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Central extensions of the Ptolemy–Thompson group
and quantized Teichmüller theory

Louis Funar and Vlad Sergiescu

Abstract

The central extension of the Thompson group T that arises in the quantized Teichmüller theory
is 12 times the Euler class. This extension is obtained by taking a (partial) abelianization of the
so-called braided Ptolemy–Thompson group introduced and studied in Funar and Kapoudjian,
Geometry & Topology 12 (2008) 375–430. We then describe the cyclic central extensions of T
by means of explicit presentations.

1. Introduction and statements

Fock and Goncharov [10, 12] improved on previous work of Faddeev and Kashaev [8, 21],
Chekhov and Fock [6] and defined new families of projective unitary representations of modular
groupoids associated to cluster algebras. In the particular case of SL(2, R), one obtained
(projective) representations of the Ptolemy modular groupoids associated to triangulations
of surfaces, arising in the quantification of the Teichmüller space. The main ingredient is the
quantum dilogarithm function, which permits deformation of the natural action of the modular
groupoid on the Teichmüller space. Thereby they will be called dilogarithmic representations.
These are actually projective unitary representations, or equivalently, representations of
suitable central extensions.

These representations, depending on a deformation parameter, are infinite-dimensional. The
general belief is that they collapse at roots of unity to finite-dimensional representations, which
can be identified with the mapping class group representations arising from the quantum group
Uq (SL(2, R)). Moreover, they should also coincide with the representations from the quantum
hyperbolic invariants introduced by Baseilhac and Benedetti (see [2]).

There exists a universal setting for these constructions where the surface is the hyperbolic
plane H2 (endowed with a specific triangulation, namely, the Farey triangulation) and the
universal Teichmüller space is the one constructed by Penner in [24]. The associated modular
groupoid is the Ptolemy groupoid of flips on the triangulation. As is well known (see [24]), there
is a group structure underlying the groupoid structure that identifies the Ptolemy group of flips
on the Farey triangulation to the Thompson group T of piecewise-PSL(2, Z) homeomorphisms
of the circle (see [5]). Our aim is to identify the central extension T̂ of T arising in the
dilogarithm representations constructed in ([12, Section 10], [11, Section 3]). We refer to T̂ as
the dilogarithmic central extension of T .

Following [18] the cohomology ring H∗(T ) is generated by two classes α, χ ∈ H2(T ), which
are called the discrete Godbillon–Vey class and, respectively, the Euler class. One can obtain
χ as the Euler class of the action of T on the circle.
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Moreover, central extensions of T are classified up to isomorphism by their extension classes
in H2(T ). For instance, the Euler class χ is the extension class of the central extension

1 −→ Z −→ T̃ −→ T −→ 1,

where T̃ ⊂ Homeo+(R) is the group of lifts of piecewise-PSL(2, Z) homeomorphisms of the
circle to homeomorphisms of the real line R.

Our first goal is the identification of the extension class of T̂ . Specifically, our first main
result is the following theorem.

Theorem 1.1. The class cT̂ of the dilogarithmic central extension T̂ is cT̂ = 12χ ∈ H2(T ).

Our approach consists of relating the dilogarithmic central extension T̂ to the braided
Ptolemy–Thompson group T ∗ introduced and studied in [16, 17]. This will provide a
description of T̂ by means of an explicit group presentation by generators and relations. The
braided Ptolemy–Thompson group T ∗ is an extension of T by the infinite group B∞ of braids,
which arises as a mapping class group of an infinite surface. This group is finitely presented
and we are using heavily explicit presentations of related groups.

We will present a rather direct proof (using, however, results from [16]) showing that the
dilogarithmic extension class is a multiple of the Euler class because the extension splits over
the smaller Thompson group F ⊂ T . This multiple is next shown to equal 12.

There is a general setup for studying central extensions of a finitely presented group in which
all relations are given arbitrary central lifts in the extension. In the case of the group T , this
provides a series of group presentations depending on four integer parameters Tn,p,q ,r . The
dilogarithmic extension T̂ appears in this series as T1,0,0,0 .

Although our main motivation was the result of Theorem 1.1, we thought it interesting to
obtain the complete diagram concerning the central extensions of T in terms of explicit group
presentations. This amounts to understanding the cohomology 2-classes of T by means of their
associated extensions.

