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Abstract

We study the long-time behavior of scalar viscous conservation laws via the structure of ω-limit
sets. We show that ω-limit sets always contain constants or shocks by establishing convergence to
shocks for arbitrary monotone initial data. In the particular case of Burgers’ equation, we review and
refine results that parametrize entire solutions in terms of probability measures, and we construct
initial data for which the ω-limit set is not reduced to the translates of a single shock. Finally we
propose several open problems related to the description of long-time dynamics.

1 Introduction and main results

We are interested in the long-time dynamics of viscous scalar conservation laws,

∂tu(t, x) + f ′(u(t, x))∂xu(t, x) = ∂2xu(t, x) , t > 0 , x ∈ R , (1.1)

with smooth and strictly convex flux function f : R → R, that is, f ′′(u) > 0 for all u ∈ R. A typical
example is Burgers’ equation where f(u) = u2/2. The Cauchy problem for (1.1) is globally well-posed
in the space L∞(R), see e.g. [28]. More precisely, given initial data u0 ∈ L∞(R), equation (1.1) has a
unique global solution u ∈ C0((0,+∞), L∞(R)) such that u(t, ·) converges to u0 in the weak-∗ topology
of L∞(R) as t → 0+. By parabolic regularity, the function u(t, x) is smooth for all positive times. For
any t > 0, let St : L

∞(R) → L∞(R) be the nonlinear map defined by u(t, ·) = St(u0), where u(t, x) is the
solution of (1.1) with initial data u0 ∈ L∞(R). We also write S0 = 1, the identity map.

To a first approximation, the long-time behavior of St(u0) as t→ ∞ is described by the collection of all
limit points, usually referred to as the ω-limit set. The unboundedness of the spatial domain R implies a
typical lack of compactness of the trajectory {St(u0) | t > 0}, and the ω-limit set may indeed be empty
when convergence is measured in the uniform topology defined by the norm in L∞(R). It is therefore
preferable to rely on the local topology induced by L∞

loc(R), which is the topology of uniform convergence
on compact intervals [−R,R] ⊂ R. The ω-limit set is commonly defined as follows:

ω0(u0) :=
{

v ∈ L∞(R)
∣

∣ ∃ tk → ∞ s.th. Stk(u0) → v in L∞
loc(R)

}

, (1.2)

but this definition assigns a particular role to the laboratory frame and is not invariant under Galilean
transformations. A somewhat richer description of asymptotic behavior is obtained by considering the
set of limit points modulo translations,

ω(u0) :=
{

v ∈ L∞(R)
∣

∣ ∃ tk → ∞ and xk ∈ R s.th. Txk
Stk(u0) → v in L∞

loc(R)
}

, (1.3)

where (Tyu)(x) = u(x− y). Note that we use the zero subscript in the definition of ω0 to emphasize the
fixed origin in the definition of locally uniform convergence in (1.2).

Fairly standard results assert that both ω0(u0) and ω(u0) are non-empty, compact, connected, fully
invariant, attractive, and chain recurrent (up to translations) in the topology of L∞

loc(R); see Proposi-
tions 3.2 and 3.3. Full invariance implies in particular that for any v0 in the ω-limit set, there exists a
solution v(t, x) of (1.1) that is defined for all t ∈ R and satisfies v(0, ·) = v0. We refer to such solutions,
defined for all positive and negative times, as entire solutions. Describing all possible long-term dynamics
can then be rephrased as describing all subsets of the family of entire solutions that can occur as ω-limit
sets for bounded initial data.
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The results we present can be seen as small steps in this direction. Somewhat trivial candidates for the
ω-limit sets are first spatially constant states v(x) ≡ m and then viscous shocks, found as traveling-wave
solutions v(t, x) = φβ,α(x − ct) with φ(−∞) = β > φ(+∞) = α, φ′(ξ) < 0 for all ξ, and c given by the
Rankine-Hugoniot formula cβ,α = (f(β)− f(α))/(β−α). It is known since the classical work of Il’in and
Oleinik [14] that large sets of initial data give rise to solutions of (1.1) that converge uniformly to shocks
as t → +∞, see also [7]. In Proposition 4.1 below, we show that this is the case for all initial data that
are monotonically decreasing, without any assumption on the rate at which the limits are approached
as x → ±∞. At this level of generality, we cannot prove convergence to a fixed translate of the shock
as t → +∞. In fact, as discussed in Remark 4.2, there exist monotone initial data u0 ∈ L∞(R) with
u0(−∞) = β > u0(+∞) = α and cβ,α = 0 such that, for instance, ω0(u0) = β; in particular one observes
that Tyφβ,α /∈ ω0(u0) for all y ∈ R.

Our first general result establishes a property reminiscent of the Poincaré-Bendixson theorem, in the
sense that it describes the long-time behavior of solutions with initial data in ω-limit sets.

Proposition 1.1. For every u0 ∈ L∞(R) and any nonconstant v ∈ ω(u0), there exist real numbers α < β
such that

ω(v) = {Tyφβ,α ; y ∈ R}L∞
loc ⊂ ω(u0) . (1.4)

In particular, the set ω(u0) contains a shock unless it consists entirely of constants.

In other words, if v ∈ ω(u0) is nonconstant, the ω-limit set ω(v) consists of all translates of a viscous
shock φβ,α, together with the constant states α and β that arise as limits of the shock profile at ±∞.
The proof relies on the simple observation that any such v is necessarily monotonically decreasing, as a
consequence of Oleinik’s inequality (2.2). We can thus invoke Proposition 4.1 to determine the ω-limit
ω(v), which is included in ω(u0) since the latter set is invariant under the dynamics of (1.1).

Our remaining results focus on the specific case of Burgers’ equation, which through the Cole-Hopf
transformation allows for a somewhat explicit representation of any solution in terms of its initial data.
Interestingly, as pointed out in [15], bounded entire solutions of Burgers’ equation can be represented in
terms of probability measures µ on the real line,

u(t, x) =

∫

z e−zx/2+z2t/4 dµ(z)
∫

e−zx/2+z2t/4 dµ(z)
, t ∈ R , x ∈ R . (1.5)

This remarkable formula gives, in particular, an explicit characterization of candidates for elements in
ω-limit sets. In Section 5 we give a short proof of the representation (1.5), showing that the measure µ
is unique and supported in the closure of the range of the entire solution u. We also relate the measure
µ to backward-in-time asymptotics of the entire solution u. A striking result in this direction is:

Proposition 1.2. Assume that u is given by (1.5) for some probability measure µ on R. A real number
c ∈ R belongs to supp(µ) if and only if u(t, ·+ ct) converges to c in L∞

loc(R) as t→ −∞.

It is also possible to determine the asymptotic behavior of u(t, x) as t→ −∞ in Galilean frames with
speeds c /∈ supp(µ). In that case we define

m−(c) = sup{z < c | z ∈ supp µ} , and m+(c) = inf{z > c | z ∈ supp µ} .

Proposition 1.3. If c /∈ supp(µ) and c 6= (m+(c) +m−(c))/2, the solution u defined by (1.5) satisfies

lim
t→−∞

u(t, ·+ ct) =

{

m−(c) if c < (m+(c) +m−(c))/2 ,

m+(c) if c > (m+(c) +m−(c))/2 ,

where convergence is understood in L∞
loc(R).

We refer to Propositions 5.6 and 5.8 below for more general statements, which also cover the somewhat
delicate situation where c = (m+(c)+m−(c))/2. Other properties of the measure µ, such as the presence
of atoms, can also be detected in the ancient behavior of the corresponding entire solution u.

Lastly, we show that out of this plethora of entire solutions, the ω-limit set may contain elements that
are not simply shocks or constants.
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Proposition 1.4. There exist initial data u0 ∈ L∞(R) for Burgers’ equation such that ω0(u0) contains
a solution v(t, x) that is neither a constant nor a shock. An example can be constructed where v describes
the merging of a pair of shocks into a single shock.

The construction is carried out in a somewhat explicit fashion in Section 6. In the terminology of
dynamical systems, the ω-limit set contains a heteroclinic trajectory connecting the zero solution to a
steady shock φ, as well as a continuous family of steady shocks interpolating between φ and 0. This
can be compared to a famous example of coarsening dynamics due to Eckmann and Rougemont [4], also
rigorously studied by Poláčik [20, 21], where the ω-limit set is a heteroclinic loop.

Outline. We recall basic properties of conservation laws and shocks in Section 2. We then formulate and
establish properties of both ω-limit sets ω0(u0) and ω(u0) in Section 3. Our first main result, the con-
vergence to shocks for monotone initial data, is proved in Section 4. Section 5 derives the representation
of entire solutions in terms of probability measures, displays some key examples, and relates measures
to ancient limits. Lastly, Section 6 is devoted to the proof of Proposition 1.4. We conclude with a brief
discussion in Section 7, and collect the proofs of some auxiliary results in Appendix A.

Acknowledgements. This project started from discussions held in the stimulating atmosphere of the
Mathematisches Forschungsinstitut Oberwolfach, in August 2021. ThG would like to thank Denis Serre
for his expert advice on several points addressed in this work. The authors were partially supported by
the grants ISDEEC ANR-16-CE40-0013 (ThG) and NSF DMS-1907391, DMS-2205663 (AS).

2 Properties of scalar conservation laws and shocks solutions

We first recall some basic properties of scalar conservation laws of the form (1.1).

A priori bounds and monotonicity. The evolution semigroup (St)t≥0 defined by (1.1) in L∞(R)
has the following properties :

a) Monotonicity : if u0, u1 ∈ L∞(R) and u0 ≤ u1 almost everywhere, then St(u0) ≤ St(u1) everywhere
when t > 0;

b) Contraction in L1 : if u0, u1 ∈ L∞(R) satisfy u0 − u1 ∈ L1(R), then St(u0) − St(u1) ∈ L1(R) and
‖St(u0)− St(u1)‖L1 ≤ ‖u0 − u1‖L1 for all t > 0;

c) Conservation of mass : under the assumptions of b), we also have

∫

R

(

St(u0)− St(u1)
)

(x) dx =

∫

R

(

u0 − u1
)

(x) dx , t > 0 .

Assertions a), b), c) are readily established using the parabolic maximum principle [23] and the fact
that (1.1) is a conservation law, see e.g. [26, 28].

Another remarkable property of the solutions of (1.1) is a universal upper bound for the derivative
∂xu, which is known as Oleinik’s inequality. Given u0 ∈ L∞(R), we define

α := ess inf
x∈R

u0(x) , β := ess sup
x∈R

u0(x) . (2.1)

Since constants are steady states of (1.1), monotonicity implies that the solution u(t) = St(u0) satisfies
α ≤ u(t, x) ≤ β for all t > 0 and all x ∈ R (in fact, due to the strong maximum principle, both inequalities
are strict as soon as α < β). Oleinik’s inequality asserts that, for all t > 0 and all x ∈ R,

∂xu(t, x) <
1

kt
, where k := min

{

f ′′(u) ; u ∈ [α, β]
}

> 0 . (2.2)

For convenience, we include a short proof of (2.2) in Section A.1.
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Viscous shocks. Given α, β ∈ R with α < β, equation (1.1) has a unique traveling wave solution of
the form u(t, x) = φβ,α(x− ct), such that φ(−∞) = β, φ(+∞) = α, and φ(0) = (α+ β)/2. The profile φ
is strictly decreasing and solves

φ′(y) = f(φ(y)) − cφ(y)− d , y ∈ R , (2.3)

where

c :=
f(β)− f(α)

β − α
, d := f(β)− cβ ≡ f(α)− cα , (2.4)

Strict convexity of f gives the Lax condition f ′(β) > c > f ′(α), and the ODE (2.3) then implies that
φβ,α converges exponentially to its limits at ±∞.

Stability of viscous shocks has been known since the classical work of Il’in and Oleinik [14]. For localized
perturbations, that is, for initial data u0 ∈ L∞(R) with u0 − φβ,α ∈ L1(R) for some α < β, the solution
u(t, x) of (1.1) converges uniformly to φβ,α(x − ct− x0) as t→ +∞, with c as in (2.4) and

x0 :=
1

β − α

∫

R

(

u0(x)− φβ,α(x)
)

dx . (2.5)

Extensions towards viscous conservation laws with more general flux function, allowing for degenerate
shocks, can be found in the references [17, 7, 28, 19, 12, 10]. Rates of convergence can be obtained under
stronger localization of the perturbations. However, the hypothesis that u0−φβ,α ∈ L1(R), which allows
one to determine the asymptotic shift (2.5), seems to play an important role in all existing results. Our
analysis in Section 4 removes this restriction for monotone solutions.

3 Properties of ω-limit sets

In this section we establish the properties of the ω-limit sets (1.2), (1.3) that were announced in the
introduction. Here and in what follows, we denote by d the distance on L∞(R) defined by

d(u, v) = ‖u− v‖exp , where ‖u‖exp = ess sup
x∈R

(

e−|x||u(x)|
)

. (3.1)

As is easily verified, on any bounded set Σ ⊂ L∞(R), the topology defined by the distance (3.1) coincides
with the topology of L∞

loc(R), namely the topology of uniform convergence on compact subsets of R.

In view of the properties recalled in Section 2, for any initial data u0 ∈ L∞(R) the solution u(t, ·) =
St(u0) of (1.1) belongs for all times to the ball

Σ(u0) :=
{

u ∈ L∞(R) ; ‖u‖L∞ ≤ ‖u0‖L∞

}

⊂ L∞(R) . (3.2)

The following standard result plays a fundamental role:

Lemma 3.1. When equipped with the topology of L∞
loc(R), the ball Σ(u0) defined by (3.2) is closed and

the solution map St : Σ(u0) → Σ(u0) is continuous for any t ≥ 0.

