are interested in the high Reynolds number regime § < 1,
for which Thq, < Tyirr- In that situation, the viscous vortex dipole can travel over a very long
distance in the vertical direction before being destroyed by diffusion.

Our main result shows that the solution of (1.2) can be approximated by a viscous vortex
dipole over a long time interval of size T,q,0 7, where 0 < ¢ < 1, provided that the position
Z5(t) of the vortex centers (1.10) is chosen in a suitable way.

Theorem 1.2. Fiz o € [0,1). There exist positive constants C and 0y such that, for any T’ > 0,
any d > 0 and any v > 0 such that § := v/T" < &y, the solution w” of (1.2) with initial data
(1.9) satisfies

1 vt

T RJ w”(z,t) — w’gpp(x,t)‘ de < C 2 for all t € (0, Toad"7), (1.13)
where wy,, is the viscous vortez dipole (1.11), (1.10) and the vertical position Zs(t) of the vortex
centers is a smooth function satisfying Z2(0) = 0 and

Z4(t) = 5 (1 —2ract + O(e5 + 6% + 552)) . with o ~ 22.24. (1.14)

7r

Remark 1.3. The formula (1.14) shows that the leading order correction to the constant
velocity V predicted by the point vortex system is negative and proportional to €4, where ¢ is
as in (1.12). This fact is known in the literature, see [17] for a detailed discussion. The constant
a > 0 has an explicit expression in terms of the solution of a linear differential equation on
R4, see Section 3.4 below. While Theorem 1.2 asserts the existence of some function Zs(t)
satisfying (1.14) such that estimate (1.13) holds, it is important to mention that Z3(t) is not
entirely characterized by (1.14), unless o is sufficiently small.
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If o = 0, Theorem 1.2 is merely a particular case of Theorem 1.1, and instead of (1.14) we
can simply take Z,(t) = V = I'/(2nd). The situation is different when o € (0,1), because we
have to control the solution of (1.2) on a much longer time scale. According to (1.14), the total
distance D covered by the vortex dipole over the time interval (0, T3¢0 ~7) can be estimated as
~ I —0 __ d —0
~ ond Tag0™” = 27 o
so that D > d if § > 0 is sufficiently small. To prove the validity of (1.13), it is therefore
necessary to have a very accurate expression of the vertical velocity Z4(t), as can be seen
from the following back-of-the-envelope calculation. As is easy to verify, changing the vertical
position Zs(t) of the vortex dipole (1.11) by a small quantity z(¢) produces an error proportional
to |z(t)|/(de) when computing the left-hand side of (1.13). This means that we have to know
Zs(t) with a precision of order de? to ensure that the right-hand side of (1.13) remains O(g?).
Since the length of the time interval is T5q,0 7, it is sufficient to control the vertical velocity
Z4(t) up to an error of order (I'/d)e3§°. To relate this to (1.14), we observe that

D = Z (Tadv(s_a)

e(t)? = Z—E = T(:v’ so that &(t)? < &(Tagud ™)
Given M € N, we thus have e3tM < g3 §M1-0)/2 < 350 if 5 < M/(M +2). So, for instance, if
we know that Z}(t) = I'/(2wd) + O(s*), that information is sufficient to obtain estimate (1.13)
provided o < 1/3. Similarly, the improved formula (1.14) which includes the leading order
correction to the point vortex dynamics is good enough for our purposes provided that o < 1/2,
but for larger values of ¢ we need to derive a higher order approximation of the vertical speed.

As in the previous works [12, 14], the proof of Theorem 1.2 relies on the construction of an
approximate solution of (1.2), in the form of a power series expansion in the small parameters
€ and §. Our expansion involves the vorticity distribution in suitable self-similar variables, as
well as the vertical speed of the vortex dipole. A linear approximation in § turns out to be
sufficient, but the order M of the expansion in ¢ must satisfy M > (3 +0)/(1 — o). As o can
be chosen arbitrarily close to 1, this means that we have to construct an asymptotic expansion
to arbitrarily high order in €, which can be done by an iterative procedure that is described
in Section 3. Note that a fourth-order expansion was sufficient in the situations considered in
[12, 14], because it was assumed that ¢ = 0 in [12] and 0 < ¢ < 1 in [14]. As an aside we
mention that, in the inviscid case § = 0, our approximate solution shares many similarities with
exact traveling wave solutions of the two-dimensional Euler equation describing vortex pairs,
which were constructed by variational methods or perturbation arguments, see [3, 4, 5, 8, 18].

The second step in the proof consists in showing that the exact solution of the vorticity
equation (1.2) remains close to the approximation constructed in the first step. This is far
from obvious because the linearized equation at the approximate solution contains very large
advection terms that could potentially trigger violent instabilities, and also because we need
a control over the long time interval (0, T59,0~ 7). We follow here the earlier study [14] which
considers the related, but more complicated, problem of a an axisymmetric vortex ring in
the low viscosity limit. The idea is to control the difference between the solution and its
approximation using suitable energy functionals, which incorporate the necessary information
about the stability of the approximate solution. Unlike in [12], it does not seem possible to rely
on weighted enstrophy estimates only, so we follow the general approach introduced by Arnold
to study the stability of steady states for the 2D Euler equations, see [13]. This method gives a
clear roadmap to design a nonlocal energy-like functional whose evolution is barely affected by
the most dangerous terms in the linearized equation at the approximate solution.

There are numerous previous works devoted to the study of localized solutions of the viscous
vorticity equation (1.2). Most of them consider initial data that are contained in a disjoint
union of balls of radius g < 1, and show that the corresponding solutions remain essentially
concentrated in small regions that evolve according to the point vortex dynamics, see [21, 7].
The effect of the viscosity is often treated perturbatively, under the assumption that v < Cef
for some positive constants C' and «. The solution is usually controlled on a time interval [0, 7]

2= gl (1.15)
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that is fixed independently of £y [21], but if the solution of the point vortex system is globally
defined it is possible to take T' > c|logep| [7]. To our knowledge, the only previous work where
the viscosity can be chosen independently of €, so that initial data of the form (1.5) are allowed,
is [6]. Here also, under the assumption that the point vortices do not collapse in finite time, the
solution can be controlled on the time interval (0,7T) with T' > ¢|log(e3 + v)|. Taking g9 = 0
we obtain T' > c|logv| for the initial data (1.5), whereas Theorem 1.2 describes the solution
over a much longer time scale T'= O(r~7), but only in the simple example of a vortex dipole.

2. THE RESCALED VORTICITY EQUATION

In this section, we introduce the framework needed to prove Theorem 1.2. Following [12]
we first define self-similar variables which allow us to desingularize the dynamics of (1.2) at
initial time, when point vortices are considered as initial data. We thus obtain a rescaled
system describing a “zoomed-in” evolution for the vorticity distribution, with the property that
the initial data are smooth in the new variables. We next make an appropriate choice for the
positions of the vortex cores, which ensures that the rescaled vorticity distribution has vanishing
first order moments.

2.1. Self-similar variables. Our goal is to study the solution w of the vorticity equation (1.2)
with initial data w™ = T'§(- — 2¢) — ['§(- — ), where I' > 0 is the circulation parameter and
the initial positions xy,z, are given by (1.9). For symmetry reasons, the solution w(z1, z2,t) is
an odd function of x7 for all times. It will be convenient to use the notation

T = (—x1,29), for any x = (z1,12) € R?. (2.1)

We introduce self-similar variables &, (for the right vortex) and &, (for the left vortex) defined
by

¢ oz —Z(t) ¢ - Z(t)
r = \/Ijt ) L = \/;t )

where Z(t) € R? is the time-dependent location of the right vortex, which is a free parameter
at this stage. In view of the Helmholtz-Kirchhoff dynamics, we anticipate that

2(t) = <;l Zg(t)>  where Z(t) ~ 2%. (2.3)

Using the conserved quantities of (1.2), we verify below that the assumption Z;(t) = d/2 is
indeed a natural one, and we also make an appropriate choice for the vertical position Zs(t).
For the time being, we look for a solution of equation (1.2) in the form

(2.2)

Wl 1) =~ 1) + - e D), (2.4)

where the self-similar variables &, &y are defined in (2.2), and the rescaled vorticity Q(&,t) is a
new dependent variable to be determined. It is important to realize that the same function {2
is used to describe the vorticity distribution of both the right and the left vortex, which reflects
the fact that the solution w of (1.2) is an odd function of the variable x;. The corresponding
decompositions for the velocity field u = (u1,u2) and the stream function v are found to be

u(z, 1) = —fﬁ Uent) - f;tﬁ(se,t), blet) = TU(E ) +TU(E D), (25)

where it is understood that

U=V and U=A'Q, with (A~1Q)() = 21/ log ¢ — [ Qn)dn.  (2.6)
™ JR2

In what follows we write U = BS[Q)] and ¥ = A7) when (2.6) holds. Using (2.5) it is easy to
verify that ui,v are odd functions of the variable x1 whereas us is an even function of x.
To formulate the equation satisfied by Q(€,t), we introduce the rescaled diffusion operator

1
L= Ac+ 56 Vet (2.7)
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If f,g are C' functions on R?, we also define the Poisson bracket
{f.9} = V- Vg = (01)(929) — (921)(19) - (2:8)

Lemma 2.1. The vorticity distribution w defined by (2.4) is a solution of (1.2) provided the
function Q satisfies the evolution equation

1 d
tatQ:m+—{\If—7;\p+ﬁZ§,Q}, t>0, (2.9)
J r
where ¢ = \/vt/d, § = v/T, and Tz is the translation/reflection operator defined by
(T20)(€) = U(E—cter), er=(1,0). (2.10)

Proof. We write equation (1.2) in the form 0w+ {¢,w} = vAw, where ¢p = A~lw is the stream
function. Using (2.4) it is easy to verify that

T t t
O —vhw = — [(—t(’m FLO+ \/:Z - VQ) (&0,1) + (t@tQ —LO-— \/:Z : VQ) (&, t)} .
On the other hand, in view of (2.1)—(2.3), the self-similar variables &, &, satisfy the relations

& =6&—cler, & =8&—¢c e,
so that ¥(&,t) = (To¥) (&, t) and V(& t) = (T=V) (&, t) by (2.10). In view of (2.5), (2.4), we
thus have
1'\2
{p.w}, = = [{m,t) - TG t), e D+ {0 — TU(EnD), m@,t)}x]
FQ
= = [{\P ~ T, 0} (6.0) ~ {¥-ToT, Q}gw,t)] -

Here we write {-, -}, or {-, - }¢ according to whether the Poisson bracket is computed with respect
to the original variable x or the rescaled variable £. Recalling that § = v/T", we deduce from
the equalities above that (1.2) is satisfied provided

t(?tQ—£Q+(1${\D—7;\IJ,Q}+\/?Z’-VQ, t>0. (2.11)
v
Since \/t/v = (ed)/(T9) and Z' - VQ = ZL0:Q = Z}{&1,Q}, we deduce (2.9) from (2.11). O

Remark 2.2. The evolution equation (2.9) can be written in the equivalent form
1 d
10,0 = £Q+5(U+TEU+%Z’(75)) VQ, t>0), (2.12)

where U = VW is the velocity field obtained from € via the usual Biot-Savart law in R2, and
T.U = —V+T.¥ denotes the velocity generated by the mirror vortex, namely

(TU)(E,t) = U(E —eter,t). (2.13)

Note that both velocity fields U and T U are divergence free.
It is essential to realize that the evolution equation (2.9) or (2.12) is singular at initial time
t = 0, because the term t3:€) involving the time derivative vanishes. In particular, the initial
data €y cannot be chosen arbitrarily, as can be seen by taking the limit ¢ — 0 (hence also

e — 0) in (2.9). Using the fact that V7:¥ — 0 in that limit, which is established in Lemma 3.8
below, we obtain the relation

1
0= £90+ 5{\110,90}, where A\I/() = Qg. (2.14)

This is exactly the equation satisfied by the profile of a self-similar solution of the Navier-Stokes
equation (1.2). It thus follows from [16, Prop. 1.3] that any solution of (2.14) that is integrable
over R? is necessarily a multiple of the Lamb-Oseen vortex

Q(€) = G6),  where G(€) = ﬁe—lf\% (2.15)
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A direct calculation shows that £y = 0, and since g, Vg are both radially symmetric one has
{Up,Q} = 0 too. Note that €y is normalized so that fR2 Qod¢ = 1, which ensures that the
vorticity distribution (2.4) satisfies w(-,t) — w™ as t — 0. For later use, we recall that the
velocity field Uy and the stream function ¥ associated with g have the following expressions

1 f 12 1 . YE
— UGe) .= lg|?/4 U - _E 2/4) — = 2.1
() = U(E) = 5pem (L), wo() = LBl - 2. 210
where Ein(s fo (1 —e™7)/7dr is the exponential integral, and v = 0,5772. .. is the Euler-

Mascherom constant

It follows from the previous works [11, 12, 2] that the rescaled vorticity equation (2.9) has a
unique global solution with initial data ¢ given by (2.15). This solution is smooth for positive
times, and is continuous up to t = 0 in the weighted L? space defined by (3.6) below. Our
purpose here is to give an accurate description of that solution in the regime where the viscosity
parameter is small.

2.2. Formula for the vertical speed. There is no canonical definition of the center of a
viscous vortex. Reasonable possibilities are the center of vorticity, the maximum point of the
vorticity distribution, or the stagnation point of the flow, but these notions do not coincide
in general. In our approach the vortex center is defined as the point Z(t) € R? where the
self-similar variable &, is centered, see (2.2). We choose it to be the center of vorticity, which
means that the function Q(&,t) satisfies the moment conditions

/2519(§,t)d§ =0, and / &Q(E,t)d (2.17)

In fact the first condition in (2.17) is fulfilled if Z;(t) = d/2, which we already assumed in (2.3).
The second condition requires a specific choice of the vertical position Zs(t), which we now
describe.

Lemma 2.3. Let Q be the solution of (2.9) with initial data (2.15), and U = VU be the
associated velocity field. If the vertical velocity is chosen so that

Zh(t) = —6% . Us (€ — e ter, t)QE 1) dE, ¢>0, (2.18)
then the following moment identities hold true
M[Q(t)] = 1, m; [Q(t)] = ma[Q(t)] = 0, t>0. (2.19)
Here and in what follows we use the notation (1.4) for the moments of Q.

Proof. 1t is easy to verify that td; [z, Qd¢ = 0, because the diffusion operator (2.7) is mass
preserving and the velocity field U + T U + (ed/T")Z'(t) in (2.12) is divergence free. Since
is normalized so that M[Qg] = 1, it follows that M[Q(¢)] = 1 for all ¢ > 0.

We next consider the evolution of the moment m;[QQ] for j = 1,2. We observe that

/Rz&jmdg = —;/Rﬁj@dg, and /ngy.mdg _ _/H@Ujﬂdg .

Indeed the first equality is easily obtained using the definition (2.7) and integrating by parts.
The second one is a well-known property of the Biot-Savart kernel in R?, related to the conser-
vation of the moment m;[w| for the original Navier-Stokes equation (1.2). It follows that

t0m;[Q) = — 5/ (T.U) ng——dz’() t>0. (2.20)

2 .7
At this point, the idea is to choose Z}(t) so that the last two terms of (2.20) cancel, namely

r

7ZM) = ——
]() SdR

. (TaU)j(f,t) Q¢ t)de, t>0. (2.21)
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Equation (2.20) then reduces to t9:m;[Q] = —3m;[Q], which means that ¢*/2m;[Q(¢)] is inde-
pendent of time. That quantity obviously converges to zero as t — 0, and we conclude that
m;[Q(t)] = 0 for all times, which gives (2.19).