Theorem 1.2. Let Tn,p,q ,r be the group presented by the generators α, β, z and the
relations

(β α)5 = zn ,

α4 = zp ,

β
3

= zq ,

[β α β, α2β α β α2 ] = zr ,

[β α β, α2β α2β α β α2β
2
α2 ] = 1,

[α, z] = [β, z] = 1.

Then each central extension of T by Z is of the form Tn,p,q ,r . Moreover, the class cTn , p , q , r
∈

H2(T ) of the extension Tn,p,q ,r is given by

cTn , p , q , r
= (12n − 15p − 20q − 60r)χ + rα.

The extension classes behave linearly on the parameters and, in order to find their coefficients,
one has to make use of several explicit (central) extensions. There are only a few such
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extensions in the literature, namely, those from mapping class groups of planar surfaces
with infinitely many punctures. For general central extensions, we face new complications
due to the presence of the discrete Godbillon–Vey class. The Ptolemy–Thompson group
T ∗ is one such mapping class group, but it is useless in computing the coefficients of the
Godbillon–Vey class. The other extension of the same kind is the Greenberg–Sergiescu acyclic
extension (see [20]) and hence the core of the proof of Theorem 1.2 consists of computations
within the Greenberg–Sergiescu extension. This leads us to the formula for cTn , p , q , r , 0 stated in
Theorem 1.2.

All through this paper the Ptolemy–Thompson group T appears in every one of its instances,
as a group of homeomorphisms of the circle, as the group of flips, as the group PPSL(2, Z),
and as a mapping class group. The main difficulty is to pass from one description to another.

The plan of the paper is as follows. We introduce in the first part the braided Ptolemy–
Thompson T ∗ and the induced abelianized central extension T ∗

ab . We will explain that the
class cT ∗

a b
is a multiple of the Euler class and provide a short proof that it should be 12 times

the latter. In particular, we describe all central extensions associated to multiples of the Euler
class. In the second part, we give a quick overview of the quantization of the Teichmüller
space, following mostly Fock and Goncharov’s series of papers, to introduce the dilogarithmic
projective representation of the Ptolemy–Thompson group. As projective representations are
in one-to-one correspondence with central extensions, one obtains what we will call the
dilogarithmic extension T̂ of T . In the final section of this part, we prove that T̂ and T ∗

ab are
isomorphic. The third part of the paper is devoted to the classification of all central extensions
of T by Z. The major problem is to understand the behaviour of the discrete Godbillon–Vey
class in extensions. If the braided Ptolemy–Thompson group T ∗ was the geometric model in
the first part, we now make use of the Greenberg–Sergiescu extension AT of T . The method for
computing the classes of extensions is inspired by Milnor’s algorithm concerning the Euler class
of a surface group representation. The last section contains some speculations on what should
be the geometric extensions of T on one hand, and the central extensions of the mapping class
group of a finite (punctured) surface arising in the quantized Teichmüller theory on the other.

Although we use some of the results from [16] and [20], quite a large part of these papers is
not essential for understanding the present paper. We have also outlined the main constructions
from [10] in the case of the universal Teichmüller space in order to make the paper more
self-contained.

2. The central extension induced from the braided Ptolemy–Thompson group T ∗

2.1. The Thompson groups F and T

The Thompson group F is the group of dyadic piecewise affine homeomorphisms of [0, 1]. We
describe every element γ of F as follows. There exist two partitions of [0, 1] into consecutive
intervals I1 , I2 , . . . , Ik on one side and J1 , J2 , . . . , Jk whose end points are dyadic numbers
and γ sends affinely each interval Ij into its counterpart Jj , for all j ∈ {1, 2, . . . , k}. Thus the
restriction of γ to any interval Ij is given by γ(x) = ajx + bj , where aj = 2nj , nj ∈ Z and bj

belong to the set of dyadic numbers, that is, bj = pj/2mj , pj ,mj ∈ Z.
The group F is generated by the two elements A and B below:

A(x) =

⎧⎪⎨⎪⎩
x
2 , if x ∈

[
0, 1

2

]
x − 1

4 , if x ∈
[ 1

2 , 3
4

]
2x − 1, if x ∈

[ 3
4 , 1

] , B(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x, if x ∈

[
0, 1

2

]
x
2 + 1

4 , if x ∈
[ 1

2 , 3
4

]
x − 1

8 , if x ∈
[ 3

4 , 7
8

]
2x − 1, if x ∈

[ 7
8 , 1

]
.
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Moreover, the group F has the presentation

F = 〈A,B; [AB−1 , A−1BA] = 1, [AB−1 , A−2BA2 ] = 1〉.