Proof. It is easy to check that Σ(u0) is closed in L∞
loc(R), and the properties recalled in Section 2 imply

that the semiflow St maps the ball Σ(u0) into itself. The key point is the continuous dependence of the
solution St(u) upon the initial data u ∈ Σ(u0), in the topology of L∞

loc(R). This a rather standard result
for parabolic PDEs on unbounded domains, see e.g. [18]. For the reader’s convenience, the argument
showing continuity is reproduced in Section A.2 below.

We are now in position to establish the main properties of the ω-limit set (1.2).

Proposition 3.2. For any u0 ∈ L∞(R), the ω-limit set ω0(u0) defined by (1.2) is bounded in L∞(R)
and, when equipped with the topology of L∞

loc(R), has the following properties :

a) ω0(u0) is non-empty, compact, connected, and

ω0(u0) =
⋂

T>0

{

St(u0) ; t ≥ T
}L∞

loc

; (3.3)
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b) ω0(u0) is fully invariant, attractive, and chain recurrent, namely :

• St(ω0(u0)) = ω0(u0) for all t ≥ 0;

• for any neighborhood N of ω0(u0), there exists T > 0 such that St(u0) ∈ N for all t ≥ T ;

• for each v0 ∈ ω0(u0) and any T, ε > 0, there exists a closed (ε, T )-pseudo-orbit in ω0(u0) starting
at v0, that is, there exist finite sequences vj ∈ ω(u0) and tj ∈ [T, 2T ] for 0 ≤ j ≤ N − 1, such that
vN = v0 and d(vj+1,Stj (vj)) < ε for all j ∈ {0, . . . , N−1}.

In particular, if v0 ∈ ω0(u0), there exists an entire solution v ∈ C0(R, L∞(R)) of (1.1) such that
v(t, ·) ∈ ω0(u0) for all t ∈ R and v(0, ·) = v0; moreover ω0(v0) ⊂ ω0(u0).

c) ω0(u0) is a bounded subset of Ck
b (R) for all k ∈ N, and any v ∈ ω0(u0) satisfies v

′(x) ≤ 0 ∀x ∈ R.

Proof. Smoothing properties of the parabolic equation (1.1) and a priori bounds for the solutions and
their derivatives guarantee that, for any u0 ∈ L∞(R) and any k ∈ N, the solution St(u0) is uniformly
bounded in Ck

b (R) for t ≥ 1. This does not imply that the forward trajectory γ+(u0) := {St(u0) ; t ≥ 0}
is compact in L∞

loc(R), because in general the map t 7→ St(u0) is not continuous at t = 0 in that topology.
However, for any T > 0, the trajectory γ+(ST (u0)) = {St(u0) ; t ≥ T } is relatively compact and connected
in L∞

loc(R). Topological properties (a) and dynamic properties (b) of the ω-limit set ω0(u0) follow in a
standard fashion. We include some details here for later reference.

1) Compactness and attractivity. It is easy to verify that the relation (3.3) is equivalent to the definition
(1.2). Now (3.3) shows that ω0(u0) is the intersection of a decreasing family of non-empty compact sets,
so that ω0(u0) is itself compact and non-empty. By the same argument, if N is any neighborhood of
ω0(u0) in L

∞
loc(R), there exists T > 0 such that γ+(ST (u0)) ⊂ N , which proves attractivity.

2) Connectedness. We argue by contradiction: if ω0(u0) = A1 ∪ A2 where A1, A2 are non-empty disjoint
closed sets, then A1, A2 are in fact compact and are therefore separated by a distance ε > 0. If N1,N2

are ε/3-neighborhoods of A1, A2, respectively, then N1,N2 are non-empty disjoint open sets, and the
attractivity property shows that, for T > 0 sufficiently large, the connected forward orbit γ+(ST (u0)) is
contained in the neighborhood N := N1∪N2, without being included in either N1 or N2, which is clearly
impossible.

3) Full invariance. If v0 ∈ ω0(u0) there exists a sequence tk → +∞ such that Stk(u0) → v0 in L∞
loc. By

Lemma 3.1, for any t > 0, we thus have

St(v0) = St

(

lim
k→∞

Stk(u0)
)

= lim
k→∞

Stk+t(u0) ∈ ω0(u0) ,

which proves that St(ω0(u0)) ⊂ ω0(u0). Similarly, we can extract a subsequence (still denoted by tk)
such that Stk−t(u0) → v−t ∈ ω(u0), where v−t satisfies St(v−t) = v0. Altogether, this shows that
St(ω0(u0)) = ω0(u0) for all t ≥ 0. It is easy to deduce that, given any v0 ∈ ω0(u0), there exists an entire
solution v ∈ C0(R, L∞

loc(R)) of (1.1) such that v(0) = v0.

4) Chain recurrence. This is a consequence of continuity and attractivity, which can be established as
follows. Fix ε, T > 0 and take v0 ∈ ω0(u0). By continuity, there exists δ ∈ (0, ε/2) such that, for all
u1, u2 ∈ Σ(u0) such that d(u1, u2) < δ, one has d(St(u1),St(u2)) < ε/2 for all t ∈ [T, 2T ]. By attractivity,
we can then choose t∗ > 0 such that dist(St(u0), ω0(u0)) < δ for all t ≥ t∗. Now, we take T0 ≥ t∗ such
that d(ST0

(u0), v0) < δ, and also T∗ ≥ t∗ + T such that d(ST∗
(u0), v0) < δ. For some N ∈ N

∗, we define
intermediate times T1, . . . , TN such that TN = T∗ and

tj := Tj+1 − Tj ∈ [T, 2T ] , for all j ∈ {0, . . . , N − 1} .

Finally we denote ũj = STj (u0) for j = 0, . . . , N , and we take vj ∈ ω0(u0) such that d(vj , ũj) < δ.
Note that v0 is given from the beginning, and we can take vN = v0. We claim that the sequence vj for
j = 0, . . . , N is the desired pseudo-orbit. Indeed for j = 0, . . . , N − 1 we have ũj+1 = Stj (ũj), hence

d
(

vj+1,Stj (vj)
)

≤ d
(

vj+1, ũj+1

)

+ d
(

Stj (ũj),Stj (vj)
)

< δ + ε/2 < ε ,

where we used the uniform continuity of Stj and the fact that tj ∈ [T, 2T ].

5) Assertion (c) is an easy consequence of parabolic smoothing and Oleinik’s inequality (2.2).
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We next consider the larger ω-limit set (1.3), where limit points are considered up to translations in
space. The analogue of Proposition 3.2 is:

Proposition 3.3. For any u0 ∈ L∞(R), the ω-limit set ω(u0) defined by (1.3) is bounded in L∞(R) and,
when equipped with the topology of L∞

loc(R), has the following properties :

a) ω(u0) is non-empty, compact, connected, and

ω(u0) =
⋂

T>0

{

TySt(u0) ; t ≥ T, y ∈ R
}L∞

loc

; (3.4)

b) ω(u0) is fully invariant in time, translation invariant in space, uniformly attractive, and chain re-
current up to translations;

c) ω(u0) is a bounded subset of Ck
b (R) for all k ∈ N, and any v ∈ ω(u0) satisfies v

′(x) ≤ 0 ∀x ∈ R.

Proof. The proof is completely parallel to that of Proposition 3.2, and we just indicate here the main
differences. The starting point is the formula (3.4), which is easily derived from the definition (1.3).
Since the space-time trajectory

{

TySt(u0) ; t ≥ T, y ∈ R
}

is relatively compact in L∞
loc(R) for any T > 0,

we see that ω(u0) is non-empty and compact as the decreasing intersection of non-empty compact sets.
Moreover, if N is any neighborhood of ω(u0) in L∞

loc(R), we have
{

TySt(u0) ; t ≥ T, y ∈ R
}

⊂ N for
any sufficiently large T > 0, which means that ω(u0) attracts the trajectory TySt(u0) uniformly in y ∈ R

as t → +∞. As a consequence, since the space-time trajectory is connected for all T > 0, the same
argument as in Proposition 3.2 shows that ω(u0) is a connected set. There is no difference either in the
reasoning showing that St(ω(u0)) = ω(u0) for all t ≥ 0. Finally, the definition (1.3) immediately implies
that Ty(ω(u0)) = ω(u0) for all y ∈ R, and the boundedness properties (c) are established exactly as
before.

The main difference we would like to point out is that ω(u0) is not chain recurrent in the sense of
Proposition 3.2, but only in a weaker sense that can be called “chain recurrence up to translations”.
The precise definition is as follows: for each v0 ∈ ω(u0) and any T, ε > 0, there exist finite sequences
vj ∈ ω(u0), tj ≥ [T, 2T ], and yj ∈ R for 0 ≤ j ≤ N − 1, such that vN = v0 and d(vj+1, TyjStj (vj)) < ε for
all j ∈ {0, . . . , N−1}. In other words, the definition of the (ε, T )-pseudo-orbit involves spatial shifts yj
in addition to the time shifts tj , which is natural in view of (1.3). The existence of such a pseudo-orbit
for all v0 ∈ ω(u0), all ε > 0, and all T > 0 is established by the same argument as in Proposition 3.2.

Although the ω-limit sets (1.2), (1.3) are relatively easy to define and enjoy the nice properties listed
in Propositions 3.2 and 3.3, it is notoriously difficult to compute them for arbitrary initial data. In the
case of equation (1.1), general results in this direction are only available under monotonicity assumptions.
If u0 is increasing, the solution St(u0) remains increasing for all t > 0 by the maximum principle, and
‖∂xSt(u0)‖L∞ → 0 as t → +∞ by Oleinik’s inequality (2.2). This implies that ω(u0) consists of the
constant states u ≡ γ for all γ ∈ [α, β], where α, β are as in (2.1). On the other hand, if u0 is decreasing,
Proposition 4.1 below implies that ω(u0) is the set of all translates of the viscous shock φβ,α, supplemented
with the constant states u ≡ α and u ≡ β. A similar conclusion is reached if u0 satisfies the assumptions
of Il’in and Oleinik’s result [14]. Incidentally, we observe in this example that ω(u0) is a heteroclinic orbit
in the terminology of dynamical systems, so that ω(u0) is not chain recurrent.

More generally, if u0 ∈ L∞(R) and if there is a v ∈ ω(u0) that is not a constant, then v is decreasing
by Proposition 3.3, and since ω(v) ⊂ ω(u0) we deduce that ω(u0) contains the translates of a viscous
shock, as asserted in (1.4). So we see that Proposition 1.1 is a direct consequence of Propositions 3.3 and
4.1. In addition we have

Corollary 3.4. For any u0 ∈ L∞(R), the ω-limit set ω(u0) contains a constant state or a viscous shock.

This statement can be compared with a result by S. Slijepčević and the first author [8] which shows
that, for a general class of dissipative systems including reaction-diffusion equations on the real line, the
ω-limit set of a bounded trajectory always contains an equilibrium. For the viscous conservation law
(1.1), where all Galilean frames are equivalent, the role of equilibria is played by the constant states and
the viscous shocks.

From a different perspective, one may wonder which collections of entire solutions v ∈ C0(R, L∞
loc(R))

of (1.1) may occur as ω-limit sets of bounded initial data. From the results presented thus far, only
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non-empty, compact, connected, invariant, and chain-recurrent sets are candidates. In general, compact,
connected sets with a chain-recurrent flow are precisely the possible ω-limit sets of flows, in the sense
that any such set is topologically conjugated to an ω-limit set of some flow [6]. It is however not clear at
all if any compact, connected, invariant, and chain-recurrent set within the family of entire solutions is
realized as the ω-limit set of the particular flow generated by the conservation law (1.1).

Remark 3.5. In the definition (1.3) of the ω-limit set ω(u0), we allow for arbitrary spatial shifts xk ∈ R

while the temporal shifts tk must go to infinity. This is clearly not the only possibility. One the one hand,
we could restrict the class of spatial shifts by imposing, for instance, a Galilean constraint of the form
|xk| ≤ ctk with, typically, c > ‖u0‖∞. Actually, we could even require that xk/tk converges to some limit
in [−c, c] as k → +∞. In a different direction, we could consider all spatio-temporal shifts such that
|xk|+ tk → ∞ as k → ∞, which potentially gives an ω-limit set even larger than (1.3). However, in the
examples we are aware of, these alternative possibilities do not seem to change the nature of the ω-limit
set in a profound way, so in what follows we stick to the original definition (1.3).

4 Convergence to shocks for monotone initial data

The main result of this section is:

Proposition 4.1. Assume that u0 ∈ L∞(R) is nonincreasing and satisfies α < β, where

α := lim
x→+∞

u0(x) , β := lim
x→−∞

u0(x) . (4.1)

Then there exists a smooth function s : (0,+∞) → R such that the solution u of (1.1) with initial data
u0 satisfies

sup
x∈R

∣

∣u(t, x)− φβ,α(x − s(t))
∣

∣ −−−−→
t→+∞

0 . (4.2)

Moreover s(t)/t→ c as t→ +∞, where c is given by the Rankine-Hugoniot formula (2.4).

Remark 4.2. It is not difficult to find examples for which the shift function s in (4.2) is not asymptotically
linear, namely s(t) − ct has no limit as t → +∞. For instance, assume that β − u0 ∈ L1(R−) but
u0 − α /∈ L1(R+). Given any γ > 0, we define ũ0(x) = u0(x) for x ≤ γ and ũ0(x) = α for x > γ. As
ũ0 ≤ u0, monotonicity implies that Stũ0 ≤ Stu0 for all t > 0. On the other hand, since ũ0−φβ,α ∈ L1(R),
we can apply the result of [14] to deduce that (Stũ0)(x) converges uniformly to φβ,α(x−ct−x̃0) as t→ +∞,
where

x̃0 :=
1

β − α

(
∫ γ

−∞

(

u0(x) − φβ,α(x)
)

dx+

∫ +∞

γ

(

α− φβ,α(x)
)

dx

)

.