To understand the precise meaning of (2.21), we write (2.13) in the more explicit form

(TU),(&1.&2.t) = —Ur (=61 —e ', &01), (TU),(61,82,t) = Us(—&1 — e, o, t)

In particular, using the Biot-Savart formula, we find for j = 1:

/ (T.U),Qd¢ = —/ Ur (=& — <71, &)Q() d¢
R2 2

R
1 §2— 12
= — Q&) Q(n)dédn = 0,
2 //R4 &+ et +m? + [§2 — n2f? (©) () de
where in the last equality we used the fact that the integrand is odd with respect to the change
of variables £ <+ 7. According to (2.21) we thus have Z](t) = 0, hence Z;(t) = d/2 for all t > 0,
in agreement with (2.3). In the case where j = 2, the right-hand side of (2.21) does not vanish
in general, and gives the formula (2.18) for the vertical speed. O

In the particular case where the vorticity 2 is given by (2.15) and the velocity field U by
(2.16), the vertical speed Z) defined by (2.18) only depends on the small parameter €, except
for the prefactor I'/d. It is then instructive to note that the speed Z) agrees to all orders with
the prediction of the point vortex system.

Lemma 2.4. If Q = G and U = U, the vertical velocity (2.18) satisfies

r ~ r
Zy = —— | Us(§—ete1)G(OdE = — +O(™). 2.22
2 2d Jao 5 (E—eter)G(E)de omd (™) (2.22)
Proof. Since the Gaussian function GG decays very rapidly at infinity whereas the velocity field
U is bounded, it is clear that integrating over the region |£| > 1/(2¢) gives a contribution to
(2.22) that is smaller than any power of ¢ as ¢ — 0. We can thus write

d 1 B
r%=C US (€ — e e1)G(€) dE + O(e™
L € /{|§<1/(25)} 2 (5 € 61) (§)dE +0O(e™)
! &1+1/e N
o Gle)de +0(™), 2.23
2me /{£|<1/(2s)} &1 + 1/ + |&2]? (§)d§+ O(e™) (2.23)

where in the second line we used the explicit expression (2.16) of the velocity field UY, and the
fact that |&14+1/e|? +|€2)? > 1/(4¢2) on the domain of integration. We next expand the fraction
in (2.23) as follows:

1 §1+1/e B 1+ e & e
cla+1/eP+16P  T+ebP + o nz:()( D)"e"@n (&) (2.24)

where Q¢ is the homogeneous polynomial on R? defined by Q¢ (r cos @, rsin 0) = r" cos(nf), see
Section A.1. Note that the series converges uniformly for || < 1/(2¢), so that we can exchange
the sum with the integral in (2.23). Since G is a radial function, only the term corresponding
to n = 0 gives a nonzero contribution, and we conclude that
= G(&)dE +0(™) = -
T 2T J{jel<1/ 2} 2

which is the desired result. O

3. THE APPROXIMATE SOLUTION

The purpose of this section is to construct an approximate solution of the rescaled vorticity
equation (2.9) by performing an asymptotic expansion in the small parameter ¢ = /vt/d. Given
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an integer M > 2, our approximate solution takes the form

app(f t - Q0 Z app(f t - ‘I/O Z (3~1)

where the vorticity profiles Qk have to be determined, and the stream functlon profiles are given
by ¥, = A7), as in (2.6). The corresponding expansion for the vertical speed is

T
Zy(t) = 5 Gap(t),  where Gapp(t) = 1+ Z ) ¢, (3.2)

for some (j, € R. It is important to note that Qapp, Wapp and Capp depend on time only through
the aspect ratio ¢ = /vt/d. Since ¢ — 0 as t — 0, the leading order terms 2y, ¥y in (3.1) are
also the initial data of the approximate solution app, Vapp. For consistency we must choose €2
to be the Lamb-Oseen vortex (2.15), and ¥g = A71() is the associated stream function given
by (2.16). Similarly, Lemma 2.4 implies that (,pp(0) = 1.

To measure by how much our approximate solution fails to satisfy (2.9), we introduce the
remainder

R = 0(LQapp — tatQapp) + {‘I’app — TeWapp + =6 Capp ) Qapp} : (3.3)
Using Lemma 3.8 below and the important fact that t0,c = 5/2, we deduce from (3.1), (3.2)
that the remainder (3.3) can be expanded into a power series in €. As we shall see in Section 3.2
below, the remainder of the trivial approximation (Qapp, Vapp) = (S0, ¥o) already satisfies
Ro = O(e?), and this is the reason for which the expansions (3.1) start at k = 2 instead of
k = 1. Our goal is to choose the profiles 4, U}, (; in such a way that Ry = O(eM+1) in an
appropriate topology. In fact we can require a little bit less if we observe that the quantity
(3.3) involves another small parameter 6 = v/I", which (unlike €) does not depend on time. A
priori all profiles Q, ¥, depend on § when k > 0, but it turns out that contributions of
order O(6?%) are negligible for our purposes. So we can assume that

O = QF +60%, Wy = OF 00T, Go= (40, (3.4)

where the Euler profiles QF, \I’kE , C,;E and the viscous corrections chv S \IJ{CV s, ,]CV S are now inde-
pendent of §, and can be chosen so that Ry = O(eM+! 4 §2¢2).

A final observation is that the profiles (3.4) are not uniquely determined unless additional
conditions are imposed. For instance, as was already discussed in Section 2.2, the vorticity €2
has a vanishing linear moment with respect to the & variable only if an appropriate choice
is made for the vertical speed Zj. Using the notation (1.4) the hypotheses we make on the
vorticity profiles can be formulated as follows:

Hypotheses 3.1. The vorticity profiles € in (3.4) satisfy:

H1) M[Qo] =1 and M[Q] = 0 for all & > 1;

H2) m;[Q] = ma[Q] = 0 for all & > 0;

H3) QF is an even function of & for all k > 0.

It is important to note that hypotheses H1, H2 apply to both QE and Qg S, whereas the
third assumption H3 only concerns the Euler profiles QkE . As a matter of fact, experimental
observations and numerical simulations of counter-rotating vortex pairs in viscous fluids clearly
show that the full vorticity distribution is not symmetric with respect to the line joining the

vortex centers, see [9].
We are now in position to state the main result of this section.

Proposition 3.2. Given any integer M > 2 there exists an approximate solution of the form
(3.1), (3.2), (3.4) satisfying Hypotheses 3.1 such that the remainder (3.3) satisfies the estimate

Rm = Oz (6M+1 + 5262) , (3.5)

where the notation Oz is introduced in Definition 3.4 below.
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Remark 3.3. We do not claim that the approximate solution is uniquely determined by the
properties listed in Proposition 3.2, but there is a canonical choice that makes it unique, see
Remark 3.13 below for a discussion of this question.

The choice of the integer M, which determines the accuracy of the approximate solution,
depends on the intended purpose. The leading order deformation of the stream lines and of the
level sets of vorticity is already obtained for M = 2, whereas the first correction to the vertical
speed Z) only appears when M = 5, see Section 3.4. In particular, this means that (, = 0
for £k = 1,2,3. As we shall see in Section 4, we need to take M > 3 if we want to control the
solution of (1.2) over a time interval [0, Thqy] that is independent of the viscosity parameter.
More generally, if 0 < o < 1, we need M > (3 + 0)/(1 — o) to reach the time T,q4,6 7.

3.1. Function spaces and operators. We first define the function spaces in which our ap-
proximate solution will be constructed. Following [16, 12], we introduce the weighted L? space

y={rer®): [ Irerdia <o, (3.
]RQ
which is a Hilbert space equipped with the scalar product
(Fa)y = [ 1O s /e, vigey. (37)

Using polar coordinates (r, ) defined by & = (r cos @, rsin 0), we can expand any f € ) in a
Fourier series with respect to the angular variable 6. This leads to the direct sum decomposition

n=0

where Y, = {f € Y : f = a(r) cos(nb) + b(r) sin(nf) with a,b: R; — R}. Note that Y, L Y,
if n # n’, so that the decomposition (3.8) is orthogonal. We also consider the dense subset
Z C Y defined by

Z={f:R2SR: P10 e S.RY), (3.9)

where S, (R?) denotes the space of smooth functions with at most polynomial growth at infinity.
More precisely, a function ¢ : R? — R belongs to S, (R?) if for any multi-index a = (av, ap) € N2
there exists C' > 0 and N € N such that [0%g(¢)] < C(1 + [£])N for all £ € R%. As an aside we
note that S.(R?) is the multiplier space of the Schwartz space S(R?) and of the space S'(R?)
of tempered distributions. Although we do not need to equip S.(R?) with a precise topology,
the following notation will be useful.

Definition 3.4. Let M € N be a positive integer.
1) If g. € S.(R?) depends on a small parameter € > 0, we say that g. = Os, (z-:M) if

VaeN?3IC >03IN eN suchthat [0%:.(€)] < CA+ [)NeM Ve e R?.
2) Similarly, if f. € Z, we write f; = Oz (sM) if e|’5‘2/4f6 = Og, (6M).

We next study three linear operators which play an important role in the construction of the
approximate solution.

A) The diffusion operator. We consider the rescaled diffusion operator £ defined by (2.7) as a
linear operator in ) with (maximal) domain

DLy ={feY:Afe) & Vfec)}. (3.10)

It is well known that L is self-adjoint in the Hilbert space ) with compact resolvent and purely

discrete spectrum:
n

o(L) = {—5 ne N}, (3.11)
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see for instance [15, Appendix A]. The one-dimensional kernel of £ is spanned by the Gauss-
ian function G defined in (2.15), whereas the first-order derivatives 091G, 02G span the two-
dimensional eigenspace corresponding to the eigenvalue —1/2. More generally, the eigenvalue
—n/2 has multiplicity n 4+ 1 and the eigenfunctions are Hermite functions of degree n.

It is easy to verify that the operator £ is invariant under rotations about the origin in R?, so
that it commutes with the direct sum decomposition (3.8): if f € Y, N D(L), then Lf € V,,. It
is also clear that £LZ C Z, where Z is defined by (3.9). In the same spirit, the following result
will be established in the Appendix:

Lemma 3.5. For any k >0 and any f € Z one has (k — L)"1f € Z.

B) The advection operator. Another important operator, denoted by A : D(A) — ), arises
when linearizing the quadratic term in (1.2) at the Lamb-Oseen vortex. The operator is defined
by

Af = UY.-Vf+BS[f]- VG, feD(A), (3.12)
where the functions G,U% are given by (2.15), (2.16) and the Biot-Savart operator by (1.3).
Equivalently, we have

Af ={W, f}+{A7'F, Q},  feD®), (3.13)
where g, ¥( are also defined in (2.15), (2.16) and {-,-} is the Poisson bracket (2.8). The
operator A is considered as acting on the maximal domain

D) = {fey :U% Vfey}. (3.14)

It is not difficult to verify that A is also invariant under rotations about the origin, so that it
commutes with the the direct sum decomposition (3.8). Moreover, it is clear that Af € Z if
f € Z, because the velocity fields UY and BS[f] belong to the multiplier space Si(R?)2. Finally
we recall the following properties established in [16, 20, 12, 14]:

Proposition 3.6. The operator A is skew-adjoint in the Hilbert space Y with kernel
Ker(A) =Yy D {5181G+ﬁ262G : B, P2 € R} (3.15)

In addition, if g € Ker(A)* N Z, the equation Af = g has a unique solution f € Ker(A)* N Z,
and f is an even function of the variable &5 if g is an odd function of &;.

Remark 3.7. Since A is skew-adjoint in )V we have Ker(A)* = Ran(A), where Ran(A) is
the range of A. So a necessary condition for the equation Af = g to have a solution is that
g L Ker(A), which according to (3.15) is equivalent to

Pog =0, and mifg] = malg] = 0, (3.16)

where Py is the orthogonal projection in Y onto the subspace ) of radially symmetric functions,
and mj, mg are the first-order moments defined in (1.4). Note that the solvability conditions
(3.16) are not sufficient in general to ensure that g € Ran(A), but under the additional assump-
tion that g € Z Proposition 3.15 shows that ¢ = Af for some f € Z.

C) The translation/reflection operator. Finally we study the action of the operator 7 defined
by (2.10) on functions ¥ € S,(R?) such that AV € Z.

Lemma 3.8. Assume that Q € Z and let ¥ = A7'Q as in (2.6). For each integer n > 1, let
P, be the polynomial of degree n given by

_1\n—1
P = T L

/R2 Q5 (&1 4+ m, & —n2) Q(n) dn, (3.17)

where QF is the homogeneous polynomial on R? defined by QS (r cos@,rsinf) = ™ cos(nf), see
Section A.1. Then for all N € N one has the expansion

N
(T0)(©) = Clog - + 30 "Pu(€) + 05, (V7). (3.18)
n=1

where C'= M[Q]/(27) with M[Q] given by (1.4)7.
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Proof. Using the representation (2.6) and the definition (2.10) of the operator 7, we find

(T9)(©) = V-6 - 1/z&) = o [ log Ertmr 1/ + [eamP Q) d
R2

1

1 1
= — [ 1og(n 2 4 22|ey—my|? .
5 108~ RQQ(n) dn + /RQ og(! +e(§1tm)|” + °[§2—ng| )Q(n) dn

The first term in the right—hand side is C'log(1/¢), so we need only consider the last integral.
We can also assume that £ € Bpg., where Bp_ is the ball of radius R. := 1/(4¢) centered
at the origin. Indeed, any function in S.(R?) restricted to the complementary region By s
already of order "V for all N, and we clearly have T.¥ € S,(R?). Similarly we can restrict the
domain of integration so that n € Br_, up to negligible errors. Now, if £, € Bgr,, we denote
xr=e(& +m, & — n2) € R? and we use the expansion

1 2 > (_1)71—1 c

§log(1 + 221 + |z]?) = Z:l — Qr(z), lz] <1, (3.19)

n—

which is justified in Section A.1. This leads to the formula

1 N (_1)71—1 el
(7;\11) (§) = Clog = + Z S /B QZ(fl + 1,82 —m2) Qn) dn + Os, (ENH) .
n=1 Re

Since 2 € Z, we can replace the integral in Bg_ with the integral in R? up to an error of size

Os, (eN+1). Thus (3.18) is proved in view of (3.17). O
Remark 3.9. For n =1 and 2, it follows from (3.17) that
1
R(©) = 5 [ (@ +mnmdn, P© = - [ [@m)? - @-m] 2w an

In particular, if M[Q] = 0, we have VP = 0 so that VT.¥ = Og, (¢?). If in addition m;[Q] =
my[Q] = 0, then VP, = 0 so that VT.U = Og, (£%).

3.2. The second order approximation. Before starting the construction of our approximate
solution, we compute the error generated by the naive approximation Qap, = Qo, Capp = 1,
which corresponds to setting M = 0 in (3.1), (3.2). In that case, since Ly = t9;Qy = 0 and
{0, } = 0, the remainder (3.3) reduces to
€
Ro = { ToWo + 251 QO} - (TEUG—l—Q—eQ) VG, (3.20)
T
where the operators 7. and T, are defined in (2.10) and (2.13), respectively. The following
statement is a particular case of the results established in [12, Section 3.1]. We give a short
proof for the reader’s convenience.

Proposition 3.10. For any integer N > 2 the remainder (3.20) satisfies
N

D (D)@ (€) G(E) + 0z (M), (3.21)

n=2

1

Ro(§) = e

where Q% is the homogeneous polynomial on R? defined by Q2 (r cos®,rsin @) = r"sin(nd), see
Section A.1.

Proof. We introduce the notation n = e 'e;. Using the definition of U in (2.16), we find

(T.US)(€) = UG(E—n) = ~UC e _ 1
e = m) = ~USE+m), and Soer = 5o, (3.22)
hence , . . |

Ro(€) = zﬂ% St 6_'5+”'2/4> Vel (3.23)

To prove (3.21), it is sufficient to estimate (3.23) for [¢| < 1/(2¢), because in the complementary
region the right-hand side of (3.23) is of order £ in Z. If |£] < 1/(2¢), then |€ +n|? > 1/(4e?)
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so that the exponential factor in (3.23) is O(¢*°). Therefore, since VG(§) = —(£/2)G(E), we

obtain
1 1 1
Ro(©) = -6+ (5505 — 1L ) GO (ele) + 02(). 321

where y is a smooth function on R, such that x(r) =1 for » < 1/4 and x(r) = 0 for r > 1/2.
To conclude the proof we observe that, for |{]| < 1/(2¢),

E+nt  nt 1 - —1

@(—:w& —1) = S0,
T TP eer 1) T LTI

where the last equality follows from (A.3). Thus (3.24) implies (3.21). O

n=2

Remark 3.11. It is important to notice that, according to (3.21), the remainder Ry is already
of order 2. As is clear from the above proof, the cancellation of the first order in ¢ is due to the
choice Capp = 1, which in turn is equivalent to Z) = I'/(2rd). In other words, in our approach
the translation speed given the Helmholtz-Kirchhoff system can be recovered by minimizing
the error of the naive approximation. This is a general feature of interacting vortices in the
plane, see [12]. In the case of axisymmetric vortex rings, which share many similarities with
counter-rotating vortex pairs, the remainder of the naive approximation is O(¢) and not better,
even if the translation speed is chosen appropriately, see [14].