There is a geometric encoding of elements of F as pairs of (stable) finite rooted binary trees.
Each finite rooted binary tree encodes a subdivision of [0, 1] into dyadic intervals. Adding two
descending edges to a vertex amounts to subdividing the respective interval into two equal
halves. Given the two subdivisions, the element of F sending one into the other is uniquely
determined. The pair of trees is determined up to stabilization, namely, adding extra couples
of descending edges to corresponding vertices in both trees.

A

A A

B B

B

The Thompson group T is the group of dyadic piecewise affine homeomorphisms of S1 =
[0, 1]/0 ∼ 1. It is not hard to see that A,B, and C generate T , where

C(x) =

⎧⎪⎨⎪⎩
x
2 + 3

4 , if x ∈
[
0, 1

2

]
2x − 1, if x ∈

[ 1
2 , 3

4

]
x − 1

4 , if x ∈
[ 3

4 , 1
]
.

The presentation of T in terms of the generators A,B,C consists of the two relations above
with four more relations to be added:

T =

〈
A,B,C; CA = (A−1CB)2 , (A−1CB)(A−1BA) = B(A−2CB2),

C3 = 1, C = BA−1CB, [AB−1 , A−1BA] = 1, [AB−1 , A−2BA2 ] = 1

〉
.

We can associate a pair of (stable) trees to encode an element of T as well, but we have
to specify additionally where the origin is sent to. We denote the image of the origin in the
trees by marking the leftmost leaf of its domain. Usually, the origin is fixed to be the leftmost
leaf in the first tree. For instance, the element C has the following description.

C
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Remark 1. The group T has another presentation with generators α and β and relations

α4 = β3 = 1,

[βαβ, α2βαβα2 ] = 1,

[βαβ, α2β2α2βαβα2βα2 ] = 1,

(βα)5 = 1.

If we set A = βα2 , B = β2α, and C = β2 then we obtain the generators A,B,C of the group
T , considered above. Then the two commutativity relations above are equivalent to

[AB−1 , A−1BA] = 1, [AB−1 , A−2BA2 ] = 1.

2.2. Mapping class groups of infinite surfaces

Definition 1. A rigid structure d on the surface Σ is a decomposition of Σ into 2-disks
with disjoint interiors, called elementary pieces. We suppose that the closures of the elementary
pieces are still 2-disks.

We assume that we are given a family F , called the family of admissible subsurfaces of
Σ, of compact subsurfaces of Σ such that each member of F is a finite union of elementary
pieces.

Given the data (Σ, d, F ), we can associate the asymptotic mapping class group M(Σ, d, F )
as follows. We restrict ourselves first to those homeomorphisms that act in the simplest possible
way at infinity.

Definition 2. A homeomorphism ϕ between two surfaces endowed with rigid structures
is rigid if it sends the rigid structure of one surface onto the rigid structure of the other.

The homeomorphism ϕ : Σ → Σ is said to be asymptotically rigid if there exists some
admissible subsurface C ⊂ Σ, called a support for ϕ, such that ϕ(C) ⊂ Σ is also an admissible
subsurface of Σ and the restriction ϕ|Σ−C : Σ − C → Σ − ϕ(C) is rigid.

As is customary when studying mapping class groups, we now consider isotopy classes of
such homeomorphisms.

Definition 3. The group M(Σ, d, F ) of isotopy classes of asymptotically rigid homeomor-
phisms is called the asymptotic mapping class group of Σ corresponding to the rigid structure
d and family of admissible subsurfaces F .

Remark 2. Two asymptotically rigid homeomorphisms that are isotopic should be isotopic
among asymptotically rigid homeomorphisms.