In particular one has lim inft→+∞(s(t)− ct) ≥ x̃0 by monotonicity. Now, taking taking γ → +∞, we see
that x̃0 → +∞ by assumption on u0, and we conclude that s(t)− ct→ +∞ as t→ +∞. A more explicit
example of such a “sublinear shift” will be given in Section 5.2 below.

The remainder of this section is devoted to the proof of Proposition 4.1. Assume that the initial data
u0 ∈ L∞(R) are nonincreasing and satisfy (4.1) for some α < β. The solution u(t) = Stu0 of (1.1) is
smooth for positive times, and the strong maximum principle implies that ∂xu(t, x) < 0 for all t > 0 and
all x ∈ R. On the other hand, using for instance Lemma 3.1, it is not difficult to verify that the limits
of u(t, x) as x → ±∞ are independent of time. As a consequence, for each t > 0, there exists a unique
point s(t) ∈ R such that

u(t, s(t)) =
α+ β

2
. (4.3)

Moreover s(t) is a smooth function of time thanks to the implicit function theorem.

Lemma 4.3. The shift function s : (0,+∞) → R defined by (4.3) satisfies

lim
t→+∞

s(t)

t
= c :=

f(β)− f(α)

β − α
. (4.4)
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Proof. We use the monotonicity of the evolution map St to compare the solution u(t) = Stu0 with
suitably translated viscous shocks. Take ε > 0 small enough so that

0 < ε <
β − α

2
, hence α+ ε <

α+ β

2
< β − ε . (4.5)

Since u0 is nonincreasing and satisfies (4.1), there exist x+(ε) ∈ R and x−(ε) ∈ R such that

φβ−ε,α−ε(x− x−(ε)) ≤ u0(x) ≤ φβ+ε,α+ε(x − x+(ε)) , ∀x ∈ R , (4.6)

where φβ±ε,α±ε denotes the viscous shock connecting β ± ε with α ± ε. In fact, it is straightforward to
verify that (4.6) holds as soon as x+(ε) ≫ 1 and x−(ε) ≪ −1 are sufficiently large, depending on ε. By
monotonicity, we deduce from (4.6) that

φβ−ε,α−ε

(

x− c−(ε)t− x−(ε)
)

≤ u(t, x) ≤ φβ+ε,α+ε

(

x− c+(ε)t− x+(ε)
)

, (4.7)

for all t ≥ 0 and all x ∈ R, where the speeds c±(ε) are given by the Rankine-Hugoniot formulas

c+(ε) :=
f(β+ε)− f(α+ε)

β − α
, c−(ε) :=

f(β−ε)− f(α−ε)
β − α

. (4.8)

On the other hand, due to the second inequality in (4.5), there exist s+(ε) ∈ R and s−(ε) ∈ R such that

φβ+ε,α+ε

(

s+(ε)
)

= φβ−ε,α−ε

(

s−(ε)
)

=
α+ β

2
. (4.9)

In view of (4.9), we deduce from (4.7) that the shift function defined by (4.3) satisfies

c−(ε)t+ x−(ε) + s−(ε) ≤ s(t) ≤ c+(ε)t+ x+(ε) + s+(ε) , ∀ t > 0 . (4.10)

In particular we infer from (4.10) that

c−(ε) ≤ lim inf
t→+∞

s(t)

t
≤ lim sup

t→+∞

s(t)

t
≤ c+(ε) . (4.11)

Finally it is clear from (4.8) that c±(ε) → c as ε→ 0, which concludes the proof of (4.4).

In a second step, we consider the auxiliary function v defined by

v(t, x) = ∂xu(t, x)− f(u(t, x)) + cu(t, x) + d , t > 0 , x ∈ R , (4.12)

where the constants c, d are defined in (2.4). This function is smooth for positive times and a direct
calculation shows that it satisfies the evolution equation

∂tv(t, x) + f ′
(

u(t, x)
)

∂xv(t, x) = ∂2xv(t, x) , t > 0 , x ∈ R . (4.13)

The key step in the proof of Proposition 4.1 is :

Lemma 4.4. The function v defined by (4.12) converges uniformly to zero as t→ +∞ :

sup
x∈R

|v(t, x)| −−−−→
t→+∞

0 . (4.14)

Proof. Shifting the initial time if needed, we can assume without loss of generality that the functions
u(t, x) and v(t, x) are smooth for all t ≥ 0. We consider the linear advection-diffusion equation

∂tw(t, x) + f ′
(

u(t, x)
)

∂xw(t, x) = ∂2xw(t, x) , t > 0 , x ∈ R , (4.15)

where the function u(t, x) is considered as given. The following Lp–Lq estimates are known for the
solution of (4.15) with initial data w0 :

sup
t≥0

‖w(t, ·)‖L∞(R) ≤ ‖w0‖L∞(R) , sup
t>0

t1/2‖w(t, ·)‖L∞(R) ≤ C‖w0‖L1(R) , (4.16)
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where C > 0 is a universal constant. While the first bound in (4.16) is a direct consequence of the
parabolic maximum principle, the second one takes into account the convexity of the flux function f as
well as the monotonicity of the solution u. For the reader’s convenience, we provide a proof of the second
estimate (4.16) in Section A.3.

For the time being, to conclude the proof of Lemma 4.4, we consider the solution v of (4.13) with initial
data v0 := ∂xu0 − f(u0) + cu0 + d. We know that ∂xu0 ∈ L1(R) because u0 is decreasing and bounded,
and that f(u0) − cu0 − d converges to zero as x → ±∞ because of (2.4). As a consequence, given any
ε > 0, we can decompose v0 = w1 + w2, where w1 ∈ L1(R) and ‖w2‖L∞ ≤ ε. For j = 1, 2 we denote by
wj(t) the solution of (4.15) with initial data wj , so that v(t) = w1(t) + w2(t) by linearity. Using (4.16),
we infer that

‖v(t)‖L∞ ≤ ‖w1(t)‖L∞ + ‖w2(t)‖L∞ ≤ Ct−1/2‖w1‖L1 + ‖w2‖L∞ , ∀ t > 0 ,

so that lim supt→+∞ ‖v(t)‖L∞ ≤ ε. Since ε > 0 was arbitrary, this gives (4.14).

Equipped with Lemmas 4.3 and 4.4, it is now straightforward to conclude the proof of Proposition 4.1.
Let g : R → R be the convex function defined by g(u) = f(u)− cu− d, where c, d are given by (2.4), and
let

L := max
{

|g′(u)| ; u ∈ [α, β]
}

= max
{

c− f ′(α) , f ′(β) − c
}

.

Fix any t > 0. In view of (4.12), the function ψ : R → R defined by ψ(y) = u
(

t, y + s(t)
)

satisfies the
ODE

ψ′(y) = g
(

ψ(y)
)

+ v
(

t, y + s(t)
)

, ∀ y ∈ R , with ψ(0) =
α+ β

2
.

This is to be compared with the ODE (2.3) satisfied by the viscous shock φ(y) := φβ,α(y), namely
φ′(y) = g(φ(y)) and φ(0) = (α + β)/2. If w = ψ − φ, we infer that |w′(y)| ≤ L|w(y)| + ‖v(t)‖L∞ .
Integrating this differential inequality and recalling that w(0) = 0, we obtain

|w(y)| ≡
∣

∣u(t, y + s(t))− φβ,α(y)
∣

∣ ≤ |y| eL|y| ‖v(t)‖L∞ , ∀ y ∈ R . (4.17)

Since ‖v(t)‖L∞ → 0 by Lemma 4.14, it follows from (4.17) that u(t, y+ s(t))− φβ,α(y) converges to zero
as t → +∞, uniformly for y in any compact interval. Taking into account the fact that both functions
u(t, ·) and φβ,α are decreasing and have the same limits as y → ±∞, we deduce that the convergence is
in fact uniform for all y ∈ R. This proves (4.2), and we already established in Lemma 4.3 that s(t)/t has
a limit as t→ +∞. �

Remark 4.5. Neither the strict convexity of the flux nor the Lax condition for the shock is used in the
proof of Proposition 4.1, which therefore remains valid if we only assume that f ′′(u) ≥ 0 for all u ∈ [α, β].

5 Representation of entire solutions via probability measures

From now on we restrict our attention to the special case of Burgers’ equation

∂tu(t, x) + u(t, x)∂xu(t, x) = ∂2xu(t, x) , t > 0 , x ∈ R , (5.1)

which corresponds to taking f(u) = u2/2 in (1.1). The Cauchy problem for (5.1) can be solved in explicit
form through the celebrated Cole-Hopf transformation [3,13]. As is easily verified, if U(t, x) is any positive
solution of the heat equation ∂tU = ∂2xU , a corresponding solution u(t, x) of (5.1) is obtained by setting

u(t, x) = −2
∂xU(t, x)

U(t, x)
, t > 0 , x ∈ R . (5.2)

It is tempting to conclude that the dynamics of (5.1) is trivial, but one should keep in mind that bounded
solutions of (5.1) are associated via (5.2) to functions U(t, x) that may grow exponentially as |x| → ∞,
and this seriously complicates the process of computing the long-time asymptotics, even if U solves a
simple equation.

A beautiful application of the Cole-Hopf transformation is the derivation of the representation formula
(1.5) for bounded entire solutions of (5.1). By Oleinik’s inequality (2.2), any entire solution u of (5.1)
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necessarily satisfies ∂xu(t, x) ≤ 0 for all (t, x) ∈ R× R. If we assume in addition that u is bounded, the
limits α, β ∈ R defined by

α = lim
x→+∞

u(t, x) , β = lim
x→−∞

u(t, x) , (5.3)

are therefore finite, and independent of time (the last property follows from Lemma 3.1 and translation
invariance.) We then have the following result:

Proposition 5.1. [15] If u : R × R → R is a bounded entire solution of Burgers’ equation (5.1), there
exists a unique probability measure µ supported on [α, β], where α, β are the limits defined in (5.3), such
that

u(t, x) =

∫

z e−zx/2+z2t/4 dµ(z)
∫

e−zx/2+z2t/4 dµ(z)
, t ∈ R , x ∈ R . (5.4)

The proof of Proposition 5.1 uses a representation of positive, ancient solutions of the heat equation
of the form U(t, x) =

∫

e−zx/2+z2t/4 dµ(z), which substituted into (5.2) immediately gives (5.4). The
formula (5.4) appears implicitly in the work of Kenig and Merle [16], and explicitly in the PhD thesis of
U. P. Karunathilake [15]. Since the latter reference is not widely available, we reproduce the proof here
and establish the uniqueness of the measure µ, which is not asserted in [15].

Remark 5.2. When restricted to the time interval (−∞, T ), for some T ∈ R, the representation formula
(5.4) remains valid for ancient solutions u : (−∞, T )× R → R that are not necessarily bounded. In that
situation µ is just a positive measure, supported on the closure of the range of u, which may have finite or
infinite mass (in the latter case it cannot be normalized, and no uniqueness is claimed). In what follows
we focus on bounded entire solutions, due to their connection with ω-limit sets, but we allow ourselves
occasional comments on the general case.

We now turn to the proof of Proposition 5.1, then study some examples of measures in Section 5.2 and
conclude with an analysis of (5.4) for t→ −∞ in Section 5.3.

5.1 Representation of ancient solutions

Assume that u : Ω− → R is a smooth solution of Burgers’ equation (5.1) on the space-time domain
Ω− :=

{

(t, x) ∈ R
2 ; t < 0

}

. Our goal is to obtain a representation formula for u in terms of a positive
measure on the real line. We proceed in three steps.

Step 1 : Cole-Hopf transformation [3, 13]. We first define

U(t, x) = exp
(

−1

2

∫ x

0

u(t, y) dy + a(t)
)

, ∀ (t, x) ∈ Ω− , (5.5)

where

a(t) =

∫ t

t0

(1

4
u(s, 0)2 − 1

2
∂xu(s, 0)

)

ds , ∀ t < 0 .

Here t0 < 0 is some arbitrary reference time. A direct calculation shows that

∂tU(t, x) = U(t, x)
(

−1

2
∂xu(t, x) +

1

4
u(t, x)2

)

= ∂2xU(t, x) , ∀ (t, x) ∈ Ω− .

Our solution u of Burgers’ equation can therefore be expressed as

u(t, x) =
−2∂xU(t, x)

U(t, x)
, ∀ (t, x) ∈ Ω− , (5.6)

where U : Ω− → (0,+∞) is a positive solution of the heat equation ∂tU = ∂2xU .

Step 2 : Appell transformation [1,30]. We next transform the ancient solution U(t, x) of the heat equation
into a solution V (t, x) of the same equation which is defined for positive times, namely on the space-time

10



domain Ω+ :=
{

(t, x) ∈ R
2 ; t > 0

}

. This remarkable transformation, first discovered by P. Appell, takes
the form

V (t, x) = K(t, x)U
(−1

t
,
−x
t

)

, ∀ (t, x) ∈ Ω+ , (5.7)

where K(t, x) is the fundamental solution of the one-dimensional heat equation :

K(t, x) =
e−x2/(4t)

√
4πt

, ∀ (t, x) ∈ Ω+ . (5.8)

A simple calculation shows that ∂tV (t, x) = ∂2xV (t, x) for all (t, x) ∈ Ω+, and by construction V (t, x) is
strictly positive on the domain Ω+.