Since Ro = Oz(e?), the first nontrivial step in our construction is the second order approxi-
mation, corresponding to M = 2, for which Q,,, = g +£2Qy and Vapp = Yo +2W,y. Although
this is not immediately obvious, we anticipate that ¢(; = 0, which means that there is no cor-
rection to the translation speed at this level of the approximation. To determine the unknown
profile Qy, the strategy is again to minimize the remainder (3.3), which takes the form

Ry = 8c2(L — 1) + {xpo — T + % Wy — 2T, O + 5292}

(3.25)
= 0e2(L — 1)y + Ry + 2AQ + £2N5,
where A is the linear operator (3.13) and
3
NQ = {—7;\110 + % + 62\112 — 827;\112, QQ} - {7;\1127 QO} . (326)
Invoking Proposition 3.10 with N = 2, we obtain
1
Ro = e?Ha+ 0z (c¥),  where Hy(¢) = —5-68G(9), (3.27)
and we can thus write the remainder (3.28) in the form
Ry = &2 [5(5 — 1)Q + AQ + Ha | + 2N, + Oz (%) . (3.28)

The properties recalled in Section 3.1 imply that the linear operator §(£ — 1) + A is maximal
dissipative in the Hilbert space ), hence invertible for any § > 0. Since Ho € Z C ), there
exists a unique profile Q9 € Y such that the quantity inside brackets in (3.28) vanishes exactly.
However, we need to verify that 23 € Z and that Qs does not blow up in the limit § — 0,
which is not immediately obvious. For these reasons, we find it simpler to solve the problem
approximately, using only the information given by Proposition 3.6. We set {2y = 95 + (5Q§V s,
where

i) Qf € Yy N Z is the unique solution of AQJQE + Hy = 0;
ii) Q5 € Y, N Z is the unique solution of AQYS + (£ — 1)QF =

We recall that )» is the subspace of ) corresponding to the angular Fourier mode n = 2,
see (3.8). The explicit expression (3.27) shows that Hz € Yo N Z, hence Ho € Ker(A)! in view
of (3.15). Applying Proposition 3.6 we conclude that the equation AQY + Hs = 0 has indeed
a unique solution Q¥ € Y, N Z, which is an even function of & because Hz is obviously odd
with respect to &. Similarly, since (£ — 1)QF € Y, N Z, it follows from Proposition 3.6 that



14 MICHELE DOLCE AND THIERRY GALLAY

the equation AQYY + (£ — 1) = 0 has a unique solution QY% € ¥, N Z. We conclude that
the full profile 25 belongs to Vs N Z, which implies in particular that the moment conditions in
Hypotheses 3.1 are automatically satisfied.

Remark 3.12. It is possible to obtain a more explicit expression of the profile (s, in terms of
solutions of linear ODEs on R, see Section 3.4. In particular Q¥ (&) = (€2 — &3)wz(|¢]) for some
smooth and nonnegative function wo with Gaussian decay at infinity. The profile Q& which
represents the leading order correction to the radially symmetric vortex €y in the expansion
(3.1), is responsible for the deformation of the stream lines and of the level lines of the vorticity,
which are nearly elliptical at this order of approximation, see Fig. 1.

With the above choice of 2y the remainder (3.25) takes the form
Ry = 262(L — )Y + 2N5 + 0z (%) = 0z(e + 6%?), (3.29)

because it is easy to verify using (3.26), Lemma 3.8 and Remark 3.9 that N = Oz(¢?). This
concludes the proof of Proposition 3.2 in the particular case where M = 2.

Remark 3.13. A minor drawback of solving the linear equation §(£ — 1)Qg + AQg + Ho =0
perturbatively in § is that the solution is not unique. Indeed, since the subspace )y of radially
symmetric functions is contained in Ker(A) by (3.15), we can add to Q5% any element of YoN Z
without affecting the remainder estimate (3.29), and Hypotheses 3.1 are still satisfied as well.
Uniqueness is restored if one assumes that Poﬁév S = 0, where Py is the orthogonal projection
in Y onto )y. Note that we must always impose POQQE = 0, otherwise equation ii) above has
no solution.

3.3. The induction step. We now use an induction argument to complete the proof of Propo-
sition 3.2. Assume that the conclusion holds for some integer M > 2 (the case M = 2 being
settled in Section 3.2.) We consider a refined approximate solution of the form

Qapp = Qapp + 5M+IQM+1 5 \ijapp = ‘ljapp + 5M+1\I’M+1 5 Eapp = Capp + 5MCM 5 (3'30)

where Qapp, Yapp, Capp are as in (3.1), (3.2), and where Qp41 € Z, ¥prig € Su(R?), (i € R
have to be determined so that Ry 1 = Oz(eM+2 + §2¢2).

We first study the remainder Rj; given by (3.3), which is a quadratic polynomial in the
parameter J in view of (3.4). Using in particular Lemma 3.8, we can expand the right-hand side
of (3.3) in powers of £ and, by induction hypothesis, the expansion starts at order Oz (e™*1)
for the terms that are proportional to §° or §'. In other words, there exist Ho, H1 € Z such
that

Ry = 6M+1H0 + (5€M+1H1 + 0z (€M+2 + (5282) . (3.31)

The idea is of course to choose Qr41, Yasi1,Car so as to cancel the terms Ho, H; in (3.31).

To do that, we need some information on the first order moments. Using (3.3), one can check

by a direct calculation that M[Ry/| = m;[Ras] = 0, so that M[H;] = m;[H;] = 0 for j =0, 1.

However, we have ma[R /] # 0 in general. In addition, it follows from Hypotheses 3.1 that Ry,
is an odd function of & when § = 0, which implies that Hg is an odd function of &s.
We next consider the remainder of the refined approximation (3.30), which reads

551 ~
Capp ) Qapp}

= Roag + 0™ (L = 1) Qupy + M Wap = T + 5

Ryy1 = 5(£Qapp - tat@app) + { app T\I’app + 5=

L e Qs } (332

£
+ EMH{\I’MH = Te¥m+1 + ﬁ Cv 5 Qapp + 5M+IQM+1} :
Using the expansion (3.31) and the identity

M
{Vo, Q1 } + {\I’MH + 2% C s Qo} = AQp1 + 27 928,
where A is the differential operator (3.12), we can write the quantity Rjs41 in the form
Rye1 = 6M+1.AM+1 + €M+1NM+1 + Oz (€M+2 + 5262) , (3.33)
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where Ajpry1 is the collection of the principal terms:

Ansr = 6(L = L) Qi + AQaryr + Ho + 0H1 + % 2, (3.34)
whereas A1 gathers higher order corrections:
£ Capp’ QMH}

+ {‘I/M+1 + 2% CM s Qapp — Qo + 5M+1QM+1} - {7E‘I’M+1 s Qapp + SMHQMH} .

We now determine Qpr11, Vars1, (s S0 as to minimize the quantity Apr4+1. We first define
the correction to the vertical speed:

Nars1 = {\Ifapp — W = TeWupy + o

G = CE 48NS, where C5:/ ExHo(€) d¢ ﬁs:/ GHI(E) e (3.35)
M M ’ o R 2710 ; o - 2711 . .

We thus have Ap;i1 = 5(£ — %)QMH + AQpr41 + Ho + 0Hq, where
_ CE _ CNS
Ho = Ho+ 2L 0,0, Hy = Hi+ 2L 9,90, (3.36)
2 27
and the choice (3.35) ensures that my[Ho] = ma[H;] = 0. We next define
QMH = QU QL 00N (3.37)
where the vorticity profiles o M +1’ Qﬁ’il, QJ]\\EH are determined in the following way:

(1) The radially symmetric function Qf/[’?rl € YoN Z is the unique solution, given by Lemma 3.5,
of the elliptic equation

(£ — M + PoHy = 0, (3.38)
where Py is the orthogonal projection in ) onto the radial subspace ).

(2) The function QJ?/I}H € Ker(A)* N Z is the unique solution, given by Proposition 3.6, of
E,1
AQEL 471, = 0. (3.39)

Remark that H, € Ker(A) because Ho(€) is an odd function of &, which implies that
PoHo = 0 and m;[Hg] = 0, and because my[H] = 0 by our choice of ¢Z 1. Note also that
QE ! 41 Is an even function of &3, as asserted in Proposition 3.6.

(3) The function Q4 M1 € Ker(A)* N Z is the unique solution, given by Proposition 3.6, of
AQNS + (1= Po)Hy + (£ - Mol = o, (3.40)

where the last two terms belong to Ker(A)* N Z by construction.

In view of (3.35)-(3.40) we have Ap4q = 02 (L — 2H)QNS | and the profile Q711 satisfies
Hypotheses 3.1. Returning to (3.33) we thus find

Rarr = eMH162(L— MEQNS | MALp, 4 0 (eMH2 4 §262)
= Oz(eM7? +§%7),

because using Lemma 3.8 it is easy to verify that N1 = Oz(¢2). This concludes the induction
step, and the proof of Proposition 3.2 is now complete. U

3.4. Leading order correction to the vertical speed. The goal of this section is to compute
the leading order correction to the vertical speed Z) in the approximate solution (3.1), (3.2).
It turns out that this correction occurs for M = 5, which means that (, = 0 for k = 1,2, 3, see
[17]. As is explained in Section 3.3, the coefficient (4 is chosen so as to ensure the solvability of
the “elliptic” equation for the vorticity profile {25, as in (3.35). Fortunately, it turns out that
the expression of (4 only involves the leading order correction 25 to the vorticity distribution.
No information on 23 and €24 is needed at this stage.
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Lemma 3.14. Using polar coordinates & = (rcos@,rsinf), the leading order correction Qg in
the approzimate solution (3.1) takes the form

Q2(€) = —wa(r) cos(20) + 0 Wa(r) sin(26), (3.41)
for some wa,Wo : Ry — R with wo > 0.
Proof. We already know that Qy = QF +35Q5 where AQF +Ho = 0 and AQY I +(£-1)0F =0,
see Section 3.2. According to (3.27) we have —Ha = b(r) sin(26) where b(r) = r2g(r)/(27) with

g as in (A.8). In particular Ho € Yo N Z, so that we can apply Lemma A.1 in Section A.3. We
thus obtain the formulas QF = w(r) cos(26), VF = o(r) cos(26), where

r 2
W) = ~p(Ih0) — 5k = <) () + 1) (3.42)

and ¢ is the unique solution of the ODE (A.11) with n = 2 such that ¢(r) = O(r?) as r — 0
and ¢(r) = O(r=2) as r — +oo. It follows from the the maximum principle that ¢ is a positive
function, so that w(r) < 0 for all 7 > 0 in view of (3.42). We thus have QF = —wsy(r) cos(26)
with wa(r) = —w(r) > 0. We deduce that (£ — 1)Q% = a(r) cos(26) for some a : R, — R, and
applying Lemma A.1 again we conclude that QY = Wy (r) sin(26) for some Wy : Ry — R. O

Remark 3.15. Similarly the next correction Q3 = QF + 608 9 is determined by the relations
AQY +Hz =0 and AQYS + (£ — 3)QF = 0, where H is the third order term in the expansion
(3.21), namely

Hs(6) = 1= QUOGE) = 1 (3636 - )G(O).

Thus H3 € Y3 N Z and Hz = b(r)sin(36) for some b : R — R. Proceeding exactly as before,
we thus find that QF = w3 (r) cos(30) and QY = W3 (r) sin(36) for some ws, w3 : Ry — R.

We are now able to formulate the main result of this section.

Proposition 3.16. If M > 5 the advection speed (3.2) satisfies

Zh(t) = % (1 —2rae’ + O(° + 525)) , (3.43)
where ) -
a = W/RQ (& — &)Q(8) d¢ = /0 rwo(r)dr ~ 22.24. (3.44)

Remark 3.17. The error term O(e® + §%¢) in (3.43) is probably not optimal. We believe that
it can be improved to O(g5 + §2¢), but this requires nontrivial modifications of our arguments.
We also recall that €2 = §t/Thqy, where Thqy is defined in (1.12). If ¢ > Thqy, then § < 2 and
the error term in (3.43) can be replaced by O(e®).

Proof. We consider the approximate solution (3.1), (3.2) for some M > 5. According to Propo-
sition 3.2, the remainder (3.3) satisfies Ry = Oz (eM ™! + §%¢?). To obtain a formula for the
vertical speed, we multiply both members of (3.3) by & and we integrate over & € R?. Pro-

ceeding as in the proof of Lemma 2.4, and recalling that U app(§ — e ley,t) = N Te¥app, We
find

€
(T = 5 o) d. = O 4 672
R2 2
Since M[Qapp] = 1 by Hypotheses 3.1, we deduce the representation formula
2

— (1 TeWapp) Qapp A€ + O (M + 6%¢) (3.45)
R2

Capp =

which is the analogue of (2.18).
In the rest of the proof, we assume that M = 5. To compute the integral in (3.45), we apply
Lemma 3.8 with 2 = Q,p, and ¥ = W,,,. This gives the expansion

5
O (TeWapp) (§) = Y "0 Pu(€) + Os. (°) (3.46)
n=1
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where the polynomials P, are given by (3.17) with Q = ,,,. Using Remark 3.9 as well as the
information on the moments of {2,,, contained in Hypotheses 3.1, we find

01P(§) = %M[Qapp] = %a P& = _% <§1M[Qapp] +m1[Qapp]) =

Similarly, a direct calculation shows that

nPs(§) = % /R?<(§l +m)? = (& - 772)2)Qapp(77) dn

&
Con

1 1 1
— 5o (@ = )+ 5 [ 0 =) = 52 Q5O - %+ 0s.()

where in the last equality we used the fact that Qapp, = Qo +e2Qo+ O0z(?) with Qs as in (3.41),
together with the definition of « in (3.44). Finally, since Qapp = Qo + Oz(c?), we also have

MPAE) = —- QSO + 0. (2) . DPH(E) = 5 Q5O+ Os. (7).

Note that the homogeneous polynomials Q¢ already appear in the expansion (2.24). Summa-
rizing, we have shown that
4
2w
— 01 (TeWapp) () = D (-1)""QL(8) — maet + Os, (7). (3.47)
n=0
To conclude the proof, we multiply (3.47) by Qapp(€) and we integrate over ¢ € R2. The

contribution of the leading order term Qg in Qupp is 1 — mac? + O(£°), and using again (3.41)
and Hypotheses 3.1 we obtain

2
;T . (1 TeWapp ) (Qapp — Qo) d€ = € / Q5()(&) dé+ O(e%) = —mact + O(&°).
Altogether we thus find (upp = 1 — 2mac? + O(E + 525). O

3.5. Functional relationship in the inviscid case. In this section, we investigate the prop-
erties of our approximate solution (3.1), (3.2) in the limiting situation where 6 = 0, which
corresponds to the inviscid case. In view of (3.3) and Proposition 3.2, we have

E 231 E M+1
Ry = { app — 1<V app+ 7Capp7 Qapp} - 03(5 i )’ (3.48)
where, as in (3.4), the letter E in superscript refers to the Euler equation. We consider the
stream function in the uniformly translating frame attached to the vortex center, defined as

Efl 1
of =0l —TUE + o gapp + 71 og (3.49)
where the last term in the right-hand side is an 1rrelevant constant that is included for con-
venience. The remainder Rﬂ = {@app, app} would vanish identically if we had a functional

E
app T F'(4,) = 0 for some (smooth) function F': R — R. In reality,

since RJ\E/I =0(e M +1), the best we can hope for is an approximate functional relationship, which

holds up to corrections of order O(eM+1).