2.3. T and T ∗ as mapping class groups

The surfaces below will be oriented and all homeomorphisms considered in the sequel will be
orientation-preserving, unless the opposite is explicitly stated. Actions in the sequel are left
actions and the composition of maps is the usual one, namely, we start composing from right
to left.
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Definition 4. The ribbon tree D is the planar surface obtained by thickening the infinite
binary tree in the plane. We denote by D∗ the ribbon tree with infinitely many punctures, one
puncture for each edge of the tree. A homeomorphism of D∗ is a homeomorphism of D which
permutes the punctures D∗.

Definition 5. A rigid structure on D or D∗ is a decomposition into hexagons by means
of a family of arcs whose endpoints are on the boundary of D. Each hexagon contains no
puncture within its interior but each arc passes through a unique puncture in the case of D∗.
It is assumed that these arcs are pairwise non-homotopic in D, by homotopies keeping the
boundary points of the arcs on the boundary of D. The choice of a rigid structure of reference
is called the canonical rigid structure. The canonical rigid structure of the ribbon tree D is such
that each arc of this rigid structure crosses once and transversely a unique edge of the tree.
The canonical rigid structure on D∗ is assumed to coincide with the canonical rigid structure
of D when forgetting the punctures. See the figure below.

A planar subsurface of D or D∗ is admissible if it is a connected finite union of hexagons
coming from the canonical rigid structure.

One denotes by T and T ∗ the group of isotopy classes of asymptotically rigid homeomor-
phisms of D and D∗, respectively.

Remark 3. There exists a cyclic order on the frontier arcs of an admissible subsurface
induced by the planarity. An asymptotically rigid homeomorphism necessarily preserves the
cyclic order of the frontier for any admissible subsurface.

The mapping class group T is isomorphic to the Thompson group, which is commonly
denoted by T . This fact has been widely developed in [22] and [16]. We consider the following
elements of T , defined as mapping classes of asymptotically rigid homeomorphisms.

(i) The support of the element β is the central hexagon on the figure below. Further, β acts
as the counterclockwise rotation of order 3, which permutes the three branches of the ribbon
tree issued from the hexagon.

β

2 3

1

0 1

0

4

4 2

3

In fact, β is globally rigid.
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(ii) The support of α is the union of two adjacent hexagons, one of them being the support of
β. Then α rotates counterclockwise the support of angle π/2, by permuting the four branches
of the ribbon tree issued from the support.

4 3

21

α

32

1 4

Note that α is not globally rigid, but α2 is.

2.4. The relative abelianization of the braided Ptolemy–Thompson group T ∗

Recall from [16, 17] that there exists a natural surjection homomorphism T ∗ → T between
the two mapping class groups, which is obtained by forgetting the punctures. Its kernel is the
infinite braid group B∞ consisting of those braids in the punctures of D∗ that move non-
trivially only finitely many punctures. In other words, B∞ is the direct limit of an ascending
sequence of braid groups associated to an exhaustion of D∗ by punctured disks. This yields
the following exact sequence description of T ∗:

1 −→ B∞ −→ T ∗ −→ T −→ 1.

Observe that H1(B∞) = Z. Thus, the abelianization homomorphism B∞ → H1(B∞) = Z
induces a central extension T ∗

ab of T , where one replaces B∞ by its abelianization H1(B∞), as
in the diagram below.

1 −→ B∞ −→ T ∗ −→ T −→ 1
↓ ↓ ‖

1 −→ Z −→ T ∗
ab −→ T −→ 1

Then T ∗
ab is the relative abelianization of T ∗ over T . We are not only able to make

computations in the mapping class group T ∗ and thus in T ∗
ab , but also to interpret the algebraic

relations in T ∗
ab in geometric terms.

Proposition 2.1. The group T ∗
ab has the presentation with three generators α∗

ab , β∗
ab , and

z and the relations

α∗4
ab = β∗3

ab = 1, (β∗
abα∗

ab)5 = z, [α∗
ab , z] = 1, [β∗

ab , z] = 1,[
β∗

abα∗
abβ∗

ab , α∗2
abβ∗

abα∗
abβ∗

abα∗2
ab

]
=

[
β∗

abα∗
abβ∗

ab , α∗
ab

2β∗2
abα∗2

abβ∗
abα∗

abβ∗
abα∗2

abβ∗
abα∗2

ab
]

= 1.