Step 3 : Poisson representation [29]. A classical result due to Widder [29, Theorem 6] asserts that,
if V (t, x) is a nonnegative solution of the heat equation in Ω+, there exists a (unique) positive Borel
measure µ on R such that

V (t, x) =

∫

R

K(t, x− z) dµ(z) , ∀ (t, x) ∈ Ω+ . (5.9)

It should be emphasized at this point that the convergence of the integral in (5.9) is part of the conclusion
of Widder’s theorem. In particular, the measure µ(I) of any compact interval I ⊂ R should be finite,
which implies that µ is a regular measure [24, Theorem 2.18]. In addition µ should have a “moderate
growth” at infinity so that the integral in (5.9) is finite even when t > 0 is large. For instance, if

dµ = ecz
2/4 dz for some c > 0, the right-hand side of (5.9) is infinite when t ≥ 1/c, which contradicts the

assumption that V is defined on the whole domain Ω+.

Remark 5.3. The assumption that V is nonnegative is crucial in Widder’s theorem. For instance the
function V (t, x) = (x/t)K(t, x) is a (sign-changing) solution of the heat equation in Ω+ which converges
to zero as t→ 0+ for any x ∈ R. As is easily verified, in that case one cannot find any measure µ on R

such that (5.9) holds.

We now return to the ancient solution of Burgers’ equation. Combining (5.7) and (5.9) we first obtain

U(t, x) =
V (−1/t, x/t)

K(−1/t, x/t)
=

1

K(−1/t, x/t)

∫

R

K
(−1

t
,
x

t
− z

)

dµ(z) ,

for all (t, x) ∈ Ω−. The right-hand side can be simplified using the explicit expression (5.8) of the heat
kernel, leading to the following representation formula for ancient positive solutions of the heat equation :

U(t, x) =

∫

R

e−zx/2+z2t/4 dµ(z) , ∀ (t, x) ∈ Ω− , (5.10)

see also [30, Theorem 8.1]. Finally, we deduce from (5.6) the desired representation of ancient solutions
to Burgers’ equation :

u(t, x) =

∫

z e−zx/2+z2t/4 dµ(z)
∫

e−zx/2+z2t/4 dµ(z)
, ∀ (t, x) ∈ Ω− . (5.11)

Conversely, if µ is a positive measure on R that is finite on compact intervals and has moderate growth
at infinity, it is straightforward to verify that the function u defined by (5.11) is an ancient solution of
Burgers’ equation (5.1). For any (t, x) ∈ Ω−, the quantity u(t, x) can be interpreted as the average of

a random variable z ∈ R with respect to the (non-normalized) measure e−zx/2+z2t/4 dµ(z). Introducing
the obvious notation u(t, x) = 〈z〉t,x, we find by direct calculation

∂xu(t, x) = −1

2

(

〈z2〉t,x − 〈z〉2t,x
)

= −1

2

〈

(

z − 〈z〉t,x
)2
〉

t,x
≤ 0 .

This shows that all solutions of the form (5.11) are non-increasing in x, which is also a direct consequence
of Oleinik’s inequality (2.2). Actually, we have ∂xu(t, x) < 0 for all x ∈ R unless the measure µ = δα is a
single Dirac mass, in which case u(t, x) = α for all (t, x) ∈ Ω−.
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Example 5.4. The simple example where µ is just the Lebesgue measure on R is already quite instructive.
In that case, it is clear from (5.9) that V ≡ 1 on Ω+, and we deduce from (5.7), (5.6) that

U(t, x) =
1

K(−1/t, x/t)
=

√
4π√−t e

−x2/(4t) , u(t, x) =
x

t
, ∀ (t, x) ∈ Ω− .

We observe that the ancient solution U(t, x) of the heat equation blows up as t→ 0− at any point x ∈ R,
and that the ancient solution u(t, x) of Burgers’ equation does so for any x 6= 0.

The blow-up phenomenon observed in Example 5.4 only occurs for unbounded solutions. Indeed, by
the maximum principle, bounded ancient solutions of either the heat equation or the Burgers equation
remain uniformly bounded at later times, and can therefore be extended to (bounded) entire solutions.
In what follows, we concentrate on bounded ancient solutions, which are candidates for trajectories in
ω-limit sets of bounded initial data. We have the following characterization:

Proposition 5.5. The ancient solution u : Ω− → R of Burgers’ equation given by (5.11) is bounded if
and only if the measure µ has bounded support. In that case u satisfies (5.3) for all t < 0, with

α = inf
(

supp(µ)
)

, β = sup
(

supp(µ)
)

. (5.12)

Proof. Let µ be a (nontrivial) positive measure on R that is finite on compact intervals and has moderate
growth at infinity. We define α, β by (5.12), so that α ∈ [−∞,+∞) and β ∈ (−∞,+∞]. We shall show
that, for any fixed t < 0, the quantity u(t, x) defined by (5.11) converges to β as x → −∞, and to α as
x → +∞. We concentrate on the limit at −∞, the other case being similar. Setting x = −2y, where
y > 0, we have the representation

u(t,−2y) =

∫

z ezy dνt(z)
∫

ezy dνt(z)
, where dνt(z) = ez

2t/4 dµ(z) .

Given real numbers a, b such that a < b < β, we decompose

∫

R

ezy dνt(z) =

∫

{z<a}

ezy dνt(z) +

∫

{z≥a}

ezy dνt(z) =: I0(y) + J0(y) ,

and we observe that

I0(y) ≤ eay
∫

{z<a}

dνt(z) , J0(y) ≥
∫

{z≥b}

ezy dνt(z) ≥ eby
∫

{z≥b}

dνt(z) .

Since b < β, the last integral is strictly positive, and we deduce that I0(y)/J0(y) → 0 as y → +∞. A
similar argument gives

∫

R

z ezy dνt(z) =

∫

{z<a}

z ezy dνt(z) +

∫

{z≥a}

z ezy dνt(z) =: I1(y) + J1(y) ,

where |I1(y)|/J0(y) → 0 as y → +∞. It follows that

lim
y→+∞

u(t,−2y) = lim
y→+∞

I1(y) + J1(y)

I0(y) + J0(y)
= lim

y→+∞

∫

{z≥a} z e
zy dνt(z)

∫

{z≥a} e
zy dνt(z)

≥ a .

Since this is true for any a < β, we deduce that ℓ−(t) := limx→−∞ u(t, x) ≥ β. This means that the
solution u(t, ·) is unbounded from above if β = +∞. In the converse case, we must have ℓ−(t) = β,
because it easily follows from (5.11) that u(t, x) ≤ β for all (t, x) ∈ Ω−. A symmetric argument shows
that u(t, ·) is bounded from below if and only if α > −∞, in which case ℓ+(t) := limx→+∞ u(t, x) = α
for all t < 0.

It is now straightforward to conclude the proof of Proposition 5.1. If u is a bounded entire solution
of (5.1), then u is a fortiori a bounded ancient solution on Ω−, and can therefore be represented as
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in (5.11) for some positive Borel measure µ that is finite on compact intervals. By Proposition 5.5 we
know that supp(µ) ⊂ [α, β], where α, β ∈ R are the spatial limits defined in (5.3). In particular µ is a
finite measure, which can be normalized into a probability measure without affecting the representation
(5.11). We conclude that (5.4) holds for all t < 0, hence for all t ∈ R because both members are bounded
solutions of Burgers’ equation which coincide on the space-time domain Ω−.

It remains to verify that the representation (5.4) is unique. Assume that µ1, µ2 are two probability
measures on [α, β] such that (5.4) holds. Defining

U1(t, x) =

∫

R

e−zx/2+z2t/4 dµ1(z) , U2(t, x) =

∫

R

e−zx/2+z2t/4 dµ2(z) , (5.13)

we see that U1, U2 are positive solutions of the heat equation such that (∂xU1)/U1 = (∂xU2)/U2 for all
(t, x) ∈ R×R. This means that the ratio r(t) := U1(t, x)/U2(t, x) does not depend on the space variable
x. Setting t = 0 in (5.13) we deduce that

∫

R

e−zx/2 dµ1(z) = r(0)

∫

R

e−zx/2 dµ2(z) , for all x ∈ R ,

which implies that µ1 = r(0)µ2 since the Laplace transform is one-to-one. Finally, as µ1, µ2 are both
probability measures, we conclude that µ1 = µ2. �

5.2 Examples: shocks, mergers, and continuous shock superposition

In this section we examine some examples of bounded entire solutions corresponding to simple choices for
the measure µ in (5.4). As a preliminary remark, we recall that Burgers’ equation (5.1) is invariant under
several continuous symmetries : translations in space and time, Galilean transformations, and parabolic
scaling. It is instructive to observe, in the case of bounded entire solutions, how the symmetry group acts
on the (not necessarily normalized) measure µ. From the representation formula (5.4) we easily obtain
the following group actions, where x0, t0, c ∈ R and λ > 0 :

a) Translation in space : u(t, x) 7→ u(t, x− x0), dµ(z) 7→ ezx0/2 dµ(z);

b) Translation in time : u(t, x) 7→ u(t+ t0, x), dµ(z) 7→ ez
2t0/4 dµ(z);

c) Galilean transformation : u(t, x) 7→ u(t, x− ct) + c, dµ(z) 7→ dµ(z − c);

d) Parabolic scaling : u(t, x) 7→ λu(λ2t, λx), dµ(z) 7→ dµ(z/λ).

We now analyze several special cases of measures µ. Illustrations of the corresponding entire solutions
can be found in Figure 1. The simplest possible example of a bounded entire solution corresponds to
µ = δα being a Dirac mass located at some point α ∈ R. In that case we clearly have u(t, x) = α for all
(t, x) ∈ R × R. A more interesting situation is obtained when µ = 1

2δα + 1
2δβ for some α < β. A direct

calculation then shows that u(t, x) = φβ,α(x − ct), where φβ,α is the viscous shock profile given by

φβ,α(y) = c− δ tanh
(δy

2

)

, c =
α+ β

2
, δ =

β − α

2
. (5.14)

As soon as µ contains more than two Dirac masses, the solution u(t, x) given by (5.4) describes the merger
of several viscous shocks into a single one. A typical example is µ = 1

4δ−2 +
1
2δ0 +

1
4δ2 for which

u(t, x) =
−2 sinh(x)

e−t + cosh(x)
, t ∈ R , x ∈ R . (5.15)

It is clear that u(t, x) ≈ φ2,−2(x) as t→ +∞, whereas for large negative times a direct calculation shows
that u(t, x) ≈ φ2,0(x− t+ x0) +φ0,−2(x+ t− x0) with x0 := log(2). Thus the solution (5.15) realizes the
merger of a pair of traveling viscous shocks into a single steady shock. Mergers of more than two shocks
can be described in a similar fashion.

We next consider examples where the measure µ has an absolutely continuous component. In analogy
to finitely many Dirac masses describing discrete superpositions of shocks and subsequent mergers, a

13
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Figure 1: Space-time plots of entire solutions and sample plots below at times t = −20 (blue) and t = −10 (red)

for measures as indicated. Lebesgue’s measure is denoted by µL.

continuous measure µ can be thought of as representing a continuous superposition of shocks with con-
tinuous merger events. Such an interpretation is reminiscent of Hamel and Nadirashvili’s characterization
of entire solutions to the Fisher-KPP equation in R

N , see [9].

The prototypical example of an absolutely continuous measure µ is the Lebesgue measure on the interval
[−1, 1], which was considered in [15,16]. In that case, the entire solution (5.10) of the heat equation takes
the simple form

U(t, x) =

∫ 1

−1

e−zx/2+z2t/4 dz , (t, x) ∈ R
2 , (5.16)
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so that U(0, x) = (4/x) sinh(x/2). When t 6= 0, we obtain after integrating by parts

−2∂xU(t, x) =
x

t

∫ 1

−1

e−zx/2+z2t/4 dz +

∫ 1

−1

(

z − x

t

)

e−zx/2+z2t/4 dz

=
x

t
U(t, x) +

2

t
et/4

(

e−x/2 − ex/2
)

,

so that the entire solution (5.6) of Burgers’ equation has the following expression :

u(t, x) =
−2∂xU(t, x)

U(t, x)
=

x

t
− 4

t

et/4 sinh(x/2)

U(t, x)
, t 6= 0 , x ∈ R . (5.17)

It remains to obtain a more explicit formula for U(t, x). When t < 0 a direct calculation shows that

U(t, x) =
2

√

|t|
e−x2/(4t)

{

E

(

√

|t|
2

+
x

2
√

|t|

)

+ E

(

√

|t|
2

− x

2
√

|t|

)}

, (t, x) ∈ Ω− , (5.18)

where E(x) =
∫ x

0 e
−y2

dy is the (non-normalized) error function. Using (5.17), (5.18), it is not difficult
to verify that

lim
t→−∞

u(t, x+ ct) =







1 if c > 1 ,
c if |c| ≤ 1 ,
−1 if c < −1 ,

the convergence being uniform for |x| ≤ L(t) provided L(t)/|t| → 0 as t → −∞. This is of course in full
agreement with Propositions 1.2 and 1.3. For positive times, the analogue of (5.18) is

U(t, x) =
2√
t
et/4

{

ex/2D

(
√
t

2
+

x

2
√
t

)

+ e−x/2D

(
√
t

2
− x

2
√
t

)}

, (t, x) ∈ Ω+ , (5.19)

where D : R → R is the Dawson function

D(x) = e−x2

∫ x

0

ey
2

dy =

{

x− 2x3

3 +O(|x|5) as x→ 0 ,
1
2x + 1

4x3 +O(|x|−5) as |x| → ∞ .

It easily follows from (5.17) and (5.19) that u(t, x) → − tanh(x/2) as t → +∞, in agreement with
Proposition 4.1.