At leading order (M = 0), our approximate solution is Qapp = Qo, Papp = Yapp = Vo, where
Qo and ¥ are defined in (2.15), (2.16). It follows that ®g + Fy(€2o) = 0 if we define

relationship of the form ®F

1 1 1
Fy(s) = E(’VE - Ein(log—)) , 0<s< e (3.50)

4rs T

Note that Fy is smooth, strictly increasing, and satisfies Fy(s) ~ —(47)~!log 10g% as s — 0.
For later use we define

A(§) = Fy(()) = —ggggg |§|2< elél*/4 1) (3.51)

We next investigate the functional relationship for the second order approximation (M = 2).
As is explained in Section 3.2 we have prp = Qo + £2QF and \IlaEpp = Uy + 2UZ | where the
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FIGURE 1. The level lines of the function ®%  defined in (3.49), which correspond to the
stream lines of the inviscid approximate solution Qapp in the co-moving frame, are represented
for M =2 and e = 1/50 (left) or & = 1/8 (right). Large positive values of ®£  are depicted
in red, and large negative values in blue. The flow has two elliptic stagnation points located
at £ =0 and £ = (—1/¢,0) in our coordinates, as well as two hyperbolic points on the black
line which separates the vortex dipole from the exterior flow. Near the vortex centers, the
stream lines are nearly elliptical with a major axis in the £;-direction, which reflects the fact

that wg > 0 in (3.41).

corrections Q’QE , \I/2E are computed in Lemma 3.14. Using Lemma 3.8 with N = 2, we obtain the
following expansion of the stream function in the moving frame:

Popp = Yo + 705 + Tr (51 &) + 0s. (7). (3.52)

The level lines of the second order approximatlon computed above are shown in Fig. 1 (ignoring

the €3 corrections). We now look for a relationship of the form <I>£pp+F (prp) Os, (%), where

F = Fy+ £%F, for some F : (0, +00) — R. This is problematic, however, because it is not true
that QF (&) > 0 for all £ € R2. As is explained in Remark 3.21 below, this difﬁculty is avoided

app
if we only require that the second order Taylor polynomial in € of the quantity ® app + F(QaEpp)
vanishes. This gives the relation

Wf + (6 - ) + F(0)0f + F(00) = 0, (3.53)

which serves as a definition of Fg. It turns out that the first three terms in (3.53) sum up to
zero, so that we can actually take F» = 0. Indeed, this is a consequence of equation (3.42)
in Lemma 3.14, because W& = ¢(r)cos(20), €2 — €2 = r2cos(20), QF = w(r)cos(20), and
Fi(Q9) = A=1/h by (3.51).

To establish the functional relationship at any order, we use an induction argument on the
integer M, as in the proof of Proposition 3.2. The following definition will be useful:

Definition 3.18. We say that a smooth function F' : (0,4+00) — R belongs to the class K if
F(Q0) € S«(R?), where g is defined in (2.15).

Note that, if H € S.(R?), the equation F(£)y) = H has a solution F € K if and only
if {#H,Q} = 0, namely if H is radially symmetric. In that case the function F' is uniquely
determined on the range of €2y, which is the interval (0, (47)~!]. Since H may grow polynomially
at infinity, the function F' may have a logarithmic singularity at s = 0. The following observation
is also useful.

Lemma 3.19. Let F : (0,+00) — R be in the class K. Then, for all k € N, the k-th order
derivative of F has the property that F*)(Q0)Qk € S.(R?).

Proof. We verify by induction over k that the function F, := F®*)(Q0)QE belongs to S, (R?).
This is the case for k = 0 because F' € K. Assume now that F, € S,(R?) for some k € N. Using
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the identity VQo (&) = —(£/2)Q0(§), we obtain by a direct calculation
2VFL(E) + E(Fri1 () +kFp(€)) = 0,  E€R?. (3.54)

Since both VFj and £F}, belong to S.(R?)2, so does £Fj41 by (3.54). This means that Fj1
and its derivatives have at most a polynomial growth at infinity, so that Fj1 € S.(R?). O

Proposition 3.20. Given any integer M > 2, let Qf;)p, \IlaEpp be the approzimate solution (3.1)

given by Proposition 3.2 with § = 0. There exists F € K of the form F = Fo+e?Fo+---+eMFy

such that the stream function @é?pp defined by (3.49) satisfies

M

k Ak
HM<(PaEpp+F(prp)> - 0, where HMf = Z et d f
k=0

T Aok (3.55)

e=0

Remark 3.21. Unfortunately, we cannot write the conclusion of Proposition 3.20 in the seem-
ingly more natural form

Papp + F(Qupp) = Os.(£777)

because the quantity F (prp) is not properly defined. Indeed, our assumptions on the approx-
(€) > 0 for all ¢ € R?, whereas a function F € K is

imate solution do not ensure that prp
only defined on (0, +00). However the Taylor polynomial ITj;F' (prp) is well defined, because

it only involves derivatives of F evaluated at g, and its coefficients belong to the space S, (R?)

by Lemma 3.19.

Proof. To simplify the notation, we drop the superscript “E” and the subscript “app” every-
where. We proceed by induction over the integer M. Assume that, for some M > 2, we have
constructed ® € S,(R?), Q € Z, and F € K of the form

M M M
(I):@o—I—ZEk(I)k, Q:Q()—i-ZEka, F:Fo—i-Zé‘ka,
k=2 k=2 k=2

such that {®,Q} = Oz (eM*!) and ) (P + F(Q)) = 0. (We have just checked that this holds
for M = 2.) Suppose now that we have a refined expansion of the form

O =0+, Q=0+, where {®,Q} =0z(eM1?).  (3.56)
We want to find Fias41 € K such that Ty (® + F(Q)) =0 with F = F + M1 Ey 4.

First, using the induction hypothesis, we observe that
My (@ 4+ F(Q) = (M1 — M) (@ + F(Q)) = M-, (3.57)
for some Hps11 € S«(R?). We deduce that {<I>, Q} = 6M+1{HM+1 , Qo} + Oz (5M+2), because
My {®, Q} = My {2+ F(Q), Q} = My {1 (2+F(Q)), @} = M Hargr, Q)
On the other hand, it follows from the definition of ®, ) in (3.56) that
{&), Q} = {o, 0} +5M+1{¢M+1, Qo} +5M+1{<I>0, Q)+ Oz (eM12),
so the assumption that {Ci), Q} = Oz (eM*?) implies
{Hrre, Qo+ {@rrs1, Qo} + {Po, Q1) = 0. (3.58)
Finally using (3.56), (3.57) we find
M1 (2 + F(Q) = a1 (® + F(Q)) + a1 (@ — @) + Mpyy (F(Q) — F(Q))
— M1 (HMH 4 Do+ F(Q20) Qs + FMH(QO)) , (3.59)
because at the points where  and Q are positive we have the identity

F(Q) - F(Q) = F(Q+ M Qui1) — F(Q) + M Faga (Q+ M)
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In view of (3.59), we must choose Fys41 € K so that Apr+1 + Far1(Q0) = 0, where
Apri1 = Harer + @urr + F'(Q0) Q11 € Se(R?).

As was mentioned after Definition 3.18, this is possible if and only if {Apr41,Q0} = 0, but this
solvability condition is implied by (3.58) because

{F' ()41, Q} = {Qs1, F(Q0)} = {Qms1, —Po} = {Po, Qurs1}-

So there exists Fyrr1 € K such that a4 (Ci) + F(Q)) =0 with F = F + 5M+1FM+1. This
concludes the proof. O

Corollary 3.22. With the same notation as in Proposition 3.20, there exist o1 > 0, C' > 0,
and N € N (depending on M ) such that, for € > 0 small enough,
V(@ + F(QF ) (©)] < ceM 1+ ¢

app app

,  for €] < 2679t (3.60)

Proof. We recall that prp = Qo+e%o+---+eMQyy. Forany k € {2,..., M}, we have O € Z,
so that e¥|Q(&)] < Cr ¥ Qo(€)(1 + |€)V* for some constants Cj, > 0 and Ny, € N. This means
that ¥,/ is very small in the region {& € R? : |¢| < 271} if 0y < k/Nj, and £ > 0 is small

enough. As a consequence, if o1 > 0 is small enough, we have the estimate

1 -0
5 0(6) < QL6 < 2(6), ¢ < 2277, (3.61)

which implies in particular that QaEpp(f ) is positive when [£| < 22791,
We now consider the function O(g,&) := @fpp(f) + F (prp(f)), which is well defined for

e > 0 sufficiently small if |{] < 2e77!. Using a Taylor expansion of order M at ¢ = 0, and taking
into account the fact that 11,0 = 0 by Proposition 3.20, we obtain the representation formula

M+1

M!

9

6(57 g) =

1
/(1—T)Ma;”+1®(m,§)dr, €] < 2671, (3.62)
0

The integrand in (3.62) is estimated by straightforward calculations, using the bound (3.61) and
the fact that ®L € S,(R?), QF € Z and F € K. We find that [0MH1O0(7¢,&)| < O(1 + [€)N

app app
for some integer N € N, and a similar estimate holds for the derivatives with respect to £. This
gives the bound (3.60) after integrating over 7 € [0, 1]. O

4. CORRECTION TO THE APPROXIMATE SOLUTION

In this section, our goal is to show that the exact solution Q(&,t) of (2.9) with initial data
(2.15) remains close to the approximate solution Q,p,,(€,%) constructed in Section 3. The ac-
curacy of our approximation depends on the integer M in (3.1), which is chosen large enough,
and on the inverse Reynolds number § = v/T", which is taken sufficiently small. We make the
decomposition

Q(f? t) - Qapp(g, t) + 6w(§7 t) ) \Ij(éa t) = \I/app(fa t) + 590(57 t) ) (41)

where w is the vorticity perturbation and ¢ = A~lw is the associated correction of the stream
function. We also decompose the vertical speed Z) as

2(0) = 5 (Gann(®) +C(0), (42)

where (ypp is the approximation (3.2) and, in agreement with (2.18), the correction ( is given
by the formula
_2r

) = 2 [ (TR0 d = Gonl®). (43)

e
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Inserting (4.1), (4.2) into (2.9) and using the definition (3.3) of the remainder Ry, we find that
the vorticity perturbation w satisfies

1 551 1
toyw — Lw = g{qlapp - ,quapp + ﬁgapp 7w} + g{%p - T, QaLpp} (4-4)
1 e
+{90_72907“}}+§RM+W{flaQapp+5w}' (4.5)

This evolution equation has to be solved with zero initial data at time ¢ = 0, because both
Qapp (-, t) and Q(+,t) converge as t — 0 to the same limit 2y given by (2.15), see the discussion
after Remark 2.2. Moreover, using the moment conditions (2.19) in Lemma 2.3, which are also
fulfilled by the approximate solution 2, in view of Hypotheses 3.1, we see that the solution
of (4.4)—(4.5) satisfies

Mw(-,t)] = m[w(-,t)] = maw(-,t)] =0, forallt>0. (4.6)

Note that the last condition ma[w] = 0 is ensured by our choice (4.3) of the correction ¢ to the
approximate vertical speed Capp.

The structure of the evolution equation (4.4)—(4.5) is quite transparent. In the first line we
find the linearization of (2.9) at the approximate solution ,pp,, in a frame moving with the
approximate vertical velocity (3.2). The nonlinear interaction between the vorticity perturba-
tion w and the associated stream function ¢ is described by the first term in (4.5), whereas the
last term takes into account the small correction ¢ to the vertical speed. Since w(-,0) = 0, the
solution of (4.4)—(4.5) is actually driven by the source term § 2Ry in (4.5), which measures by
how much Q,p;, fails to be an exact solution of (2.9). According to Proposition 3.2, this term
is small if M is large enough and § small enough.

We are now in a position to state the main result of this section, which is a refined version
of Theorem 1.2.

Theorem 4.1. Fiz o € [0,1), take M € N such that M > (34 0)/(1 — o), and let w be the
solution of (4.4)—(4.6) with initial data w|i—o = 0. There exist positive constants C and dy such
that, for any T' > 0, any d > 0 and any v > 0 with § := v /T < &y, the following holds:

12 = Qupp) Ol = Slw(t)|x. < C(6 M +662),  forall t € (0,Toayd "),  (4.7)

where ¢ and Ty, are as in (1.12), and the function space X — L'(R?) is defined in (4.23)
below. Moreover, the vertical speed satisfies

% Z5(t) = é /R ) (01 TeWapp) Qapp A€ + O (M + 67 1M T 4 5% + 5¢%) (4.8)
Remark 4.2. As is explained in Sections 4.1 and 4.2, we need to introduce a carefully designed
weighted space & to fully exploit the stability properties of our approximate solution 2,y
of (2.9). At this stage, however, it is enough to know that X. — LY(R?) uniformly in e.
Observing that 6 teM*! < £2 when t < Tpgy6 7 and ¢ is small enough, and recalling that
Qapp = Qo+ 0O(e?) by (3.1), we see that (4.7) readily implies the estimate (1.13) in Theorem 1.2,
in view of (1.11) and (2.4). Similarly, assuming that M > 5 is sufficiently large, the expression
(1.14) of the vertical speed follows from (4.8) if we use the relation (3.45) and the expression of
Capp computed in Proposition 3.16.

The rest of this section is devoted to the proof of Theorem 4.1, which is organized as follows.
In Section 4.1 we isolate the most dangerous terms in the equation (4.4)—(4.5), and we explain
why they are difficult to control. We then discuss how to overcome these issues in a simplified
situation where the geometric ideas underlying Arnold’s variational principle can be presented
without too many technicalities. The functional framework needed to prove Theorem 4.1 is
introduced in Section 4.2, where the e-dependent weighted space X, appearing in (4.7) is pre-
cisely defined. The short Section 4.3 is entirely devoted to the control of the correction  to the
vertical speed. In Section 4.4 we introduce our main energy functional, inspired from Arnold’s
theory, and we study its coercivity properties. We also state the key Proposition 4.10, which is
the core of the proof of Theorem 4.1. The time derivative of our energy functional is computed
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in Section 4.5, and consists of various terms that are estimated in the subsequent sections 4.6—
4.9. Once this is done, a simple Gronwall-type argument allows us to complete the proof of
Proposition 4.10, hence also of Theorem 4.1.

4.1. Main difficulties and Arnold’s variational principle. Before proceeding with the
analysis of the evolution equation (4.4)—(4.5), it is convenient to identify the terms that produce
the main contributions. We recall that, according to (3.4), our approximate solution can be
decomposed as

E NS E NS
Qapp = L + 5Qapp J Wapp = Wapp + 5qjapp ) Capp = Capp + 5Capp )

where QE is the Eulerian approximation already considered in Section 3.5, and Qapp is a
viscous correctlon In analogy with the definition of <I>app n (3.49), we denote

NS ._ NS Ns | €&
Papp = Yapp = TeWapp + 5~ o app (4.9)
The equation (4.4)*(4 5) can then be written in the equivalent form
thw — Lw = < ({(I)app’w} +{v - T, Qalepp ) + {(I)Q;i’w} +{o - 5907(25:}[)?) (4.10)
+H{o-Tep w} + 5 RM + o 2 5 {51, app + 0w} . (4.11)

As is explained in the in‘clroductlon7 the main challenge in the proof of Theorem 4.1 is to
control the vorticity perturbation w over the long time interval (0,7,4,0~7), where o € (0,1).
The size of w is measured in a function space X. < L!(R?), keeping in mind that L!(R?) is the
Lebesgue space whose norm is invariant under the self-similar scaling (2.4). The best we can
hope for is to propagate the bounds we have on the forcing term, and thanks to Proposition 3.2
we know that 6 2Ry = Oz (6 2eM+1 +£2). This explains the right-hand side of estimate (4.7)
in Theorem 4.1.

To control the nonlinear terms in (4.11), we have to make sure that w remains small, and in
the light of the above we must therefore assume that 6~ 2eM+1 « 1. Recalling that e < §(1-9)/2
when t < T,qy077, we see that this condition is met when d > 0 is small if we suppose that
M is large enough so that M > (3 + ¢)/(1 — o). The term involving §~2e({&1, Qapp} is also
potentially problematic, because the bound on ( that will be established in Section 4.3 below
does not compensate for the large prefactor =2, but due to a subtle cancellation (related to
translation invariance in the vertical direction) this term will not seriously affect our energy
estimates.

More importantly, we have to handle carefully the linear terms in (4.10), especially the
nonlocal ones involving the stream function perturbation ¢. The most dangerous terms are
multiplied by 6~! and correspond to the linearization of (2.9) at the Eulerian approximate
solution Qapp In contrast, the contributions due to the viscous corrections are of size O(g?)
and will be easy to control. As was already observed in [12], the linearized operator at the
naive approximation {2y is skew-symmetric in a Gaussian weighted space, so that the leading
order terms in (4.10) do not contribute to the energy estimates in that space. Moreover, the
corrections due to the difference €2,,, — Q¢ are proportional to 07 1e2, a quantity that remains
small as long as t < Tyqy-

The real difficulties begin when one tries to control the solution w of (4.10)—(4.11) on a time
interval (0,7") with T' > T.qy. If T is independent of § = v/T', this can still be done using an
appropriate modification of the Gaussian weight in the energy estimates, see [12]. However, to
reach longer time scales corresponding to T' = Thgy0 7 with ¢ > 0, we need a different and more
robust approach that fully exploits the stability properties of our approximate solution {upp.
In the particular case under consideration, we know that Qapp is very close to a traveling wave
solution of the 2D Euler equation, and we even have an approximate functional relationship
between prp and q)fpp, as shown in Section 3.5. For steady states (or traveling waves) of
the 2D Euler equations with a global functional relationship between vorticity and stream
function, Arnold [1] introduced a beautiful and general variational principle that can be used
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to investigate stability. This approach was recently revisited in [13] and successfully applied
to the study of the vanishing viscosity limit for axisymmetric vortex rings [14], a problem that
has many similarities with the case of vortex dipoles. In the rest of this paragraph, we briefly
present Arnold’s general strategy and we explain how it can be implemented in our situation.

Assume that we are given a steady state of the two-dimensional Euler equation, with the
property that the vorticity w, and the associated stream function 1, = A~ w, satisfy a global
functional relationship of the form v, = F(w,), where F' is a smooth function. Following [1] we
consider the energy functional

ﬂMﬁz/f@ﬁh—;/@wm, (4.12)

where F is a primitive of F. Here and in what follows we are vague about the spatial domain
under consideration, and we do not perform rigorous calculations. The right-hand side of (4.12)
is the sum of the kinetic energy of the fluid and a Casimir functional, so that £|w] is conserved
under the evolution defined by the Euler equation. The first variation of £ at w, vanishes by
construction, and taking the second variation we obtain the quadratic form

E(wi)w,w] = /F’(w*)w2 dz — /de. (4.13)

A key observation is that this quadratic function of w is invariant under the evolution defined
by the linearized Euler equation at w,. Indeed, if dyw = —{1)x,w} — {1, w.}, a direct calculation
shows that £”(w,)[w,w] does not vary in time. As a consequence, if the quadratic form (4.13)
has a definite sign, it can be used to prove the stability of the steady state wy, not only for
the Euler equation but for related systems as well, see [13] for an application to the stability of
vortices in the 2D Navier-Stokes equations.

We now explain how to implement Arnold’s approach in our situation. We consider a sim-
plified version of the evolution equation (4.10)—(4.11), where we rescale time and only keep the
problematic terms that we have just identified. Given a small parameter € > 0 and an arbitrary
real number (, our model system reads

aTw = {(I)fpp’w} + {90 - 7;()0 + Cgl ,prp} y AQO = w, (4.14)

where prp is the Eulerian approximate solution and @fpp is given by (3.49). Extrapolating
the conclusions of Proposition 3.20, we assume for simplicity that we have an exact, global
relationship of the form ®% = —F(QL ), for some F : R — R (the minus sign is introduced
for convenience, just to ensure that F' is an increasing function.) Inspired by (4.13), we define

the quadratic functional

1

B(w) := 5 / FI(QL w?dé + % / (¢ — Tep)wdg, (4.15)

where the last term is, up to a sign, the total energy of the fluid, taking into account the mirror
vortex located at £ = (—1/¢,0).

As before, we claim that the functional F(w) is invariant under the linear evolution defined
by (4.14). To prove this, we first observe that

OrElw] = /F'(prp)w{%wd{ - /(go — Tep)Orwdg (4.16)

where, to obtain the second term, we used the identities

[@owas = [womwas,  [(Topwis = [Topwae. @)

The first one is established by writing w = Ap and integrating by parts, the second one using
in addition the fact that the translation-reflection operator 7; defined in (2.10) is self-ajdoint
in L?(R?) and commutes with the Laplacian.
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It remains to evaluate the right-hand side of (4.16). Starting from (4.14) and using the
functional relation @g)p +F (QaEpp) =0, we find

/F/ app w&_wdf = /F’ app {w F app }—|— {(p 7;<p+C€1,QaEpp}) dé

:O+/w{cp—7}90+C§1, QL) }de,

where we invoke familiar identities involving Poisson brackets, such as F’(a){a,b} = {F(a),b},
{F(a),G(a)} =0, and [{a,b}cdé = [a{b,c}dE. Similarly we obtain

[e-Te)owds = [ (o~ Too) ({w FOED)} + o~ Tep+ 661 .05, }) de
- 0+/(‘P_7290)({w7F app }+C{§1’ app})

So we deduce from (4.16) that

OrElw] = C/(w{§17 app }+( _7;90){51’95;)1)}) d¢
= </w{§17F app +<I)£pp}d§ =0,

which is the desired result. Here, in the last line, we used the identity

/(‘9_7290){51’9'@1) )df = /w{&?‘l’fpp app}d§ = /w{&? app}d57

which is established in the same way as (4.17).

The main purpose of the heuristic arguments above is to explain how to construct an energy
functional that is naturally adapted to the leading order terms in the evolution equation (4.10)—
(4.11). Although the general strategy is clear, many technical difficulties arise when turning
these ideas into a rigorous proof. For instance, we can only exploit the functional relationship
between <I>§pp and prp in the region where we are able to justify it, namely for || < 2e77" with
o1 > 0 sufficiently small. Outside the vortex core, the energy functional has to be substantially
modified, but we can exploit the fact that our approximate solution 2,5, is extremely small
in that region. In addition, understanding the coercivity properties of the energy functional
and its interplay with the dissipation operator £ is highly non trivial. Similar problems were
addressed in the previous works [13, 14], but here we have to face the additional difficulty of
handling a perturbative expansion to an arbitrary order in the parameter ¢.

(4.18)

4.2. The weighted space and its properties. After these preliminaries, we construct the
weight function that will enter our energy functional. We give ourselves three real numbers oy,
o9, and v satisfying

=, og > 1, ’y:ﬁ<l. (4.19)
2 (o)) 2

In the course of the proof the parameter o1 will be chosen small, depending on the order M
of the approximate solution (3.1), whereas o2 will be large. In particular we assume that
o1 is small enough to ensure the validity of Corollary 3.22, which asserts the existence of an
approximate functional relationship between the vorticity Qapp and the stream function <I>fpp
defined by (3.49). More precisely, we define

@(675) - q)fpp(f) +F(Q§pp(€)) (420)

where F' € K is the function introduced in Proposition 3.20. Then, according to (3.60), there
exists an integer N € N such that

VeO(e, &)l £ M+ g™, for J¢ < 2677 (4.21)
For later use, we also recall that Q¢ (§)/2 < Qapp(f) < 2Q0(&) when [£] < 2791, see (3.61).

0< o1 <
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We now decompose the space domain R? into three disjoint regions:

I, = {§ eR?: €] <271, F’(prp(f)) < exp(57201/4)}, (Inner)
I, = {¢eR?: £¢ 1., | <e 2}, (Intermediate)
I, = {€€eR?: ] >}, (Outer)

which depend on time through the parameter ¢ = \/vt/d. Our weight function is defined as
F'(Q5,09) in I,
W (&) = < exp(e=271/4) in 11, (4.22)
exp(|€>7/4) in III. .

For any fixed € > 0, the weight W is a positive, locally Lipschitz and piecewise smooth function,
but the derivative VW, has a discontinuity at the boundaries of the regions I, I, I11,, see Fig. 2.
Finally we introduce the weighted L? space

o= {FerP®) 115, = [ WU OF ds < o} (4.23)
The estimates established in Proposition 4.4 below readily imply that
Y = X, — LP(R?), forallpell,2],

where ) is the Gaussian space defined in (3.6). Moreover, in the limit where ¢ — 0, it is easy
to verify that W (&) — Wo(&) := F}(Q(§)) = A(§), where A is defined in (3.51). We denote by
Xp the space (4.22) with ¢ = 0.

Wo(€) exp([¢[*7/4)

We(£)

exp(e 271 /4) +

1 g1 e ¢

I I =

L IL. 111,

FIGURE 2. A schematic representation of the graph of the weight function W, defined in
(4.22). In the inner region I, the weight is close for ¢ > 0 small to the radially symmetric
function Wy (&) = 4/¢|72 (e|5|2/4 —1). It then takes constant values in the intermediate region
I1., and grows like exp(|£|?7/4) in the outer region I1I.. The dashed lines illustrate the bounds
(4.25), where the constants Cy, Cy are independent of .

Remark 4.3. In the inner region 1., the weight (4.22) is constructed following exactly Arnold’s
approach as discussed in Section 4.1. This is possible because the quantity © = <I>aEpp + F (prp)
is small in that region, which means that we almost have a functional relationship between
the vorticity and the stream function. In the intermediate region Il the weight is just a
constant, so that the dangerous advection terms multiplied by 6! in (4.10) will disappear after
an integration by parts. Finally, in the outer region III., the evolution defined by (4.10)—(4.11)
is essentially driven by the diffusion operator £, and it turns out that a radially symmetric
weight with moderate growth at infinity is appropriate in that case. Note that our definition
of the weight in the intermediate and outer regions is the same as in [12], whereas the Arnold

strategy for the inner region was put forward in [14]. There is a minor simplification here with



26 MICHELE DOLCE AND THIERRY GALLAY

respect to [14]: the weight (4.22) is independent of the inverse Reynolds number §, because it
only involves the Eulerian approximation Qapp

We collect elementary properties of the inner region I. and of the weight function W, in the
following lemma, which is the analogue of [14, Lemmas 4.2 & 4.3].

Proposition 4.4. Ife,01 > 0 are small enough, the following holds true:

i) The inner region 1. is diffeomorphic to an open disk, and there ezists a constant k > 0

such that
{lel <em '} C L {l¢* <72 +k|log(e)]} (4.24)
i1) There exist C1,Cy > 0 such that the weight W, satisfies the uniform bounds
Crexp(|¢[/4) < We(€) < CaWo(§),  for £ €R?, (4.25)

where Wy = A is defined in (3.51) and v in (4.19).
i11) For any o < 2, there exists Cy > 0 such that

(We(§) = Wo(&)] + [VWL(§) = VIWp(§)] < Cse™Wo(§),  for €l (4.26)
Proof. The main step is to show that, if o; > 0 is small enough,
|F' (R (€)) = Wo(&)| + |V (F/(Q%5() = Wo ()| S €2Wo(€), for [¢] <277, (4.27)

where F = Fy+e¢2Fy+ - - -+ eMFyy is the function defined in Proposition 3.20. Since F' € K we
know in particular that F”(Q0)Q3 € S.(R?), see Lemma 3.19. As is easily verified, this implies
that there exists C' > 0 and NV € N such that

sup [F'(M(0)] < C+IENY (O 2, ceR (4.28)
1/2<A<2

In the region where || < 277!, we observe that

1
F(Ql30(€) = F(20() = (266 = 20() [ P (1-5)(0) + 505,(©) ds. (129
where the integrand can be estimated using (4.28) since Q9(£)/2 < QL (£) < 200(¢). By
definition of F' we also have

F'(Q0(8)) = Wo(§) = F'(Q(§)) — Fy(Q0(é Zeka (Q(& ¢ eR?. (4.30)

Combining (4.29), (4.30) and using the fact that QaEpp — Qg = Oz(¢?), we obtain an estimate
of the form

|F/(Q5,, (&) = Wo(&)] < CEA+ NV ()™, ¢ <27,

with a possibly larger exponent N. Since Qo(€)™! < el*/4 < (1 + |¢])2Wp(€), we obtain the
desired estimate for the first term in the left-hand side of (4.27) by taking o sufficiently small so
that 2-71(N+2) < 72 when ¢ < 1. The corresponding bound on V (F” (QE,) — W) is obtained
by differentiating (4.29), (4.30) and proceeding similarly.

Estimate (4.27) shows in particular that F’(prp(ﬁ)) is very close to Wy (§) when |£] < 26772,
and this implies that the region I. satisfies the inclusions (4.24). Also, using the definition
(4.22), it is straightforward to verify that the weight W, satisfies the bounds (4.25) in all three
regions I, I, and I1I.. Finally (4.26) immediately follows from (4.27) since W. = F'(QE ) in

- app
region I..

We next derive useful estimates for the stream function and the velocity field in terms of the
vorticity in our function space X.
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Lemma 4.5. Let w € X. and o = A~'w as in (2.6). Then, for all 2 < q < oo there exists a
constant C > 0 such that

1A +1- D7 ellee + IVellze < Cllwlly, - (4.31)

Moreover
1/2 1/2 1/2
11+ - DVl e < CUIVWIY + Il ) fw] 32 - (4.32)

Proof. In view of (2.6) we have, for all ¢ € R?,

1
01 5 [ Jogle—allllan, Vo€l 5 [

The bound (4.31) on Ve is a direct consequence of (4.33) and the Hardy-Littlewood-Sobolev
inequality, see [15, Lemma 2.1]. More precisely, given 1 <p <2 < ¢ < oo with 1/p=1/q+1/2,
the HLS inequality shows that |V, < [[w|lps S [Jw]ly., where in the last step we used the
fact that X. < L"(R?) for any r € [1,2].

To conclude the proof of (4.31), we use the first inequality in (4.33) together with the crude
bounds |log [¢ — n| < € —n|7V/2if [¢ — ] <1, and log[¢ — n| < log(1 + [¢]) + log(1 + |n]) if
|€ —n| > 1. We thus find

1
< _— d log(1 log(2 dn,
PO S [ el s ale [ os(-+ (o)l

and applying Holder’s inequality to the first integral we arrive at |p(&)| < C'log(2 + [€])[|w]| .-
This implies in particular that (1 + |- |)"1p € LY(R?) for all ¢ > 2, as asserted in (4.31).
Finally, to prove (4.32), we deduce from the second inequality in (4.33) that

1+ \nl 1+ In!
\V4 < <

The last integrand is equal to |£ —n\*l (L + D) w(n)[*/?) \w(n)\lﬂ, so we can apply the trilinear
Holder inequality with exponents 8/5, 4, 8 to obtain

lw(n)|dn. (4.33)

1+ |n| 1/2 1 2 1/2 1/2 1/2
/ )l dn S |+ 1 D2l S Tl (9wl + el ).
{le—nl<1y € =l
where in the last step we used the embedding H'(R?) — L*(R?). This gives (4.32). O

Our second estimate focuses on the translated stream function 7:¢ near the origin.

Lemma 4.6. Assume that w € X. with M[w] = m;[w] = ma[w] = 0 and let p = A7 w as in
(2.6). Then, for any q > 2 there exists a constant C' > 0 such that

el (L + 1 )72 Tepl| o + [+ - NPV Teg]| < O, (4:34)
Moreover ||[(1+ |- |)¢|lre < Cllw||x.-

The proof combines the expansion established in Lemma 3.8 with standard estimates ex-
ploiting the coercivity properties of the weight W.. The argument is somewhat technical, so we
postpone it to Appendix A.4.

4.3. Bound on the vertical speed. Before setting up the nonlinear energy estimates, we
apply Lemmas 4.5-4.6 to control the size of the correction ¢ to the vertical speed.