We next investigate how the solution is modified if the measure µ contains in addition a Dirac mass.
Assume for instance that µ0 = µ+ δ0, where µ is again the Lebesgue measure on [−1, 1], and let u0(t, x)
be the entire solution of (5.1) associated with the measure µ0. The same calculations as before show that

u0(t, x) =
x

t

U(t, x)

1 + U(t, x)
− 4

t

et/4 sinh(x/2)

1 + U(t, x)
, (t, x) ∈ R

2 , (5.20)

where U(t, x) is given by (5.16). As is easily verified, the asymptotic behavior as t → +∞ is unchanged.
However, the presence of a Dirac mass at the origin can be detected by looking at the solution for large
negative times. Indeed, a direct calculation reveals that, for all x ∈ R,

lim
t→−∞

√

|t|u0
(

t, x
√

|t|
)

= 0 , whereas lim
t→−∞

√

|t|u
(

t, x
√

|t|
)

= −x . (5.21)

Finally, we consider the measure µ1 = µ+ δ1, which includes a Dirac mass at z = 1, and we investigate
the asymptotic behavior of the corresponding solution u1(t, x) as t→ +∞. It is clear that

u1(t, x) =
−2∂xU1(t, x)

U1(t, x)
, where U1(t, x) = U(t, x) + e−x/2+t/4 .

Using the expression (5.19) and the asymptotic behavior of the Dawson function at infinity, we find

e−t/4 U1(t, x) = e−x/2

{

1 +
2√
t
D

(
√
t

2
− x

2
√
t

)}

+ ex/2
2√
t
D

(
√
t

2
+

x

2
√
t

)

= e−x/2
(

1 +
2

t
+O(t−2)

)

+ ex/2
(2

t
+O(t−2)

)

, t→ +∞ .

Defining x̄(t) = log(1 + t/2), we see that
√
t e−t/4U1(t, x + x̄(t)) → 2

√
2 cosh(x/2) as t → +∞, and we

conclude that u1(t, x+ x̄(t)) → − tanh(x/2) as t→ +∞. In other words, the presence of a Dirac mass at
z = 1 is responsible for a logarithmic shift in the position of the viscous shock, as discussed in Remark 4.2.
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5.3 Asymptotic analysis of entire solutions as t → −∞
The properties of the measure µ in (5.4) are reflected in the asymptotic behavior of the entire solution
u(t, x) in the ancient limit t→ −∞. Some results in this direction were already stated in Propositions 1.2
and 1.3, and illustrated by the examples considered in the previous section. Our goal here is to perform
a more systematic study of the ancient limit for entire solutions of (5.1). Our main results are Propo-
sitions 5.6 and 5.8 below, which immediately imply the statements given in the introduction, and also
extend the results obtained in [15, Section 7].

To gain a first intuitive understanding, we consider the entire solution (5.4) in a Galilean frame moving
with speed c ∈ R. In the spirit of Appel’s transformation (5.7), we also introduce the inverse time
τ = −1/t, so that the ancient limit t → −∞ becomes a standard short time limit in the new variable τ .
A simple calculation shows that

u(t, x+ ct) =

∫

ze−zx/2+(z−c)2t/4 dµ(z)
∫

e−zx/2+(z−c)2t/4 dµ(z)
=

∫

K(τ, c− z) z e−zx/2 dµ(z)
∫

K(τ, c− z) e−zx/2 dµ(z)
, (5.22)

where K(t, x) is the heat kernel (5.8). We investigate the behavior of (5.22) in the limit τ → 0+, for a
fixed x ∈ R (for simplicity, we assume here that x = 0). The denominator in the right-hand side of (5.22)
is exactly the solution at time τ > 0 of the heat equation with initial data µ, evaluated at point c ∈ R.
When τ is small, this quantity is an average of the measure µ in a small neighborhood of the point c.
The numerator has a similar interpretation, except that the initial measure is now z dµ(z).

These observations strongly suggest that u(t, ct) should converge to c as t→ −∞, whenever c belongs
to the support of the measure µ. If c /∈ supp(µ), we expect that the ancient limit of u(t, ct) will depend
on the behavior of the measure near the point in supp(µ) that is closest to c. The results established
below show that these heuristic considerations are indeed correct.

In what follows, we always assume that µ is probability measure supported in a bounded interval of R,
and we denote by u(t, x) the bounded entire solution of (5.1) given by (5.4). We first consider the case
where c ∈ supp(µ).

Proposition 5.6. If c ∈ supp(µ), the entire solution of (5.1) defined by (5.4) satisfies

sup
|x|≤L(t)

∣

∣u(t, x+ ct)− c
∣

∣ −−−−→
t→−∞

0 , (5.23)

where L : R− → R+ is any function such that L(t)/|t| → 0 as t→ −∞.

Proof. By Galilean invariance, it is sufficient to prove (5.23) in the particular case where c = 0. We
proceed as in the proof of Proposition 5.5. Given ε > 0 we observe that

u(t, x) =
I1(t, x) + J1(t, x)

I0(t, x) + J0(t, x)
, t ∈ R , x ∈ R , (5.24)

where for k ∈ {0, 1} we denote

Ik(t, x) =

∫

{|z|>ε}

zk e−zx/2+z2t/4 dµ(z) , Jk(t, x) =

∫

{|z|≤ε}

zk e−zx/2+z2t/4 dµ(z) .

Assuming that |x| ≤ L and recalling that t < 0, we observe that −zx/2 + z2t/4 ≤ −L2/t+ z2t/6, hence

Ik(t, x) ≤ e−L2/t+ε2t/6

∫

R

|z|k dµ(z) . (5.25)

On the other hand, we obviously have

J0(t, x) ≥
∫

{|z|≤ε/2}

e−zx/2+z2t/4 dµ(z) ≥ e−εL/4+ε2t/16 µ
(

[−ε/2, ε/2]
)

, (5.26)

where µ
(

[−ε/2, ε/2]
)

> 0 since 0 ∈ supp(µ). Taking L = L(t) with L(t) = o(|t|), we deduce from (5.25),
(5.26) that Ik(t, x)/J0(t, x) converges to zero as t → −∞, uniformly for |x| ≤ L(t). If we now return to
(5.24), we conclude that

lim sup
t→−∞

sup
|x|≤L(t)

∣

∣u(t, x)
∣

∣ ≤ lim sup
t→−∞

sup
|x|≤L(t)

|J1(t, x)|
J0(t, x)

≤ ε . (5.27)

16



Since ε > 0 was arbitrary, the left-hand side in (5.27) actually vanishes, which gives (5.23).

Remark 5.7. The assumption that L(t)/|t| → 0 as t→ −∞ is optimal in general. As can be seen from
Example 5.4, where µ is the Lebesgue measure on R, the conclusion (5.23) fails for any c ∈ R if L(t)/|t|
does not converge to zero. However, if the measure µ has an atom at c ∈ R which is an isolated point in
supp(µ), it is easy to verify that (5.23) holds with L(t) = ε|t| for some ε > 0.

The case where c /∈ supp(µ) is more difficult to treat, see [15, Lemma 7.2] for an attempt in this
direction. For simplicity, we formulate our result in the case where c = 0, but as already mentioned this
does not restrict the generality.

Proposition 5.8. Assume that 0 /∈ supp(µ), and define a ∈ [−∞, 0) and b ∈ (0,+∞] by

a := sup
{

c < 0 ; c ∈ supp(µ)
}

, b := inf
{

c > 0 ; c ∈ supp(µ)
}

. (5.28)

i) If a+ b 6= 0 the ancient solution of (5.1) given by (5.4) satisfies

sup
|x|≤L(t)

∣

∣u(t, x)− d
∣

∣ −−−−→
t→−∞

0 , (5.29)

where L(t) is as in (5.23) and d = b if a+ b < 0, d = a if a+ b > 0.

ii) If a+ b = 0 there exists a shift function s : R → R such that s(t)/t→ 0 as t→ −∞ and

sup
|x|≤L(t)

∣

∣u(t, x)− φb,a(x− s(t))
∣

∣ −−−−→
t→−∞

0 , (5.30)

where φb,a denotes the viscous shock connecting the constant states b and a = −b, see (5.14).

Remark 5.9. Since the measure µ in (5.4) is nontrivial, even when the solution u(t, x) vanishes iden-
tically, the quantities a, b defined in (5.28) cannot be infinite simultaneously. It follows that the sum
a+ b ∈ [−∞,∞] is well defined, and so is d ∈ R in case (i). In the other case, both a and b are finite.

Proof. The proof of case (i) uses exactly the same arguments as in Proposition 5.6. Assume for instance
that a+ b < 0, so that b is the point in supp(µ) that is closest to the origin. If t < 0 is large, the leading
contributions in the representation formula (5.4) correspond to the restriction of the measure µ to a small
neighborhood of b. More precisely, given any ε > 0, we find

lim sup
t→−∞

sup
|x|≤L(t)

∣

∣u(t, x)− b
∣

∣ ≤ lim sup
t→−∞

sup
|x|≤L(t)

∫

Nε
|z − b| e−zx/2+z2t/4 dµ(z)
∫

Nε
e−zx/2+z2t/4 dµ(z)

≤ ε ,

where Nε = [b, b + ε] and L(t) is as in (5.23). This gives (5.29) when a + b < 0, and the other case is
treated similarly.

We now concentrate on the case (ii) where a = −b, which requires a more careful analysis because both
intervals N+

ε := [b, b+ε] and N−
ε := [−b−ε,−b] equally contribute to the representation formula (5.4)

when t < 0 is large. Denoting

vε(t, x) =
I+1 (t, x) + I−1 (t, x)

I+0 (t, x) + I−0 (t, x)
, where I±k (t, x) =

∫

N±
ε

zk e−zx/2+z2t/4 dµ(z) ,

we easily find that |u(t, x) − vε(t, x)| converges to zero as t → −∞ uniformly for |x| ≤ L(t), provided
L(t)/|t| → 0 as t→ −∞. So it remains to determine the behavior of vε(t, x) for large negative times.

For this purpose we first observe that

∣

∣I+1 (t, x)− bI+0 (t, x)
∣

∣ ≤ εI+0 (t, x) ,
∣

∣I−1 (t, x) + bI−0 (t, x)
∣

∣ ≤ εI−0 (t, x) ,

so that |vε(t, x)− wε(t, x)| ≤ ε where

wε(t, x) := b
I+0 (t, x) − I−0 (t, x)

I+0 (t, x) + I−0 (t, x)
, t ∈ R , x ∈ R . (5.31)
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Using the change of variables z = ±(b+ y) we can write

I+0 (t, x) = eb
2t/4 e−bx/2J+

ε (t, x) , J+
ε (t, x) :=

∫

[0,ε]

e−xy/2 et(by/2+y2/4) dν+(y) ,

I−0 (t, x) = eb
2t/4 ebx/2J−

ε (t, x) , J−
ε (t, x) :=

∫

[0,ε]

exy/2 et(by/2+y2/4) dν−(y) ,

(5.32)

where ν± are positive measures on [0, ε] with 0 ∈ supp(ν±). If we substitute (5.32) in (5.31) we obtain
the nicer expression

wε(t, x) = −b tanh
( b

2

(

x− Sε(t, x)
)

)

, where Sε(t, x) =
1

b
log

J+
ε (t, x)

J−
ε (t, x)

. (5.33)

Summarizing the results obtained so far, we have shown that, given any ε > 0,

lim sup
t→−∞

sup
|x|≤L(t)

∣

∣u(t, x)− φ
(

x− Sε(t, x)
)∣

∣ ≤ ε , (5.34)

where φ = φb,a is the viscous shock (5.14) connecting the states b and a = −b. The bound (5.34) holds
provided L(t)/|t| → 0 as t → −∞.

To go further, we need properties of the shift function Sε(t, x) that are established in Section A.4.

Lemma 5.10. The shift function Sε defined in (5.33) satisfies the uniform bounds

|∂xSε(t, x)| ≤
ε

b
, |∂tSε(t, x)| ≤

(

ε+
ε2

2b

)

, t ∈ R , x ∈ R . (5.35)

Moreover Sε is independent of the parameter ε in the ancient limit, in the sense that

lim
t→−∞

sup
|x|≤L(t)

∣

∣Sε(t, x)− Sε′(t, x)
∣

∣ = 0 , if 0 < ε′ < ε , (5.36)

provided L(t)/|t| → 0 as t→ −∞.

In the rest of the proof, we assume without loss of generality that 0 < ε < b. For any t ∈ R, we denote
by sε(t) the unique real number satisfying

sε(t) = Sε(t, sε(t)) . (5.37)

Note that |∂xS(t, x)| ≤ ε/b < 1 by (5.35), so that the equation x = Sε(t, x) for x ∈ R has indeed a unique
solution. The following properties of sε will also be established in Section A.4.