Lemma 4.7. Let ¢ be defined as in (4.3). Then there exists a constant C > 0 such that
€
SO < C(eMF + 6% + 0z ||wlly, + 0% wll%,) - (4.35)

Proof. In the definition (4.3) of ¢, we expand the vorticity © and the stream function ¥ as in
(4.1), and we subtract the approximation (,pp given by (3.45). This gives the expression

%c = S(OVTeWapp, w) 2 + 6(01 T, Qupp) 12 + 0201 Top,w) 2 + O (M1 4 622) | (4.36)
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which is the starting point of our analysis. Since Q,p, € Z, we already know from Lemma 3.8
that 01 T:Wapp = Os, (5) Using the fact that W_.! vanishes rapidly at infinity (see Proposi-
tion 4.4), we deduce that

(01 TeWapp, w) 2] < W PO TeWapp | pollw]lx. S ellwll. - (4.37)

To bound the term involving €.p,, we split the integration domain into the region I. and its
complement IS, and we apply Hélder’s inequality with 1/p+1/¢ =1 and ¢ > 2. We thus find

(01 Te, Qapp) 2| S 1111+ |- ) 01Tl zal (1 + |- [)*Qapp v + 1819 2o || L1e Qappll 22 -

As Qapp € Z and I¢ C {€ € R?; €| > 791} by Proposition 4.4, it is straightforward to verify
that || 11eQappllzr < exp(—c.e™271) for some ¢, > 0. Therefore using Lemma 4.6 to bound the
first term in the right-hand side and Lemma 4.5 for the second one, we arrive that

(01720, Qapp) 2] S €°llwllx. - (4.38)
Finally, the nonlinear term can be estimated in a similar way:
(D1 Tco,w) 2] S N1 (L+ - D720 Teplrall (L4 |- DPwlloe + 1 W20 Tel| 2 [l . -

Since 1 < p < 2, Holder’s inequality readily implies that ||(1 + | - |)2w||zr < ||w|a.. Thus,
invoking Lemmas 4.5 and 4.6, and using again Holder’s inequality with 1/¢ + 1/r = 1/2, we
obtain

(D1 Tep, w) 2| S lwllZ + 1MW 2 Ol allwl v S w3, - (4.39)

Combining (4.36) with (4.37), (4.38) and (4.39), we arrive at (4.35). O

4.4. The energy functional. We now have all the necessary ingredients to define the energy
functional that will allow us to control the vorticity perturbation w in (4.1). The idea is to
mimic the Arnold quadratic form that was heuristically derived in Section 4.1.

Using the function space X introduced in (4.23), we define

1
Efw] = 5 (Il + (¢ - Tp,w)re),  we. (4.40)

According to (4.22), the functional E.[w] coincides with (4.15) when w is supported in the inner
region I.. That region expands to the whole plane R? as ¢ — 0 and, in view of Proposition 4.4,
the weight W, in (4.23) converges to Wy = A, where A() is defined in (3.51). Taking formally
the limit € — 0 in (4.40), we thus obtain

1
Eolw] = 5 (Iwl, + (pw)iz), we o, (4.41)

where Xy = L*(R2, Wy d€). This limiting functional was studied in detail in [13], in connection
with the stability of the Gaussian vortex )y for the Euler and the Navier-Stokes equations.
A key property is that Ep[w] is coercive on the subspace of functions w € Aj satisfying the
moments conditions (4.6). The main goal of this section is to establish a similar result for the
functional E; when ¢ > 0 is sufficiently small.

Proposition 4.8. Assume that w € X, satisfies M[w] = mj[w] = ma[w] = 0, where M, mj, mo
are as in (1.4). Then, if €,01 > 0 are sufficiently small, there ezists a constant k1 € (0,1)
independent of € such that

E Jw] > k1 HngKs ) (4.42)

Proof. Following [13, Section 4.3|, the idea is to compare E. with Ey. First of all, using
Lemma 4.6 and arguing as in the proof of (4.39), it is not difficult to verify that

(Tep,w) 2| S €*flwlk. - (4.43)
As a consequence, there exists a constant Cy > 0 such that

1
Efu] > Biw] - Cotlwl},  where Elfu] = (lwl} +(pw)z).  (444)

To compare E![w] and Eyw], we decompose

w = 1w+ (1 — ]lIs)w =: Win + Wout -



THE LONG WAY OF A VISCOUS VORTEX DIPOLE 29

Denoting @i, = A" wy, and @ous = A" wens, where A™1 is defined according to (2.6), we find
1 1
E; [w] = Eal [win] + E; [Wout] + §<@in7 Wout) 2 + §<<Pouta Win) 1,2 (4.45)
= Eal [Win] + E; [Wout] + (@in, Wout) 2 ,

where in the second line we integrate by parts using wi, = Awiy and weut = Aoyt To estimate
the last term in (4.45), we apply Holder’s inequality with 1/g+1/p=1and ¢ > 2,1 <p < 2.
Using (4.31) to bound the stream function ¢, and recalling that wey, is supported outside the
region I., we obtain

[{ins wout) £2| S N+ 1 D7 pmllzall(1 + 1 Dwousllze S exp(—cue > )|Jwllk,,  (4.46)
for some ¢, > 0 sufficiently small. The same estimate holds for (Qout, Wout)r2 too, by the same
argument. It follows in particular from (4.44), (4.45), (4.46) that

E.fw] > EMuwin] + B wout] — C1 2|3, | (4.47)
for some constant C; > 0.

It remains to estimate from below the quantities El[wi,] and El[wey] in (4.47). We have
just observed that

1 1 9
Esl[wout] > §||w0utH%(5 — [{pouts Wout) 2| > Q”woutng(g —exp(—cie 2 1)”“’”%(5 (4.48)

To bound the other term, the strategy is to compare E![wi,] with Eg[wi,]. Using estimate (4.26)
in Proposition 4.4 and the fact that wy, is supported in region I., we find that, for any v < 2,
there exists Cy > 0 such that

i, = lwlZ| < 2C27 |l , hence Elfuw] > Fofwn] — Coe™ .. (4.49)
We next invoke Proposition 4.5 in [14], which provides the lower bound
Eo[win] > kollwinl|%, — Cs(M[win]? + my [win] + mafwin]?) | (4.50)

for some constants ko € (0,1/2) and C5 > 0. At this point, it is important to observe that,
although the first moments of w;, do not vanish exactly, they are extremely small. Indeed,

since M[wiy] = —M][woyt] by assumption, we have |M[wiy]| < exp(—c.e™21)||w]| x., and a similar
estimate holds for m; [wiy] and mo[wiy]. It thus follows from (4.49), (4.50) that
Eo[win] 2 wollwinlk, — Cre™|uwll3, . (4.51)

Finally, combining (4.47), (4.49) and (4.51), we obtain
1
Ec[w] > rollwinlx. + 5 lwoutllx. = Cs|wlk, = (x0 = Cs57)[Jwllk. ,
which gives the desired estimate (4.42) if ¢ > 0 is small enough. O

4.5. The energy identity. We next compute the time evolution of the energy E.[w] defined
in (4.40), assuming that w is the solution of (4.10)-(4.11) with zero initial data.

Lemma 4.9. Let w be the solution of (4.10)-(4.11) and E.[w] be defined as in (4.40). Then
to Eclw] + De[w] = A+F+ NL, (4.52)
where we define:
e The diffusion functional
Defu] = — 5 (0w w)ya — (Cw, Wew + 0 — Tog) (4.53)
e The advection terms

1
A:g<{¢)E w}+{@_7;(P7Q£pp},wgw+@_72@>[/2

app’

+{({ @ w0} + {0 = Tep, Qap b Wew + 0 = Tep) 5

(4.54)
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e The forcing terms generated by the remainder and the vertical speed

C .
F = 57<RM + — o {gla Qapp} s WE’UJ + (o 7;;%0>L2 ) (455)

e The nonlinear terms
1
NL = Z€<w’ 01 (Te)) 2 + < {o—Tep,w} to5 {51,w} Wew + ¢ — 7;-90>L2 . (4.56)
Proof. A direct computation gives

1
t@tEg[w] = (t@tw, Wgw>L2 + 5 <

1
+ 5 (tOyw, p — 72‘P>L2 +

w, (tatW€)w>L2

1
5 (w, t0 (0 — Te)) 12 -

The last term in the right-hand side can be handled as in Section 4.1, but we have to be more

careful here because 7¢ is now a time-dependent operator. From the definition of 7; in (2.10)
and the fact that t0,e = £/2, we obtain

1
100(Tep) (€:1) = 10 (p(—&1 — 7 (1), &2,1)) = Te (0 + 5= 010 ) (1)
Observing that 7:01¢ = —017T-¢ and using the identities (4.17), we thus find

L w,01(Teg)) 2,

1 1
—(w,t(p — Tep)) 2 = 3 (tOyw , 0 — Te) 12 + 1

2
and it follows that
1 1
5 (w, (@ We)w) s + Zg(uu O(Tep))r2-  (4.57)

We now replace the time derivative tO;w in (4.57) by its expression (4.10)—(4.11), and this
generates exactly the quantities D.[w], A, F and NL defined in (4.53), (4.54), (4.55) and (4.56).
Note that we chose to include the last term in (4.57) in the nonlinearity NL, and the previous
one in the diffusion functional D, [w]. O

to E:[w] = (t0yw, Wew + ¢ — Top)) 12 +

Our goal in what follows is to estimate each term in (4.53)-(4.56). In Section 4.6 we show
that the diffusion functional D.[w] controls, roughly speaking, the H' analogue of the weighted
L? norm |wl||x.. The remaining terms in (4.52) can be estimated using the properties of the
approximate solution €5, and of the weight function W,. The calculations are performed in
Sections 4.7-4.9, and result in the following crucial energy estimate, which is the core of the
proof of Theorem 4.1 and will be established in Section 4.10.

Proposition 4.10. Fiz o € [0,1), take M € N such that M > (3+ 0)/(1 — o), and let w be
the solution of (4.4)~(4.6) with initial data w|;—o = 0. Let 01,02, be as in (4.19), with oy
sufficiently small and oy sufficiently large. Then for any k. > 0 there exist positive constants

€ (0,1) and Cx > 1 such that, if 6 > 0 is sufficiently small, the quantities (4.54)—(4.56)
satisfy

A] < 6% D.ful, (4.58)
IF| < C.(6742MHD 1) 4 g, D [w (1 +VE[w)), (4.59)
INL| < 6°*D[w] 4+ Cu(\/ Ec|w] + Ec|w])Dc[w], (4.60)
as long as t < Tagyd~ 7. As a consequence, the enerqy (4.40) satisfies the estimate
D.|
/ dr < Cu (674X MHD) 4 ) 0t e (0,Taad ). (4.61)

In view of Propositions 3.2 and 4.8, estimate (4.61) implies that the solution w of (4.4)—(4.6)
does not become much larger than the source term 6 2R ,;, which is of size 6 2eM+1 4 £2,
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Remark 4.11. The assumption that ¢ < T,q,0 77 translates into an upper bound on the aspect
ratio € = v/vt/d in terms of the inverse Reynolds number § = v/I". Indeed, if we define sy > 0
such that

M -3
0= 517 namely 1—0':M+1—|-80, (4.62)
we then have
e <3 = gwntE | or  §2MA < 5N (4.63)

The constant s, in (4.58)-(4.60) can be taken as a small multiple of so.

4.6. The diffusion functional. As is clear from Proposition 4.10, our strategy is to control the
various terms in the right-hand side of the energy identity (4.52) using the diffusion functional
D, [w] defined in (4.53). We thus need an accurate lower bound on D,[w], which can be obtained
for € > 0 small enough by exploiting the coercivity properties of a limiting quadratic form that
was already studied in [13], see also [14] for a similar approach. To state our result, it is
convenient to introduce the continuous function p. : R? — R, defined by

€, if €] < e,
pe(§) = qe 7, if e <ff <7, (4.64)
it gl > e

In agreement with (4.64), we denote po(§) = [£| in the limiting case € = 0.

Proposition 4.12. If o1 is sufficiently small and o9 sufficiently large, there exists kp > 0 such
that the following holds for e > 0 small enough. If w € X. satisfies p-w € X-, Vw € X2, and
M[w] = m[w] = ma[w] = 0, then

Dw] > rp(IIVwl3, + llpewl, + wlly,) - (4.65)

The proof of Proposition 4.12 is rather lengthy and can be divided into four main steps.

Step 1: Preliminaries. We recall the definitions of £ in (3.10), W, in (4.22) and D.[w] in
(4.53). We first handle the term involving 7; in (4.53). Since Lw = Aw + div(§w)/2, a simple
integration by parts yields

(Lw, o) s = — (Yo, V(o)) s — 5 {6 V(Te))

To estimate the right-hand side, we can argue as in the proof of Lemma 4.7, by splitting the

integration domain into the region I. and its complement I¢. Using the bound (4.34) in the
/2

inner region and the rapid decay of the weight ng in the complement, we easily obtain

[(Lw, Tep) 2| S Ellwlla (lwlla + [Vola) S € (lwlz, +[Vwl3,) -
We deduce that there exists a constant C; > 0 such that
De[w] > Dw.[w] + Deelw] — Cre’ (|wl%, + [Vwl%,) . (4.66)
where we denote
1
2

Our next task is to estimate the quadratic form Dy, which involves the time derivative of
the weight function. From the definition of W in (4.22) we get

D] = — [ 10 @bl d — 5 [ (el ) ufag.

Since tde = ¢/2 and p. = e~ in 1L by (4.24) and (4.64), a direct calculation shows that

1

9% o o
~5 | Cotexnley o) as = [ 2olweds = S lumpaul, . (468

Dw.[w] = (tOWe)w, w2 , Drelw] == — (Lw, Wew + @) ;2 . (4.67)
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To bound the other term, we recall that F = Fy + ¢2Fy + - -- + eM Fy;, so that

M
k
E k E E E
10 (F' () = D 5 € F () + F(Q05,) (10:27,)
k=2
According to (3.1) we have QL | = Qg 4 2QF + --- +eMQY, so that t0,QL ) = Oz(¢?) in the

sense of Definition 3.4. Moreover, since /2 < prp < 20 in I by (3.61), we can proceed as
in (4.28) to prove that, for some N € N,

M
D IF(QE5,(0)] + [P Q@) Q) S A+ 16DV Q)™ ¢el.
k=2
It follows that
/!tc’)t(F’(prp))lledé S 62/ (1+[e)Nel/ w2 de < 2Dy 5., (4.69)
IE IE

for a possibly larger integer N. In the last inequality we used Proposition 4.4 which implies
that W.(€) ~ Wo(€) ~ elé*/4(14 |¢])2 in region I.. Combining (4.66), (4.68), (4.69) and taking
o1 sufficiently small, we arrive at

g
Delw] > & | pewlly, + Declw] - Cos(fwlz, + [ Vw|.) (4.70)

for some constant Cy > 0.
Finally we derive a more explicit expression of the diffusive quadratic form D, .[w]. Using
the definition (4.67) and integrating by parts, we easily find

Drelw] = (Vw, V(Wew) + V) 2 + % (W, &-V(Wew + @) 12 - (4.71)

We also observe that (Vw, V)2 = —||w||32 and (w,£- V) 12 = 0. The first equality is a simple
integration by parts, and the second one is conveniently obtained by using polar coordinates
r,0 defined by & = rcosf, & = rsinf. Indeed, since both operators r =19, and 9y are (at least
formally) skew-symmetric in the space L2 := L?((0,+00) x (0,27) ,7drdf), we have

1 1
(W€ V)2 = (Ap,r00) 2 = (S0, (r0:0),10,0) |+ (Duop~Orp) | = 0. (472)

On the other hand, since w(¢ - Vw) = div(éw?/2) — w?, it is not difficult to verify that
(w,&-V(Wew)) 2 = (w, (§- VIWe)w) 2 + (w, (€ - Vw)We) 2
1 5 (4.73)
=9 (w, (§ - VWe)w) 2 — ”"UHXE .
Thus we can write the quantity Dy [w] in the equivalent form

1 1
Deelw] = [[Vulz, + (w, Vo - VWe) 2 + 1w w(€- Vo)) — w2 — B lwll, - (4.74)

Step 2: Decomposition of the diffusive quadratic form. The expression (4.74) is the analogue of
the quadratic form Q.[w] appearing in [14, Section 4.7]. Taking formally the limit ¢ — 0, we
obtain

1 1
Drolw] = [[Vully, + (w, Vo - VW) 2 + o (w,w(€ - VWo)) gz — [lwliz = 5 lwl, » (4.75)

which is exactly the quadratic form Qp[w] studied [13, 14]. In particular, it is established in
[14, Proposition 4.14] that, for any w € Xy with pow € Xy and Vw € &2, the following holds

Drolw] = ra(IIVwly, + lloowly, + lwli,) — Cs(Mlw]® + mi[w]® + ma[w]?) | (4.76)

for some constants k2 € (0,1/2) and C3 > 0.

To obtain a similar lower bound on D .[w] for € > 0, the idea is to decompose the vorticity
w 8o as to single out the contribution of the inner region. As opposed to what we have done
in the proof of Proposition 4.8, we use here a smooth cut-off since our quadratic form involves
first-order derivatives. Let x1, 2 : R? — [0, 1] be smooth functions satisfying x3 + x3 = 1, and
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such that x1(§) =1 when [£] <e77/2 and x1(£) = 0 when [¢] > £77'. In addition, we assume
that |Vy;| < e?t. Then, with a slight abuse in notation, we define
2 = w? +w? (4.77)

Win = X1W, Wout ‘= XoW, so that w b -
We obviously have V(y;w) = (Vx;)w + x;Vw and x1Vx1 + x2Vx2 = 0, hence
Vul? = [Vww|? + [Vwou | — (IVx1]* + [Vxel*)w?. (4.78)
Since
(Vw - VW, w) 2 = ;/RQ V(w?) - VW, d¢,

and since the remaining terms in Dz . do not involve derivatives of w, it follows from (4.77),

(4.78) that

2
Dﬁ,a[w] = Dﬁ,a[Win] + D£75[w0ut] — H\/‘V)ﬁ’? + ’VXQ‘QU)HX ,

> Do [win] + D e [Wout) — Ca® w3

(4.79)

where in the last inequality we use the assumption that |Vy;| < &7,
Step 3: Contribution of the inner region. We now decompose
Deelwin] = Dro[win] + Derr[win] ,
where
Derr[win] = (vainngcg - ||Vwin”§(0) + {Win, Vwin - V(We — WO)>L2
1

1
5 (i win(€ - VW = Wo)) g2 = 5 (el = )

Since wj, is supported in the region I, the bounds (4.26) in Proposition 4.4 readily imply that
| Derr[win]] S 7 (| Vewin|3, + loowinl%, + llwinll,) -

for some 2 € (1,2). To estimate Dy g[wiy], we use the lower bound (4.76). As was observed in
the proof of Proposition 4.8, our assumptions on w imply that the moments of w;, are extremely
small, namely

M[win]® + mi[win]? + me[win]® < exp(—ce ™) ||w[|3, < ellwlf3, .
Altogether, if £ > 0 small enough, we obtain
2 2 2
Drelwim] 2 k(| Vainlly, + lpowinlly, + lwinlly,) — Caellwllz, — [Derr[win]] (4.80)

2 2 2
> - (IVwinlly, + llpzwinlly, + lwinlly,) = Csellwl, -

K2
2
In the second line, we used Proposition 4.4 again to compare the norms of Xy and X..

Step 4: Contribution of the outer region. It remains to estimate the term D . [woys) in (4.79),
which is more complicated because wqyt is nonzero in all three regions I, I, and III.. We
recall, however, that weyt is supported in the domain where || > 791 /2, which implies

lwoutll 2 < llwoutllx, < €7 lpewoutllx. < €7 [[pewl|y, - (4.81)
On the other hand, using Young’s inequality, we find
3 _ 2 2
|<wout7 VWout - VW5>L2’ < g H (Wg 1VI/I/vs)woutH/\gE + § ||vw0u‘6||g(8 .

In view of (4.74) we thus have, for some constant C5 > 0,

1
DE,E[wout] > g ||Vwout||2)(s +I€[w0ut] - C(55201 ||p€w||§(‘s ) (482)

where

1 3
Ie[wout] = Z <wgut7£ : VW€>L2 - g H (Wa_lvwe)wOUtHf‘fg :
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Our goal is to find a lower bound on Z.[weyt] in regions I and IIL, keeping in mind that
VW, =0 in Il.. In the outer region IIl, we have W, = elé7/4 with v =o01/02 < 1/2, so that

CVWe = JIEPWe = 2p2We, VWL < I MpWe € 2ePp e (483)
It follows that
_ 7 2 o2 2
Z. [Tur. wout) = g I pewly, +0( |lpewlly.) - (4.84)

In the inner region I, we can use Proposition 4.4 to compare the weight W, with the function
Wy = A defined in (3.51). This gives the estimates

[(Lrwly, & - VW) 2 — (L wdy, € VW) 2| S 7 [|pew]}, (4.85)
and

10 (W W, [, = [0, (W5 W2, | S 72 ey, - (450

Moreover, using the explicit expression (3.51), we easily find

2
£ VW) = 5 Wo(©) ~2Wh(©) 42, £ B

In view of (4.81), we deduce that

1 1

1l Weu, € V)2 = 2 11 potwoe 3, + O (" llpwly.) (.87
3 3 ’
2 1 wons (W ' 9W0) |3, = 55 101 powous [, + O(*" llpew,) -

Combining (4.85), (4.86), (4.87), and using (4.26) again, we obtain
1
IE []lls'wout} > 33 HﬂlepowoutHQXO - 0(5201 + 872+01) HpEwH?YE
(4.88)

1 2
> 32 H]llgpfswoutHX8 —Cs (5201 + 572) Hpsw”i’s )
for some Cg > 0. Finally, in view of (4.82), (4.84), (4.88), we arrive at

1 1 2
Dﬁ,a[wout] > 3 vaoutH?yE + 39 H]llepswoutHX8 + % H]lIIIgpew”?Ys - C'7?'5201 Hpg’wH?\% , (489)

for some C7 > 0. Here we used the fact that 207 < 1 < min(vy2, 02).

It is now a simple task to conclude the proof of Proposition 4.12. If we combine (4.70), (4.79),
(4.80), (4.89), we see that there exist k3 > 0 and Cg > 0 such that

2 2 2 2
Drelw] = rs(|Vwinlly, + [ Vwourly, + llpewly, + [lwl,)
2 2 2
= Gy ([Vwlly, + lloewly, + llwllk.) -
Since |Vwin |2 +|Vweut |? > [Vw|? by (4.78), we arrive at (4.65) by taking e > 0 small enough. [

4.7. The advection terms. In this section we estimate the advection terms defined in (4.54),
which are potentially dangerous because of the large prefactor =!. In the inner region I., we
exploit crucial cancellations related to the structure of the energy functional (4.40), which were
explained in an informal way in Section 4.1. In the other regions the dominant term in the
energy is the weighted enstrophy %HwHQXE, and the influence of the large advection terms can be
controlled by an appropriate choice of the weight function W,.

Starting from (4.54) we decompose A = 6~} (A1 + Ay + A3) + Apng, where

Ay = <{<I>fpp,w} ,VV6w>L2 , (4.90)
Ar = ({o = Teo. Qi ) Wew) 1, + (L1 { @ w0} 0 = Tep) (4.91)
Az = (lum { @, w} 9 = Te0) s (4.92)
Ans = ({@hnw} + {o— oo, QN0  Wew + 0 — Top) 5 - (4.93)
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Here we use the fact that <{g0 T, app} w— 7;g0> 2 = 0. This is a consequence of standard
identities such as

(Fah W = —(hh) g (Fohhe) = —3({fidgg) . (499

which are repeatedly used in the sequel. Our goal is to prove the following set of estimates.

Lemma 4.13. There exists an integer N > 0 depending only on M such that the quantities
(4.90)—(4.93) satisfy

ALl g 0TI AN w|R, + 67 e lpew] 3, (4.95)
Azl £ 07N (el + IVl (4.96)
“HAs| S 0 exp(—ee ) (lwllz, + [VwlE) (4.97)
Ans| S e(lwl + Vwl,) (4.98)

for some ¢, > 0 sufficiently small. Consequently, under the assumptions of Proposition 4.10,
there exists s, € (0,1) such that estimate (4.58) holds.

Proof. We start with the bound for A;. Since W, = F’(prp) in region I and VI¥, = 0 in
region II., we find using (4.94)

A = <{(I)app’w}7W5w>L2 = <{<I>app’W5}w’w>L2
= —3 <ﬂ[5 {(I)aEppaF/(QaEpp }w,UJ>L2 3 <]l[115 {(I)fpp, Wg} w,w>L2

The first term in the right-hand side is clearly unchanged if we replace ®.. by the quantity

app

E E . . . . .
O = &, + F(£y,,) which is introduced in (4.20). We thus obtain
Al - —= <]]-IE {6 W }w w>L2 -5 <:H-IIIE {@appa WE} w’ w>L2 . (499)

To control the first term in (4.99), we use the bound (4.21) on VO and the estimate (4.26) on
VW. in region I, which give [{0, W.}| < eM+1(1 +|£])NW. for some N € N. Since |£| < 26771
in that region, we infer that

(L1 {0, We}w, w) o] S M7V w3, . (4.100)
To bound the second term in (4.99), we recall that W, = exp(|¢|>?/4) in region III., so that

(L, (@5, W) w,w) | < /{ o TR Wl
.

In view of (3.49) we have |[VOE | < |[V®E |+ \V’T\Ilapp| + Ce, and applying estimate (4.32)

with w = QL | we obtain ]V\I/aEpp( O < CA+[E) "t and [VTVE ()| < C(1+[¢+eter]) ™ It
follows that Il{|€‘>€fa2}\V<I>app( &) Se+e72 < e Since p(€) = |£]7 in region III., we conclude
that

[ (, {05, Wl w,w) 4| S o2 w3, (4.101)

and estimate (4.95) follows directly from (4.100), (4.101).
We next consider the term Ag defined by (4.91). Using (4.94) and the Leibniz rule, we find

({e = Teo, app} Ww>L2 = <{Qapp=w} WE790_7;90>L2 <{Qapp7W5}wv‘P—7;90>L2‘

Only the region III. contributes to the last term, since W, = F’(prp) in I, and VW, = 0 in
I.. As for the first term, we observe that

L QL wiWe = 1L{F(QE,), v} = 1.{0,w} — 1. {®]

app’ app’ } )

where © = @fpp +F (prp) We thus obtain the following alternative expression

Ay = <:|lIE {©,w} + ]lIISUIIIE{QaE];)p, wWe + 11, {Qf’pp, Wa} w, p — 7ZQO>L2 . (4.102)
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By Holder’s inequality we have
(140, w}, o = Te@) 2| < LW V2VO| L2 flp = Tepl e [V, -

Using the bound (4.21) on VO and the rapid decay of the function W€_1/2, we see that the
first factor in the right-hand side is of order eM*1. Moreover, we know from Lemma 4.6 that
o = Tepllze < 2[@llzee S llwllx.. This gives

(18, w}, o = Tep) 2| S e Jwel|a | Ve, - (4.103)

To treat the remaining terms in (4.102), we use the estimate [VQE |(W. + [VW.|) < 1, which
follows from the definition (4.22) of W, and from the properties of the approximate solution
OF e Z. Proceeding as above we find

app
| (Moo {w, QL IWe + T AW, Q5 b w, 0 — o), |

4.104
e (4.104)

S exp(— lwlx. (lwllx. + [Vwllx)

for some ¢, > 0 sufficiently small, and (4.96) is a direct consequence of (4.103), (4.104). We
estimate Aj in a similar way:

As] < Lo W2 2V@E e lwlla | Vwllx, S exp(—ce™2)|Jwl|a. |Vl . ,

where in the last inequality we used the fact that @app € S.. This proves (4.97).

We now consider the viscous term Apyg. Since Qapp Oz(£?) we find using (4.31)

| ({o— Teo, U} Wew+ o = Teo) 1, | = [{{o— Tep, QN0 1 Wew) 1, | S €Jlwll%. - (4.105)
Similarly, using the definition (4.9) and the bound (4.32), one can verify that||V<I>app||Loo Se,
which gives

[({ 2o 0} Wew + 0 = Tep) | S e Vollallwll. , (4.106)
and (4.98) results from the combination of (4.105), (4.106).

Finally, if we assume that o1 > 0 is small enough so that oy N < (M +1)/2, and o2 > 1 large
enough so that 1 + o9 > (M + 1)/2, it follows from (4.63) that

M+41
571€M+1701N+6 1 1+02 < 5 1 ez < (SS*,

provided 0 < s, < so(M + 1)/4. Under this assumption the bound (4.58) is a straightforward
consequence of (4.95)—(4.98) and Proposition 4.12. O

4.8. The forcing term. To control the forcing term F defined in (4.55), we exploit the estimate
of the remainder R given in Proposition 3.2, and we use the argument sketched at the end of
Section 4.1 to handle the term involving the correction ( to the vertical speed. For the latter,
we can rely on the bound established in Lemma 4.7.

Lemma 4.14. Let F be the forcing term (4.55). Under the assumptions of Proposition 4.10,
for any k. > 0, there exists a constant Cy > 0 such that

[F| < Oy (671*MHD &) 4 5, D [w](1 + /E:[w]) . (4.107)

Proof. Using the bound (3.5) on R and applying Lemma 4.6 to estimate the stream function
© — Tep, we easily obtain

(Rt Wew + 0 — Te) g2 | S (M +6%2) [Jw]| . - (4.108)
To handle the term in F involving (, we proceed as in Section 4.1. We first observe that
({&. prp} L 7;90>L2 = <82A\1J'§pp’ L 7;90>L2 = <82\I'app’w - 7;“’>L2 = <62(I)app’w>L2 ’
because D@L = 0o (WL — ToWE ) by (3.49). It follows that
{81, Qapp b, Wew + 0 — Tep) 12 = (WedoQL, + 020, ), w)

(4.109)
+ 6 (N> Wew + ¢ — Tep) o -
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To estimate the first term in the right-hand side, we split the domain of integration. In the
inner region I, we have W.0:QE = 8, F(QE, ), so using the definition (4.20) and the bound
(4.21) we obtain

(1,0 (F(QE) + B, ), w) o | = [ (11,00, 0) 2| S M Jul, (4.110)
Outside I, we rely on the bound WE|8QQ£pp‘ + |82(I’aEpp| < 1, which gives
| {(Lprom ) (WedoQgh, + 0:20,),w) 1o | S exp(—cue ™) w . | (4.111)

for some ¢, > 0 sufficiently small. To treat the last term in the right-hand side of (4.109), we
remark that QN = Oz (£?) and we apply Lemma 4.6 again to arrive at

app
(02005, Wew + ¢ — Top) | S €%[lwllx. - (4.112)

Summarizing, in view of (4.108)—(4.112), the forcing term (4.55) satisfies
€
F| S (572MH 4224 ('é' (M1 + 822 ) .
Using in addition the bound (4.35) on &(, we thus find
Fl S (072" + &) wllx. + (077" 4+ ) uwlly, + (M +6%) [wllk, . (4113)

Under the assumptions of Proposition 4.10, we know that 6 2¢M+*! < §%+ <« 1, and the other
coefficients in (4.113) are small too. Therefore, applying Young’s inequality to the first term
in the right-hand side, and using the lower bound (4.65) on the dissipation functional D, we
obtain the desired inequality (4.107). O

4.9. The nonlinear term. Finally we estimate the nonlinear term in (4.56).

Lemma 4.15. Let NL be the nonlinearity defined in (4.56). Under the assumptions of Propo-
sition 4.10, there exist constants Cyy > 0 and 0 < s, < 1 such that

INL| < 6* D.[w] + Cu(V/ Ec[w] + E:[w]) Dc[w]. (4.114)
Proof. First of all, applying Cauchy-Schwarz’s inequality, we find

_1
|[(w, 01(Te)) 2| < [We > Vel p2l|w] . -

To estimate the right-hand side, we consider separately the regions I. and IS. Applying Holder’s
inequality with 1/¢ +1/p = 1/2 and ¢ > 2, and using Lemmas 4.5-4.6 to bound the stream
function 7., we obtain

_1 _1
ML We 2VTepllre < 1ML L+ )PWe 2 oL (L + |- NV Tewllze S flwll.