Lemma 5.11. If 0 < ε < b the function sε : R → R defined by (5.37) satisfies

lim
t→−∞

sε(t)

t
= 0 , and lim

t→−∞

∣

∣sε(t)− sε′(t)
∣

∣ = 0 for all ε′ ∈ (0, ε) . (5.38)

Equipped with Lemmas 5.10 and 5.11, we now conclude the proof of Proposition 5.8. For t < 0 large
enough and |x| ≤ L(t), we want to estimate the quantity

∣

∣u(t, x)− φ(x− sε(t))
∣

∣ ≤
∣

∣u(t, x)− φ
(

x− Sε(t, x)
)
∣

∣+
∣

∣φ
(

x− Sε(t, x)
)

− φ
(

x− sε(t)
)
∣

∣ . (5.39)

The first term in the right-hand side is controlled using (5.34). To bound the second one, we consider
three different regions:

1) When |x− sε(t)| ≤ ε−1/2, we have
∣

∣φ
(

x− Sε(t, x)
)

− φ
(

x− sε(t)
)∣

∣ ≤ ‖φ′‖L∞

∣

∣Sε(t, x)− Sε(t, sε(t))
∣

∣

≤ ‖φ′‖L∞

ε

b
|x− sε(t)| ≤

bε1/2

2
,

because ‖φ′‖L∞ = b2/2 and |∂xSε| ≤ ε/b by (5.35).
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2) When x− sε(t) ≥ ε−1/2, the triangle inequality implies that

x− Sε(t, x) ≥ x− sε(t)− |Sε(t, x)− Sε(t, sε(t))| ≥ x− sε(t)−
ε

b

(

x− sε(t)
)

,

so that x− Sε(t, x) ≥ ε−1/2(1− ε/b). It follows that

∣

∣φ
(

x− Sε(t, x)
)

− φ
(

x− sε(t)
)∣

∣ ≤
∣

∣φ
(

x− Sε(t, x)
)

+ b
∣

∣+
∣

∣φ
(

x− sε(t)
)

+ b
∣

∣ = O
(

e−bε−1/2)

,

because φ(y) + b = b
(

1− tanh(by/2)
)

∼ 2b e−by as y → +∞.

3) The same bound holds when x− sε(t) ≤ −ε−1/2, and is established by a similar argument.

Summarizing, we have shown that there exists a constant C > 0 such that

sup
x∈R

∣

∣φ
(

x− Sε(t, x)
)

− φ
(

x− sε(t)
)∣

∣ ≤ Cε1/2 , if 0 < ε < b . (5.40)

If we now combine (5.34), (5.39), and (5.40), we arrive at

lim sup
t→−∞

sup
|x|≤L(t)

∣

∣u(t, x)− φ
(

x− sε(t)
)
∣

∣ ≤ ε+ Cε1/2 . (5.41)

In fact, since |u(t, x) − φ
(

x − sε(t)
)

| ≤ |u(t, x) − φ
(

x − sε′(t)
)

| + ‖φ′‖L∞|sε(t) − sε′(t)|, it follows from
(5.38), (5.41) that

lim sup
t→−∞

sup
|x|≤L(t)

∣

∣u(t, x)− φ
(

x− sε(t)
)∣

∣ ≤ ε′ + C(ε′)1/2 , for any ε′ ∈ (0, ε) , (5.42)

where the constant C does not depend on ε′. Thus, taking the limit ε′ → 0 in (5.42), we arrive at (5.30)
with s(t) = sε(t).

In view of Galilean invariance, Proposition 1.3 is simply a reformulation of case (i) in Proposition 5.8.
In case (ii), the solution u(t, x) converges to a translate of the viscous shock φb,−b if the shift function
s(t) has a finite limit as t → −∞, or to the constant state ±b if s(t) → ±∞. A priori it is also possible
that u(t, x) does not converge at all, if s(t) has an oscillatory behavior, but we do not have any explicit
example of this phenomenon. In any case u(t, x) cannot converge to zero in L∞

loc(R), because this would
contradict either (5.29) of (5.30). So we see that Propositions 5.6 and 5.8 together imply Proposition 1.2.

Remark 5.12. It is also possible to detect the presence of atoms in the measure µ by using a different
scaling in the ancient limit. Assume for instance that 0 ∈ supp(µ). For any x ∈ R, the representation
formula (5.4) can be written in the form

|t|1/2u(t, x|t|1/2) =

∫

|t|1/2z e−zx|t|1/2/2+z2t/4 dµ(z)
∫

e−zx|t|1/2/2+z2t/4 dµ(z)
, t < 0 , x ∈ R . (5.43)

By Lebesgue’s dominated convergence theorem, the numerator in the right-hand side vanishes in the
ancient limit t → −∞, whereas the denominator converges to µ({0}). So, if the measure µ has an atom
at the origin, we deduce that |t|1/2u(t, x|t|1/2) converges to zero in L∞

loc(R) as t → −∞. Now, assume
on the contrary that dµ(z) = f(z) dz near the origin, where the density f is continuous and satisfies
f(0) > 0. Using the change of variable z = y|t|−1/2, we can transform (5.43) into

|t|1/2u(t, x|t|1/2) = −x+

∫

(y + x) e−(y+x)2/4f(y|t|−1/2) dy
∫

e−(y+x)2/4f(y|t|−1/2) dy
, t < 0 , x ∈ R . (5.44)

Applying Lebesgue’s theorem again, we see that |t|1/2u(t, x|t|1/2) converges to −x in L∞
loc(R) as t→ −∞.

This explains the observations made in (5.21).
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6 Long-time asymptotics beyond shocks

Equipped with the representation formula (5.4), we now return to the discussion of ω-limit sets, focusing
our attention to the particular case of Burgers’ equation. If u0 ∈ L∞(R), we know from Proposition 3.3
that ω(u0) is bounded and fully invariant under the evolution semigroup (St)t≥0 defined by (5.1). This
implies that any φ ∈ ω(u0) is the evaluation at time t = 0 of some bounded entire solution of (5.1).
Applying Proposition 5.1, we thus find:

Corollary 6.1. For any φ ∈ ω(u0), where ω(u0) is the ω-limit set (1.3) corresponding to Burgers’
equation, there exists a unique probability measure µ on R such that

φ(x) =

∫

z e−zx/2 dµ(z)
∫

e−zx/2 dµ(z)
, x ∈ R . (6.1)

This result means that, at least for Burgers’ equation, the ω-limit set of any solution of (5.1) with
values in some interval [α, β] can be identified with a subset of all probability measures supported on
that interval. This does not imply, however, that any probability measure on [α, β] can be realized in
this way. To make the discussion more precise, let us denote

Σ :=
⋃

β≥α

⋃

y∈R

{

Ty φβ,α
}

, (6.2)

where Ty is the translation operator and φβ,α is given by (5.14). In other words Σ is the collection
of all translates of all viscous shocks, including the constants. Any φ ∈ Σ corresponds, via (6.1), to a
probability measure µ that is a convex combination of at most two Dirac masses.

We know from Proposition 4.1 that ω(u0) ⊂ Σ whenever u0 ∈ L∞(R) is monotonically decreasing. On
the other hand, Oleinik’s inequality (2.2) indicates that all solutions of (5.1) are “eventually decreasing”
when t → +∞. Combining these observations, it is rather tempting to conjecture that ω(u0) ⊂ Σ for
any u0 ∈ L∞(R). Our last result provides an example that contradicts this hasty conclusion. To make a
precise statement we introduce for any γ > 0 the function Ψγ : R → R defined by

Ψγ(x) =
−2 sinh(x)

γ + cosh(x)
, x ∈ R . (6.3)

Note that Ψγ(x) is just the evaluation at time t = log(1/γ) of the two-shock solution (5.15).

Proposition 6.2. There exist initial data u0 ∈ L∞(R) for Burgers’ equation such that

ω0(u0) ⊃
{

Ψγ ; γ > 0
}

∪
{

φδ,−δ ; δ ∈ [0, 2]
}

, (6.4)

where ω0(u0) is the ω-limit set (1.2). In particular ω0(u0) 6⊂ Σ.

In other words, Proposition 6.2 gives an example of bounded initial data u0 such that even the “small”
ω-limit set ω0(u0) contains the two-shock solution (5.15), in addition to a continuum of steady shocks.
More generally we conjecture that, for any probability measure µ on the interval [α, β], there exist initial
data u0 ∈ L∞(R) satisfying (2.1) such that the ω-limit set ω(u0) contains the function φ defined by (6.1).
We believe that this (nontrivial) extension of Proposition 6.2 can be obtained following the same lines of
thought as in Section 6.1 below. This question is left for future work.

Examples of ω-limit sets with complicated structure were also constructed for reaction-diffusion equa-
tions on the real line, see e.g. [4,20,21]. In those examples, nonstationary solutions appear in the ω-limit
set as a result of a coarsening dynamics. The same idea is exploited here in our proof of Proposition 6.2,
but the result is in some sense more surprising because it is not clear a priori if something like a coarsening
dynamics is compatible with the constraints imposed by Oleinik’s inequality (2.2).

Remark 6.3. In the spirit of the work of Slijepčević and the first author, one may ask if, for general
initial data (including those considered in Proposition 6.2), the solution u(t) = Stu0 approaches locally
uniformly the set Σ at least for “almost all times”, in the precise sense considered in [8]. We hope to
address that interesting question in a near future.
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6.1 Shock mergers in the ω-limit set

In this section, we construct bounded initial data for Burgers’ equation (5.1) such that the corresponding
solution exhibits mergers of viscous shocks at the origin for an infinite sequence of times. The construction
is based on the Cole-Hopf representation formula (5.6).

Definition 6.4. For any m ≥ 0, let Vm(t, x) be the solution of the linear heat equation ∂tVm = ∂2xVm
with initial data

Vm(0, x) =

{

cosh(x) if |x| ≤ m,

cosh(m) if |x| > m .
(6.5)

Since et cosh(x) is an exact solution of the heat equation, the parabolic maximum principle implies
that 1 ≤ Vm(t, x) ≤ max

(

cosh(m), et cosh(x)
)

for all t ≥ 0 and all x ∈ R. The following two lemmas give
more precise estimates on the function Vm and its derivative.

Lemma 6.5. For any t > 0 and any x ∈ R the following estimates hold :

cosh(m)
(

1− m√
πt

)

≤ Vm(t, x) ≤ cosh(m) ,
∣

∣∂xVm(t, x)
∣

∣ ≤ m cosh(m)√
4π t

. (6.6)

Proof. Let Wm(t, x) = cosh(m)− Vm(t, x). Then Wm(t, x) satisfies the heat equation on R, so that

Wm(t, x) =
1√
4πt

∫ m

−m

e−(x−y)2/(4t)
(

cosh(m)− cosh(y)
)

dy , (t, x) ∈ Ω+ . (6.7)

It is clear from this representation that

0 ≤ Wm(t, x) ≤ 1√
4πt

∫ m

−m

cosh(m) dy =
m cosh(m)√

πt
,

which gives the first two inequalities in (6.6). Similarly, differentiating (6.7), we find

|∂xWm(t, x)| ≤ 1√
4πt

∫ m

−m

|x− y|
2t

e−(x−y)2/(4t) cosh(m) dy ≤ m cosh(m)√
4π t

,

where we used the fact that z e−z2 ≤ 1/2 for all z ≥ 0. This concludes the proof of (6.6).

Estimates (6.6) provide a good approximation of the solution Vm(t, x) for large times. The short time
behavior near the origin is described by the following result.

Lemma 6.6. Assume that t > 0 and |x|+ 2t ≤ m/2. Then

et cosh(x)
(

1− e−m2/(16t)
)

≤ Vm(t, x) ≤ et cosh(x) ,
∣

∣∂xVm(t, x)− et sinh(x)
∣

∣ ≤ e−m2/(16t) et cosh(x) .
(6.8)

Proof. Let W̃m(t, x) = et cosh(x) − Vm(t, x). Then W̃m(t, x) is again a solution of the heat equation,
hence

W̃m(t, x) =
1√
4πt

∫

|y|≥m

e−(x−y)2/(4t)
(

cosh(y)− cosh(m)
)

dy , (t, x) ∈ Ω+ . (6.9)

Our main goal is to find an upper bound on W̃m(t, x) in the region region where |x| + 2t ≤ m/2. We
observe that 0 ≤ W̃m(t, x) ≤ I+(t, x) + I−(t, x) where

I+(t, x) =
1√
4πt

∫ ∞

m

e−(x−y)2/(4t) ey dy =
1

2
et+x erfc

(m−x−2t

2
√
t

)

,

I−(t, x) =
1√
4πt

∫ −m

−∞

e−(x−y)2/(4t) e−y dy =
1

2
et−x erfc

(m+x−2t

2
√
t

)

,

(6.10)
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where erfc denotes the complementary error function. In the last equalities in (6.10), we used the changes
of variables y = x ± (2t + 2

√
tz) to reduce the integrals to an error function. By assumption, we have

m±x− 2t ≥ m− |x| − 2t ≥ m/2, and it is known that erfc is a decreasing function on R+ which satisfies

erfc(z) ≤ e−z2

for all z ≥ 0. This leads to the upper bound

W̃m(t, x) ≤ et cosh(x) erfc
( m

4
√
t

)

≤ et cosh(x) e−m2/(16t) ,

which proves the first part of (6.8). The second inequality is established by a similar calculation based
on the identity

∂xW̃m(t, x) =
1√
4πt

∫

|y|≥m

e−(x−y)2/(4t) sinh(y) dy , (t, x) ∈ Ω+ .

This concludes the proof of Lemma 6.6.

We now explain our strategy to prove Proposition 6.2. Ifm > 0 is large enough, the solution of Burgers’
equation given by u(t, x) = −2∂xVm(t, x)/(1 + Vm(t, x)) satisfies, by Lemma 6.6,

u(t, x) ≈ −2 sinh(x)

e−t + cosh(x)
, when |x|+ 2t ≤ m/2 ,

whereas u(t, x) ≈ 0 when t ≥ m2 by Lemma 6.5. In other words u(t, x) describes, for relatively small
times, the merger of a pair of viscous shocks at the origin, but in the long time regime u(t, x) actually
converges to zero, uniformly in x on compact intervals. The idea is to construct, by superposition, a
solution of (5.1) which exhibits infinitely many such mergers, along an appropriate sequence of times.