_1 _1
ILieWe *VTepllze S 11, We ?llzelIVepllze S exp(—ce ™) wllx, ,

~

for some ¢, > 0 sufficiently small. Altogether this gives
1
| 0(Te)re| S lwlk, S e*Defu], (4.115)

where in the last step we used the lower bound (4.65) in Proposition 4.12.
Next, in view of the Poisson bracket identities (4.94), we have

1
{p = Tep,w} , Wew + ¢ — Tep) 12 = —§<{<P—7290,We}waw>m :

Here we use the bound (4.32) in Lemma 4.5 to control the streamfunction, and we make the
following observations concerning VW,. In region I., thanks to Proposition 4.4, we can approx-
imate VW, by VW), which gives [VW:(§)| < [VWo ()| + Wo(£) < p(§W(E), for [§] < 2771,
In region II. we have VW, = 0 whereas in region III. we know that |[VW.| < [£]7"1p ..
Overall, we obtain

[({p = Tep, WeY w,w) 2| S IVl ool pewl v, [Jw]| 2.

1 1 3 (4.116)
< (IVwll3, + lwlli3) leewllx lwl3, < VEe[w]D:[w],
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where in the last inequality we used Proposition 4.12.
Finally, for the remaining term in NL, we use Lemma 4.6 again together with the estimate
on ( in Lemma 4.7. We thus obtain

g 3
Lo ey Wew 10— T sa] 5 S161 IVl ol
< (71 o bl + o ) Vullwle.  (4117)

S (071eMH 4 6e% + e/ EL[w] + 6° B [w]) De[w] .

Under the assumptions of Proposition 4.10, we have § 1eM+1 4 §¢2 < §% for some s, > 0, see
Remark 4.11. Therefore, combining the the bounds (4.115), (4.116) and (4.117), we see that
the nonlinearity NL defined by (4.56) satisfies estimate (4.114) for some constant C, > 0. O

4.10. Conclusion of the proof. We are now in position to conclude the proof Proposition 4.10,
hence also of Theorem 4.1. Under the assumptions of Proposition 4.10, we consider the solution
w of (4.4)—(4.6) with initial data w|;—o = 0. Thanks to Proposition 4.8, we can use the energy
E.[w] defined in (4.40) to control the size of w in the function space X.. The energy evolves
in time according to (4.52), where the quantities A, F, NL in the right-hand side satisfy the
estimates (4.58), (4.59), (4.60) for some constants s, > 0, k. > 0, and C, > 1. Without loss of
generality, we assume that ., < 1/8 and we take § > 0 small enough so that 0% < 1/16.
As long as the energy satisfies E.[w] < & := min{1, (16C,) "2}, we have

tO E-[w] + Dc[w] < 20° D.[w] + 2k, De[w] + 20,/ E-[w] De[w] + Cy (6~ *&2M ) 4 %)
1 1 1
g g Ds[w] + Z Ds[lU] + g DE[QU] + C* (5_452(M+1) + 54) s

so that t0;F.[w] + D.[w]/2 < C,(674e2M+1) 4 1), Recalling that £ = (t) = v/vt/d, we can
integrating this differential inequality on the time interval (0,¢) to obtain the bound
1 (" D.Jw(r Ce C. _
E [w(t)] + 2/0 E[T( ) dr < ST §4e2(M+1) 4 72’54 < Ci(0 4g2(M+1) +54) )

According to (4.63), the right-hand side is smaller than a fractional power of § as long as
t € (0,Tsgv0"7), so we can make it smaller than the fixed number & by taking § > 0 small
enough. In that case, the argument above holds for all ¢ € (0,75gy0~7), which concludes the
proof of (4.61).

With Proposition 4.10 at hand, it is straightforward to conclude the proof of Theorem 4.1.
Indeed, as already noticed, the estimate (4.7) follows directly from (4.61) in view of (4.42),
and the formula (4.8) for the vertical speed is a consequence of the decomposition (4.2), the
expression (3.45) of (upp, and the bound on the correction ¢ in Lemma 4.7. (]

APPENDIX A. APPENDIX

A.1. Homogeneous polynomials. For any integer n € N we denote by Qf (z) and Q3 (x) the
n-homogeneous polynomials on R? defined by

Q5 (z) = Re(wy + iz2)", Qp(z) = Im(zy +ia2)". (A1)

Note that QS (cosf,sinf) = cos(nf) and Q7 (cosé,sinf) = sin(nh) by De Moivre’s formula. For
the first values of n we have

Q(z) =1, Qi(z) = =1, Q)
Qi) =0, Qi(2) =2, Q(v) = 2m1x2,  Q3(x) = 3afuz — 3.

Assume that = € R? satisfies |x|> = 22 + 23 < 1. Denoting z = z; + iz2 we find

2 _ 2 2
Ty —xp, Q) = ] — 3r143,

i%QC(m):Reiﬂz”:Reb (1+2)=110 (14221 +|z[*), (A2)
. ¢ 2 - g B g 1 s .

n=1
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which is (3.19). Since 1Q%(x) = nQS_,(z) and 02QS(z) = —n Q5 _,(z), we can differentiate
both sides of (A.2) to arrive at the formulas

00 1+ZE1 00 . Lo
—)"Q%(z) = ——— 1 T 1 ) I — A.
SR = gy SOV = g (9

which were used several times in the previous sections.

A.2. Inverting the diffusion operator. This section is devoted to the proof of Lemma 3.5.
Given k£ > 0 and f € ), we have the Laplace formula

(k—L)7'f = /OOO e *TS(r)fdr, (A.4)

where S(7) = exp(7L) is the analytic semigroup in ) generated by the selfadjoint operator L,
see [15, Appendix A]. It is well known that

(SONE = o

/ ol pydy. 7> 0, € eR2, (A.5)
R2

where a(7) = 1 — e~7. Multiplying both sides by elé?/4 and using the identity
1

1 1 . .
1(|§|2—W2)—m|f—776 /2|2:_4a(7-) In—¢&e /2|2,
we obtain the equivalent formula
2 1 Cln—£e—T/2|2 /4a(r
Gle.r) = SN = o [T g ay,

where g(n) = el"*/4 £ (n).
We assume henceforth that f € Z, hence g € S,(R?). In particular |g(n)| < C(1 + |n|)V for
some C' > 0 and some N € N, so that

C —|n—€&e™ 7 a(T
Gle,n) < < / (14 [plyNe=€e 200 4y < O(1 4 JE))N .
G(T) R2

Returning to (A.4) we thus obtain
(k-0 O] < [ eIaeldr < Ok (14 [el). (A.6)
0

The derivative 0%(x — £) ™! f can be estimated in the same way, for any multi-index o € N2,
If 0 < 7 < 1 we differentiate (A.5) and integrate by parts to obtain

 elalm2
 dra(r)

92 (S(7).f)(€) /RZ ol PR Mgy dy,  0<T < 1.

Since f € Z we have e|’7‘2/4]8f7”f(17)| < C(1 + |n)N' for some N’ € N (depending on «), and
proceeding as before we deduce that e|5‘2/4|6§ (S(r) ) <c+ IE)N'. If 7 > 1, we observe
that 1 —e~! < a(7) < 1 and we differentiate (A.5) to obtain

02 (SONE < € [ (1l —nem /2 el 2Ry,
which gives eléI*/492 (S(7)£) (¢)] < C(1 + [€[)N*1el. Thus using (A.4) we find, as in (A.6),
P00 (k- )71 )(9)] < /OO e el 92 (S(r) £)(€)|dT < CrT A+ )Y, (AT

0
for some N” € N. This shows that (x — L)~ f € Z. O
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A.3. Inverting the advection operator. In this section, for the reader’s convenience, we
recall some known results about the (partial) inverse of the operator A introduced in (3.12).
In particular, we prove the second half of Proposition 3.6. We work in the function space Y
defined by (3.6), and we recall that A leaves invariant the direct sum decomposition (3.8), so
that it is sufficient to consider the restriction of A to each subspace ),,. To do that, we use
polar coordinates & = (rcosf,rsinf) in R?, and we define the radially symmetric functions

1 2 1 e r r?/4

UO(T) = o212 (1 —e’ /4) ) 9(7") = 8?e_r /47 h(r) = i)((r)) = er2/4/_ 1 (A~8)
We observe that 0,Qy = —rg and 9,V = rvg, where Qq, ¥q are given by (2.15), (2.16).

Since A vanishes on the subspace )y of radially symmetric functions, we assume henceforth
that n > 1. If Q € ), takes the form Q = w(r)cos(nf) for some function w : Ry — R, the
associated stream function is ¥ = ¢(r)cos(nf), where ¢ denotes the unique solution of the
ordinary differential equation

n2
)+ P~ Telr) = w(r), T >0, (4.9)

satisfying the boundary conditions ¢(r) = O(r™) as r — 0 and p(r) = O(r~") as r — +o00. A
direct calculation shows that

AQ = {Tg, Q} +{¥, Q} = —n(vow + ¢g) sin(nd) . (A.10)

Similarly, if Q = w(r)sin(nd), then ¥ = o(r)sin(nf) and AQ = n(vow + ¢g) cos(nf).
Suppose now that f = b(r)sin(nf) € V,. If the inhomogeneous differential equation

n2 T
— ") = 1)+ (B~ h))lr) = 20

r>0, (A.11)

has a solution satisfying the boundary conditions, we can define @ = w(r) cos(nf) with

b(r)
w(r) = —e(r)h(r) oo(r) (A.12)
Then (A.9) is satisfied, and it follows from (A.10) that AQ = f. The same conclusion holds if
f=10(r)cos(nf) and Q = —w(r)sin(nd).

So the invertibility of the operator A in the subspace ), is reduced to the solvability of the
ODE (A.11). If n > 2, the coefficient n?/r%—h(r) is positive, which ensures that equation (A.11)
always has a unique solution satisfying the boundary conditions. This leads to the following
statement, where Z denotes the function space introduced in (3.9).

Lemma A.1. [12] If n > 2 and f € Y, N Z, there exists a unique Q € Y, N Z such that
AQ = f. Moreover, if f = b(r)sin(n@) (respectively, f = b(r)cos(nd)) then Q = w(r) cos(nd)
(respectively, 2 = —w(r)sin(nf)) where w is defined by (A.12) with ¢ given by (A.11).

If n = 1, the homogeneous ODE (A.11) with b = 0 has a nontrivial solution ¢ = rvg satisfying
the boundary conditions. As a consequence, the inhomogeneous equation can be solved only
if the source term satisfies fooo b(r)r?dr = 0, and the solution is not unique. This solvability
condition ensures that the function f = b(r)sin@ (or f = b(r) cos ) belongs to the subspace Y]
defined by

V= Kt = {reds [ an@a= [ area-o}, (A13)
see also Remark 3.7. This leads to the following result, which complements Lemma A.1.

Lemma A.2. [14] Ifn =1 and f € Y| N Z, there exists a unique Q € Y} NZ such that AQ = f.
Moreover, if f = b(r)sin@ (respectively, f = b(r)cosf) then Q = w(r)cos@ (respectively,
Q = —w(r)sinf) where w is defined by (A.12) with ¢ given by (A.11).
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Remark A.3. In the lemmas above, the assumption that f € ), (respectively, f € ){) implies
that f € Ker(A)*, but does not ensure that f € Ran(A) because f(r) may not decay to zero
sufficiently rapidly as r — 4o0. This problem disappears if we assume in addition that f € Z,
in which case f € Ran(A) and the unique preimage Q = A~ f in J),, (respectively, in )}) still
belongs to Z. Note also that, if f is an odd (respectively, even) function of &3, then  is an
even (respectively, odd) function of &s.

A.4. Proof of Lemma 4.6. Since M[w]| = 0, using (2.6) and the definition of 7: in (2.10) we
find as in Lemma 3.8

(T)(©) = 4= [ o {11+ =6+ m)P + <2162 — ) wiin) d
T JR2

= /]R2 K5(€1+nla£2_n2)w(n)dna §€R2'

We first prove the bound on V7z¢ in (4.34). To evaluate the contribution of the vorticity w in
the outer region, we define

Lout(6) = / VeKo(6L 4 m, 60— mw(n)dy, €€ R2.
{In|>4e—1}

Given any ¢ > 2, we claim that

Houtllze S exp(—cxe ™) wla. , (A.14)

for some sufficiently small constant ¢, > 0. To this end, we observe that

1

VeK (& +m,& — S :
VeRe(&t+m, 2 — 1)) le=t + (& +m)| + &2 — n2|

Using the change of variables 171 = —¢; — 7!, 12 = ¢, we thus get

1
/ |VeK(§1 +m, 8 —m)w(n)|dn S / T Te (L s ae—ery 0] (6)ds .
{In>4s=1} Rz [§ =<
Taking p € (1,2) such that 1/p = 1/q + 1/2 and applying the Hardy-Littlewood—Sobolev
inequality, we deduce that

_D P _1
[Py W E ) (V) ) dn) S 1o W2 g
{In|>4e~1} L==p

where the last step follows from Hélder’s inequality with conjugate exponents 2/(2—p) and 2/p.
Finally, using the lower bound on W, given by the definition (4.22), we arrive at the bound
(A.14) for some sufficiently small ¢, > 0.

We next consider the contribution of the vorticity w(n) in the complementary region where
In| < 4e77'. We assume henceforth that £ € I, so that || < 2e77!. This of course implies that
e(|€] + In]) < 1, so that we can expand the kernel K (&1 + n1,&2 — 12) into a convergent power
series as in (3.19). In particular, if we define

_1\n—1
Bere(§,m) i= VeK (& + 1,8 —1m2) — Z (i e"VeQr (& +m, & —n2),

2mn
n=1

we have the accurate bound |Be(€,1)] < 3(1+ |€] + |n])?. Moreover, by construction,
2 (—1)n!

\V4 e o - ”V 7C’l ’ o d
(VT29) () ; 5 Ve {|n\§4s“’1}Q (61 +m, & — m2)w(n)dn (415

+ B (&, m)w(n) dn + Iow (€),  for €] <277,
{In|<4e=°1}

3
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In view of the definition of the polynomials P, (§) in (3.17) (with 2 = w), the first term in the
right-hand side of (A.15) is equal to

2 —
VRO + VP - Y ey Q561 + 1.6 — (i) .

n=1 {In|>4e=“1}

As observed in Remark 3.9, we know that VP;(§) = VP(§) = 0 if M[w] = m;[w] = mg[w] = 0.
Therefore, since |VQS ()| < nl|z|" !, we get

(VT@ S [ sl ool dn e [ el el dn-+ o)

< (L4 €2 lwlla. + (1 + [€]) exp(—ee ™) |Jw]| . + Lout (€]

whenever |¢| < 2¢791. Dividing both sides by (1 + |¢])? and taking the L norm with ¢ > 2, we
obtain the bound involving V7T.¢ in (4.34), in view of (A.14).

The estimate involving T in (4.34) is established following exactly the same lines, and the
details can thus be omitted. When e(|¢| + |n|) < 1, we now expand the kernel K. itself, and
not its derivative VK., which makes a difference because we only know that P;(§) = 0 under
the moment assumptions in Lemma 4.6. Therefore our expansion stops at n = 1 (instead of
n = 2 in the previous case), which explains why we only gain a factor 2 (instead of £3).

It remains to prove the estimate ||(14]-|)p| L~ < Cllw|x.. We already know from the proof
of Lemma 4.5 that |¢(€)] < C'log(2 + |€)||w] x., so we can assume henceforth that |¢] is large.
As M[w] = 0 by assumption, we can decompose ¢(§) = p1(§) + ¢2(€) where

a0 = 5 oSz, o) = 5o [ 10g

21 Jmi<iezy  IE 27 Jmistezy - lE
Since [log([€ — /16| < Clul/I€] when In| < [¢l/2, we have [€ller(6)] < Cllwlx.. To bound
2, we use Holder’s inequality and the fact that the L? norm of (1 + |n|)?w(n) in the exterior
domain |n| > [¢]|/2 decays rapidly as |£| — 4o00. This gives the desired result. O

w(n)dn.
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