Proof of Proposition 6.2 (first part). Fix N ≥ 10 and let 1 ≤ t1 < t2 < t3 < . . . be a sequence of
times such that

tj+1 ≥ N2t2j for all j ≥ 1 , and
t2j
tj+1

−−−−→
j→+∞

0 . (6.11)

We consider the function U : [0,+∞)× R → (0,+∞) defined by

U(t, x) = 1 +

∞
∑

j=1

e−tj VNtj (t, x) , t ≥ 0 , x ∈ R , (6.12)

where VNtj is given by Definition 6.4 with m = Ntj. Since VNtj (t, x) ≤ et cosh(x), it is clear that the
series in (6.12) converge uniformly on compact sets in space-time, and that U(t, x) is a solution of the
heat equation on R+ × R. We are interested in the corresponding solution u(t, x) of Burgers’ equation,
given by

u(t, x) =
−2∂xU(t, x)

U(t, x)
, t ≥ 0 , x ∈ R . (6.13)

As |∂xVm(0, x)| ≤ Vm(0, x) for all x ∈ R, we have |∂xVm(t, x)| ≤ Vm(t, x) for all t ≥ 0 by the maximum
principle, and it follows that |u(t, x)| ≤ 2, so that u(t, x) is a bounded solution of Burgers’ equation. We
shall show that, for any sufficiently large k ∈ N, this solution exhibits a merger of viscous shocks at the
origin on the time interval [tk, 2tk]. More precisely, we shall prove that

sup
|x|≤tk

∣

∣

∣
u(τk, x) +

2 sinh(x)

1 + cosh(x)

∣

∣

∣
−−−−−→
k→+∞

0 , where τk = tk + (N−1)tk−1 . (6.14)

To establish (6.14), we fix a large k ∈ N, and we assume that t ∈ [tk, 2tk] and |x| ≤ tk. If j ≥ k, we
know from Lemma 6.6 that

et−tj cosh(x)
(

1− e−N2t2j/(16t)
)

≤ e−tj VNtj (t, x) ≤ et−tj cosh(x) , (6.15)

22



because |x|+2t ≤ 5tk ≤ Ntj/2 since N ≥ 10. In view of (6.11), estimate (6.15) shows that, in the space-
time region under consideration, all terms with j ≥ k + 1 can be neglected in the sum (6.12) defining
U(t, x), namely

∞
∑

j=k+1

e−tj VNtj (t, x) ≪ e−tk VNtk(t, x) , uniformly for t ∈ [tk, 2tk] , |x| ≤ tk .

If j < k, we apply Lemma 6.5 and obtain the bound

e−tj cosh(Ntj)
(

1− Ntj√
πt

)

≤ e−tj VNtj (t, x) ≤ e−tj cosh(Ntj) , (6.16)

where the left-hand side is strictly positive since t ≥ tk ≥ N2t2j . Again it follows from (6.11), (6.16) that
the terms with j ≤ k − 2 can be neglected in the sum (6.12), in the sense that

1 +

k−2
∑

j=1

e−tj VNtj (t, x) ≪ e−tk−1 VNtk−1
(t, x) , uniformly for t ∈ [tk, 2tk] , |x| ≤ tk .

Summarizing, we have shown that the function U(t, x) defined by (6.12) satisfies U(t, x) ≈ Uk(t, x)
when t ∈ [tk, 2tk] and |x| ≤ tk, where

Uk(t, x) := e−tk−1 VNtk−1
(t, x) + e−tk VNtk(t, x) ≈ e(N−1)tk−1 + et−tk cosh(x) . (6.17)

More precisely we have

sup
t∈[tk,2tk]

sup
|x|≤tk

( |U(t, x)− Uk(t, x)|
Uk(t, x)

+
|∂xU(t, x)− ∂xUk(t, x)|

Uk(t, x)

)

−−−−−→
k→+∞

0 , (6.18)

where the estimate for the derivative is obtained in the same way using Lemmas 6.5 and 6.6. We now
take t = τk := tk+(N−1)tk−1, so that both terms in the right-hand side of (6.17) are of comparable size.
With that choice, we have Uk(τk, x) ≈ eτk−tk

(

1 + cosh(x)
)

, and using estimates (6.18) we easily deduce
that the function u(τk, x) = −2∂xU(τk, x)/U(τk, x) indeed satisfies (6.14).

So far we have shown that the function Ψγ introduced in (6.3) belongs to the ω-limit set ω0(u0) when
γ = 1. But the argument above also implies that, given any t ∈ R,

lim
k→+∞

sup
|x|≤tk

∣

∣

∣
u(t+ τk, x) +

2 sinh(x)

e−t + cosh(x)

∣

∣

∣
= 0 ,

which shows that the ω-limit set ω0(u0) contains the entire two-shock solution (5.15) (as is clear from
time invariance). So we conclude that ω0(u0) ⊃

{

Ψγ ; γ > 0
}

, as asserted in (6.4). �

6.2 Repair along the family of steady shocks

In the topology of L∞
loc(R), the two-shock solution (5.15) converges to zero as t→ −∞ and to the steady

shock φ2,−2 as t → +∞. Such a heteroclinic connection is obviously not chain recurrent in the sense of
Proposition 3.2. As a consequence, for the initial data u0 ∈ L∞(R) constructed in the previous section,
the ω-limit set must be larger than the heteroclinic orbit given by the two-shock solution. In this section,
we show that ω0(u0) contains in addition a continuum of steady shocks, as stated in Proposition 6.2 and
illustrated in Figure 2.

To prove the claim, we need to control the function Vm(t, x) introduced in Definition 6.4 for some
intermediate times that are not covered by Lemmas 6.5 and 6.6.

Lemma 6.7. For any fixed δ ∈ (0, 2) we have, as m→ +∞,

Vm(m/δ, x) =
1√
πmδ

2 + δ

2− δ
em(1−δ/4) cosh(δx/2)

(

1 +O(m−1)
)

, (6.19)

where convergence is uniform in x ∈ [−L,L] for any L > 0. A similar asymptotic expansion also holds
for the spatial derivative ∂xVm(m/δ, x).
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Proof. To establish (6.19) it is convenient to use an explicit expression for the function Vm(t, x). Starting
from the definition

Vm(t, x) =
1√
4πt

∫

|y|≤m

e−|x−y|2/(4t) cosh(y) dy +
1√
4πt

∫

|y|>m

e−|x−y|2/(4t) cosh(m) dy ,

and proceeding as in (6.10), we obtain the tractable formula

Vm(t, x) = V̂m(t, x) + V̂m(t,−x) + Ŵm(t, x) + Ŵm(t,−x) , t > 0 , x ∈ R , (6.20)

where

V̂m(t, x) =
cosh(m)

2
erfc

(m+x

2
√
t

)

, Ŵm(t, x) =
et+x

2

{

erfc
(2t−m+x

2
√
t

)

− erfc
(2t+m+x

2
√
t

)

}

. (6.21)

In what follows, we assume that t = m/δ for some fixed δ ∈ (0, 2), and we consider the limit m → +∞
for x in some fixed interval [−L,L]. Using the asymptotic expansion of the complementary error function

erfc(z) =
e−z2

z
√
π

(

1 +O(z−2)
)

, as z → +∞ ,

we easily find that

V̂m(m/δ, x) =
1

2

1√
πmδ

em(1−δ/4) e−δx/2
(

1 +O(m−1)
)

, m→ +∞ . (6.22)

Next, observing that 2t+m ≫ 2t−m ≫ 1 as m → +∞ because 2/δ > 1, we see that the second term
in the expression (6.21) of Ŵm(t, x) is negligible compared to the first one. Since

t+ x−
(

2t−m+x

2
√
t

)2

= m− (m−x)2
4t

= m
(

1− δ/4
)

+ δx/2 +O(m−1) ,

we thus find

Ŵm(m/δ, x) =
1√
πmδ

δ

2− δ
em(1−δ/4) eδx/2

(

1 +O(m−1)
)

, m→ +∞ . (6.23)

Finally, replacing (6.22) and (6.23) into (6.20), we arrive at (6.19). A corresponding asymptotic expansion
for the derivative ∂xVm(m/δ, x) is obtained in the same way.

Proof of Proposition 6.2 (second part). We consider again the solution U(t, x) of the heat equation
given by (6.12), and we evaluate it along the sequence of times τ̂k := Ntk/δ, for some fixed δ ∈ (0, 2).
The main contribution to the sum comes from the term where j = k, and using Lemma 6.7 with m = Ntk
we obtain

e−tk VNtk(Ntk/δ, x) =
e−tk

√
πNtkδ

2 + δ

2− δ
eNtk(1−δ/4) cosh(δx/2)

(

1 +O(t−1
k )

)

, (6.24)

where convergence holds uniformly for x ∈ [−L,L]. The terms where j < k can be easily estimated using
the trivial bound Vm(t, x) ≤ cosh(m), leading to

1 +
k−1
∑

j=1

e−tj VNtj (Ntk/δ, x) ≤ 1 +
k−1
∑

j=1

e−tj cosh(Ntj) ≤ C e(N−1)tk−1 , (6.25)

where the right-hand side is much smaller than (6.24) since tk ≥ N2t2k−1. Finally, for the terms where
j > k, we use the simple bound Vm(t, x) ≤ et cosh(x) which gives

∞
∑

j=k+1

e−tj VNtj (Ntk/δ, x) ≤
∞
∑

j=k+1

e−tj eNtk/δ cosh(x) . (6.26)
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Again, for x ∈ [−L,L], the right-hand side is much smaller than (6.24) because the sequence tj grows
fast enough as j → ∞ and tj ≥ tk+1 ≥ N2t2k.

Summarizing, it follows from (6.24), (6.25), (6.26) that the function U(t, x) defined by (6.12) satisfies

U(Ntk/δ, x) =
e−tk

√
πNtkδ

2 + δ

2− δ
eNtk(1−δ/4) cosh(δx/2)

(

1 +O(t−1
k )

)

, k → +∞ ,

uniformly for x ∈ [−L,L], and a similar expansion also holds for the first derivative ∂xU(t, x). So, we
deduce that the solution of Burgers’ equation defined by (6.12), (6.13) satisfies, for any L > 0,

sup
|x|≤L

∣

∣u(Ntk/δ, x) + δ tanh(δx/2)
∣

∣ −−−−−→
k→+∞

0 .

This implies that the ω-limit set ω0(u0) contains the viscous shock φδ,−δ for any value of δ ∈ (0, 2), hence
for any δ ∈ [0, 2] since ω0(u0) is closed in L∞

loc(R). The proof of (6.4) is now complete. �
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(a) Merger of two viscous shocks

(b) Repair along the family of shocks

Figure 2: Illustration of the long-time behavior of the solution u(t, x) of (5.1) given by (6.12), (6.13). (a) Along

a sparse sequence of times τk → +∞, the solution describes the merger of a pair of viscous shocks near the origin,

as in the explicit solution (5.15). (b) Between the times τk and τk+1, the solution slowly returns to zero along the

family of steady shocks φδ,−δ, where 0 < δ < 2. Both processes recur infinitely often, and are therefore reflected

in the ω-limit set of the solution u(t, x), as asserted in Proposition 6.2.

Remark 6.8. We conjecture that, for the initial data u0 constructed in the proof of Proposition 6.2,
the ω-limit set ω0(u0) is in fact equal to the right-hand side of (6.4). Note that this set satisfies all the
properties listed in Proposition 3.2, including chain recurrence.

7 Discussion

We presented results on long-time behavior in scalar conservation laws on the real line, both in the case
of a general convex flux and in the special case of Burgers’ equation with quadratic flux. Our main
results include a general definition and characterization of ω-limit sets, the convergence to single shocks
for monotone data, and the construction of initial data for which the ω-limit set does not consist of a
constant state nor of the translates of a single shock. The latter result was established in the context of
Burgers’ equation, where a somewhat explicit representation of all entire solutions in terms of compactly
supported probability measures is available. Since all elements in the ω-limit set are entire solutions, this
characterization provides a ”list” of candidates for elements in the ω-limit set.

We mentioned throughout several open problems and conjectured some answers. We revisit some of
those here in a broader context and point to some other potentially interesting questions.
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As a first step towards a complete characterization, one can ask what functions may be found within
an ω-limit set. Candidates are entire solutions, which, in the case of Burgers’ equation, are described
somewhat explicitly through a one-to-one correspondence with compactly supported probability measures
on the real line. Even beyond the goal of describing the long-time behavior of general solutions, it would
be quite interesting to characterize entire solutions of scalar conservation laws with convex, not necessarily
quadratic flux. In the absence of a direct connection with the heat equation, we think that a description
of bounded solutions in terms of their ancient limits t→ −∞ in suitably rescaled variables might provide
an avenue for progress in this direction. Note that solutions representing the superposition of two viscous
shocks as t→ −∞ can be constructed under generic assumptions on the flux function, see [27].

On the other hand, it would be interesting to extend the analysis of ancient solutions and possibly the
characterization of ω-limit sets to the complex-valued Burgers’ equation, where the Cole-Hopf transfor-
mation is still at hand, but L∞ upper bounds, Oleinik’s inequality, and the positivity that is essential in
the characterization of ancient solutions are not available; see [22] for results on blowup in this context.

Given the characterization of entire solutions in Burgers’ equation, we conjectured in Section 6 that
any entire solution of that equation can be found in the ω-limit set for appropriate initial data. Beyond
Burgers’ equation, one may find it plausible that the existence of shock mergers in specific ω-limit sets
can be established, by controlling the interaction of shocks and rarefaction waves without the conjugation
to a linear heat equation and the associated superposition principle.

A more ambitious result would characterize the entire ω-limit set. We showed that for monotone initial
data, one only finds a single shock (together with its translates) or a family of constant states. We
conjectured that in the example considered in Proposition 6.2, the ω-limit set actually consists of the
shock merger itself and of the family of steady shocks with smaller amplitude, which together form a
chain recurrent set. Given the ancient asymptotics of entire solutions, all nonconstant elements of the
ω-limit sets can be thought of as continuous or discrete superpositions of shocks and their eventual merger
into a single shock. The natural question in this direction is whether different shock mergers can occur
within a single ω-limit set. Eventually, one may hope to determine which subsets of the set of ancient
solutions may occur as ω-limit sets, that is, to decide if any additional restrictions beyond compactness,
connectedness, and chain recurrence are imposed by the dynamics.

Clearly, all of the questions above can be asked for ω0(u0) and for ω(u0), that is in a fixed frame
of reference or up to translations. Our introduction of ω(u0), while seemingly natural, can of course
be questioned. One could ask for a more narrow characterization, limiting the allowed translations for
instance to almost Galilean shifts as suggested in Remark 3.5. To clarify the role of the shifts, it would be
interesting to identify ω-limit sets that actually depend on the class of allowed spatial translates. More
specifically, one can ask if for all u0, the set ω(u0) defined by (1.3) coincides with the ω-limit set obtained
by restricting the class of allowed shifts to almost Galilean ones.

Beyond the structure of ω-limit sets, one can investigate the dynamics for large but finite times. While
Burgers’ equation is not a gradient flow, our results basically show that the long-term asymptotics of
solutions are to a large extent determined by equilibria, up to Galilean boosts. While we did show that
solutions other than equilibria, particularly shock mergers, can occur in the ω-limit set, it is conceivable
to conjecture that those occur only ”rarely” in time, a statement that one could attempt to quantify in
the spirit of the work of S. Slijepčević and the first author [8]; see Remark 6.3.

Finally, a number of subtle questions arise when attempting to characterize the set of initial data that
lead to a specific ω-limit set. From local stability of viscous shocks, one can conclude that the basin of
attraction is open (in appropriate topologies). On the other hand, we showed that the basin contains all
monotone initial data with the same limits at x = ±∞. The construction of repeating shock mergers
suggests robustness of this asymptotic behavior at least in a spatially uniform topology. We note however
that such questions on the basin of attraction of an ω-limit set do not appear to have been answered in
the case of mergers between layers in the Allen-Cahn equation [4,20,21]. Despite the apparent similarities
between the results there and our construction, it is worth noticing that in our case, all equilibria and
traveling waves are asymptotically stable, whereas the Allen-Cahn equation accommodates a large family
of unstable equilibria and traveling waves, including the zero solution, spatially periodic equilibria, and
traveling waves connecting those equilibria to stable solutions; see for instance [25]. We are not aware of
results that connect the role of these unstable equilibria to the description of long-term dynamics through
ω-limit sets as attempted here and in [4, 20, 21].
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A Appendix

A.1 Oleinik’s inequality

If u(t, x) is a solution of (1.1) with initial data u0 satisfying (2.1), we define

v(t, x) = t2∂xu(t, x)− k−1t , t > 0 , x ∈ R , (A.1)

where k > 0 is defined in (2.2). The function v is smooth, and it is clear by construction that v(t, x) < 0
for all x ∈ R whenever t > 0 is sufficiently small. Indeed, since u(t, x) solves equation (1.1) with bounded
initial data, we know that there exist positive constants C and t0 such that |∂xu(t, x)| ≤ Ct−1/2 when
0 < t < t0. Now a direct calculation shows that v solves the equation

∂tv + f ′(u)∂xv − ∂2xv = 2t∂xu− k−1 − t2f ′′(u)
(

∂xu
)2

≤ 2t∂xu− k−1 − t2k
(

∂xu
)2

= −k−1
(

1− kt∂xu
)2 ≤ 0 ,

(A.2)

where in the second line we used the fact that f ′′(u) ≥ k for all u ∈ [α, β]. By the maximum principle, the
differential inequality (A.2) implies that v(t, x) stays negative for all times t > 0, which gives inequality
(2.2).

A.2 Proof of Lemma 3.1

We prove here that the solution of u(t) = St(u0) of (1.1) depends continuously on the initial data u0 in
the topology of L∞

loc(R). Our starting point is the integral equation associated with (1.1), namely

u(t) = K(t, ·) ∗ u0 −
∫ t

0

∂xK(t− s, ·) ∗ f(u(s)) ds , t > 0 , (A.3)

where K(t, x) is the heat kernel (5.8) and ∗ denotes convolution in space. Straightforward calculations
show that there exists a constant C > 0 such that

‖K(t, ·) ∗ u0‖exp +
√
t ‖∂xK(t, ·) ∗ u0‖exp ≤ Cet‖u0‖exp , (A.4)

for all u0 ∈ L∞(R) and all t > 0. To prove the desired continuity property, we fix R > 0 and consider
two initial data u0, v0 such that max(‖u0‖L∞ , ‖v0‖L∞) ≤ R. Denoting u(t) = St(u0), v(t) = St(v0), and
using (A.4), we can estimate

‖u(t)− v(t)‖exp ≤ Cet‖u0 − v0‖exp +
∫ t

0

Cet−s

√
t− s

L‖u(s)− v(s)‖exp ds ,

where L = sup{|f ′(u)| ; |u| ≤ R}. The quantity δ(t) := e−t‖u(t) − v(t)‖exp thus satisfies an integral
inequality that can be solved using a variant of Grönwall’s lemma, see [11, Lemma 7.1.1]. This gives an
estimate of the form ‖St(u0)−St(v0)‖exp ≤ C1e

C2t‖u0−v0‖exp, for some constants C1, C2 depending only
on L, which shows that the solution of (A.3) depends continuously on the initial data in the topology of
L∞
loc, uniformly in time on compact intervals.

A.3 Proof of the L
1–L∞ estimate (4.16)

Assume that χ : R → R is a smooth convex function such that χ(0) = 0 and χ(s) > 0 for all s 6= 0. If
w(t, x) is a solution of (4.15) with initial data w0 ∈ L∞(R), we compute

d

dt

∫

R

χ(w) dx =

∫

R

χ′(w)
(

∂2xw − f ′(u)∂xw
)

dx

= −
∫

R

χ′′(w)
(

∂xw
)2

dx+

∫

R

f ′′(u)(∂xu)χ(w) dx

≤ −
∫

R

χ′′(w)
(

∂xw
)2

dx ≤ 0 , t > 0 ,

(A.5)
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where we used the crucial observation that f ′′(u)(∂xu) ≤ 0, because f is convex and u is decreasing. As
a first application, we take χε(w) = (ε2 + w2)1/2 − ε, where ε > 0 is a small parameter. Using (A.5) we
easily obtain

∫

R
χε

(

w(t, x)
)

dx ≤
∫

R
χε

(

w0(x)
)

dx ≤ ‖w0‖L1(R), for any t > 0. Then, invoking Lebesgue’s
monotone convergence theorem, we can take the limit ε→ 0 and arrive at

‖w(t, ·)‖L1(R) ≤ ‖w0‖L1(R) , t > 0 . (A.6)

In a second step, we choose χ(w) = w2 in (A.5) and we use the celebrated Nash inequality

‖w(t, ·)‖3L2(R) ≤ CN‖wx(t, ·)‖L2(R)‖w(t, ·)‖2L1(R) , (A.7)

see [2]. Taking (A.6) into account and assuming ‖w0‖L1(R) > 0, we obtain the differential inequality

d

dt
‖w(t, ·)‖2L2(R) ≤ −2‖wx(t, ·)‖2L2(R) ≤ −

2‖w(t, ·)‖6L2(R)

C2
N‖w(t, ·)‖4L1(R)

≤ −
2‖w(t, ·)‖6L2(R)

C2
N‖w0‖4L1(R)

,

which can be integrated to give the L1–L2 estimate

‖w(t, ·)‖L2(R) ≤ Ct−1/4‖w0‖L1(R) , t > 0 , (A.8)

where C = (CN/2)
1/2.

Finally, to estimate the L∞ norm of w, we can either bound the L2p norm for all integers p ≥ 2, or use
a duality argument, see [5]. We follow here the latter approach and consider the dual equation

∂tψ(t, x) − ∂x
(

f ′(u)ψ
)

= ∂2xψ(t, x) , t > 0 , x ∈ R , (A.9)

which has similar properties as (4.15). In particular, proceeding as in (A.5), we find

d

dt

∫

R

χ(ψ) dx = −
∫

R

χ′′(ψ)
(

∂xψ
)2

dx+

∫

R

f ′′(u)(∂xu)
(

ψχ′(ψ)− χ(ψ)
)

dx ,

≤ −
∫

R

χ′′(ψ)
(

∂xψ
)2

dx ≤ 0 ,

(A.10)

because χ(ψ) ≤ ψχ′(ψ) by convexity. We deduce that estimates (A.6), (A.8) also hold for the solutions
of (A.9). Now, if w solves (4.15) with initial data w0 ∈ L2(R) and ψ solves (A.9) with initial data
ψ0 ∈ L1(R), then for any t > 0 the quantity

∫

R
ψ(t− s, x)w(s, x) dx is independent of s ∈ [0, t], as can be

easily verified by differentiation. It follows that
∣

∣

∣

∣

∫

R

ψ0(x)w(t, x) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

ψ(t, x)w0(x) dx

∣

∣

∣

∣

≤ ‖ψ(·, t)‖L2(R)‖w0‖L2(R)

≤ Ct−1/4‖ψ0‖L1(R)‖w0‖L2(R) ,

(A.11)

where the last inequality follows from (A.8). Clearly (A.11) is equivalent to the L2–L∞ estimate

‖w(t, ·)‖L∞(R) ≤ Ct−1/4‖w0‖L2(R) , t > 0 , (A.12)

and the L1–L∞ bound in (4.16) follows immediately by combining (A.8), (A.12).

A.4 Proof of Lemmas 5.10 and 5.11

Proof of Lemma 5.10. Since ν± are positive measures supported on the interval [0, ε], it is clear that
the functions J±

ε introduced in (5.32) satisfy the estimates

|∂xJ±
ε (t, x)| ≤ ε

2
J±
ε (t, x) , |∂tJ±

ε (t, x)| ≤
(bε

2
+
ε2

4

)

J±
ε (t, x) , t ∈ R , x ∈ R ,

which immediately imply (5.35) in view of the definition (5.33) of Sε. On the other hand, if 0 < ε′ < ε,
we have the identity

Sε(t, x) − Sε′(t, x) =
1

b

{

log

(

1 +
J+
ε (t, x)− J+

ε′ (t, x)

J+
ε′ (t, x)

)

− log

(

1 +
J−
ε (t, x)− J−

ε′ (t, x)

J−
ε′ (t, x)

)}

, (A.13)
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and proceeding as in the proof of Proposition 5.6 we easily obtain, if |x| ≤ L(t),

J±
ε (t, x) − J±

ε′ (t, x) =

∫

(ε′,ε]

e∓xy/2 et(by/2+y2/4) dν±(y) ≤ C±
ε,ε′ e

εL(t)+tbε′/4J±
ε′ (t, x) ,

where C±
ε,ε′ = ν±([ε

′, ε])/ν±([0, ε
′/2]). If L(t)/|t| → 0 as t→ −∞, it follows that

sup
|x|≤L(t)

∣

∣

∣

∣

J±
ε (t, x)− J±

ε′ (t, x)

J±
ε′ (t, x)

∣

∣

∣

∣

≤ Cε,ε′ e
εL(t)+tbε′/4 −−−−→

t→−∞
0 ,

which together with (A.13) implies the desired estimate (5.36).

Proof of Lemma 5.11. Let us define σε(t) = Sε(t, 0). For any T > 0, we observe that

lim
t→−∞

(

σε(t+ T )− σε(t)
)

= 0 , which implies lim
t→−∞

σε(t)

t
= 0 . (A.14)

Indeed, if 0 < ε′ < ε, we have

∣

∣σε(t+ T )− σε(t)
∣

∣ ≤
∣

∣σε(t+ T )− σε′(t+ T )
∣

∣+
∣

∣σε′ (t+ T )− σε′ (t)
∣

∣+
∣

∣σε′(t)− σε(t)
∣

∣ .

The middle term in the right-hand side can be estimated with the help of (5.35) :

∣

∣σε′(t+ T )− σε′(t)
∣

∣ ≤
∫ t+T

t

|∂tSε′(τ, 0)| dτ ≤ T
(

ε′ +
(ε′)2

2b

)

≤ 2Tε′ ,

where we used the fact that ε′ < ε < b. The other terms are controlled by (5.36), which gives

lim sup
t→−∞

∣

∣σε(t+ T )− σε(t)
∣

∣ ≤ 2Tε′ ,

and taking the limit ε′ → 0 we obtain the first part of (A.14). The second claim follows by an elementary
argument.

We now return to the shift function sε(t) defined by (5.37). We have by (5.35)

|sε(t)− σε(t)| = |Sε(t, sε(t)) − Sε(t, 0)| ≤
ε

b
|sε(t)| ≤

ε

b
|sε(t)− σε(t)|+

ε

b
|σε(t)| ,

so that

|sε(t)− σε(t)| ≤
ε

b− ε
|σε(t)| , |sε(t)| ≤

b

b− ε
|σε(t)| .

In view of (A.14), it follows in particular that sε(t)/t → 0 as t→ −∞, which is the first claim in (5.38).
Moreover, if 0 < ε′ < ε, we have

|sε(t)− sε′(t)| ≤
∣

∣Sε(t, sε(t)) − Sε(t, sε′(t))
∣

∣ +
∣

∣Sε(t, sε′(t)) − Sε′(t, sε′(t))
∣

∣

≤ ε

b
|sε(t)− sε′(t)| + sup

|x|≤sε′(t)

∣

∣Sε(t, x) − Sε′(t, x))
∣

∣ .

Since sε′(t)/t → 0 as t → −∞, the last term in the right-hand side converges to zero by (5.36). We
deduce that |sε(t)− sε′(t)| → 0 too, which concludes the proof of (5.38).
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