Moreover, the projection map T ∗
ab → T sends α∗

ab to α, β∗
ab to β and z to identity.

Proof. Recall from [16] that T ∗ is generated by two elements α∗ and β∗ below.
(i) The support of the element β∗ of T ∗ is the central hexagon. Further, β∗ acts as the

counterclockwise rotation of order 3, which permutes the punctures cyclically. One has β∗3 = 1.

2

3

0

1

4

2

3

4

1
0

*β
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(ii) The support of the element α∗ of T ∗ is the union of two adjacent hexagons, one of
them being the support of β∗. Then α∗ rotates counterclockwise the support of angle π/2, by
keeping the central puncture fixed. One has α∗4 = 1.

4 3

132

1 4

0
0

2

*α

Now, let e be a simple arc in D∗, which connects two punctures. We associate a braiding
σe ∈ B∞ to e by considering the homeomorphism that moves the punctures clockwise at the
endpoints of the edge e in a small neighbourhood of the edge, in order to interchange their
positions. This means that, if γ is an arc transverse to e, then the braiding σe moves γ to the
left when it approaches e. Such a braiding will be called positive, while σ−1

e is negative.

e

σe

It is known that B∞ is generated by the braids σe , where e runs over the edges of the binary
tree with vertices at punctures. Let ι : B∞ → T ∗ be the inclusion. It is proved in [16] that the
braid generator σ[02] associated to the edge joining the punctures numbered 0 and 2 has the
image

ι
(
σ[02]

)
= (β∗α∗)5

because we have

3

0

2

1 4 1 4

3

0

2

(
5

α )β * *

Recall next that all braid generators σe are conjugate and call z their image in T ∗
ab . It follows

that T ∗
ab is an extension of T by Z. Moreover, it is simple to check that α∗σ[02]α

−1 is also a
braid generator, namely, σ[α∗(0)α∗(2)] . The same holds true for β∗σ[02]β

∗−1 = σ[β∗(0)β∗(2)] . This
implies that the extension T ∗

ab is central.
In particular, a presentation of T ∗

ab can be obtained by looking at the lifts of relations in T ,
together with those coming from the fact that z is central.

The first set of relations above are obviously satisfied by T ∗
ab . Finally, recall from [16] that

T ∗ splits over the smaller Thompson group F and thus the following relations hold true in T ∗:

[β∗α∗β∗ , α∗2β∗α∗β∗α∗2 ] = [β∗α∗β∗ , α∗2β∗2α∗2β∗α∗β∗α∗2β∗α∗2 ] = 1.
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Thus the second set of relations are automatically verified in T ∗
ab . Since the relations from the

statement form a complete set of lifts of relations presenting T , and since z is central, they
represent a complete system of relations in T ∗

ab . This ends the proof.

2.5. Computing the class of T ∗
ab

Lemma 2.1. The class cT ∗
a b

is a multiple of the Euler class.

Proof. Since T ∗ splits over Thompson group F ⊂ T (see [16]), it follows that T ∗
ab also

splits over F . Therefore, the extension class cT ∗
a b

lies in the kernel of the restriction map
H2(T ) → H2(F ). According to [18], the kernel is generated by the Euler class.

Let us introduce the group Tn,p,q presented by the generators α, β, z and the relations

(β α)5 = zn ,

α4 = zp ,

β
3

= zq ,

[β α β, α2β α β α2 ] = 1,

[β α β, α2β α2β α β α2β
2
α2 ] = 1,

[α, z] = [β, z] = 1.

Recall from Proposition 2.1 that T ∗
ab = T1,0,0 . It is easy to see that Tn,p,q are central extensions

of T by Z. Because of the last two commutation relations, the extension Tn,p,q splits over the
Thompson group F . Thus the restriction of cTn , p , q

to F vanishes and a fortiori the restriction
to the commutator subgroup F ′ ⊂ F . According to [18], we have H2(F ′) = Zα, where α is the
discrete Godbillon–Vey class. Thus the map H2(T ) → H2(F ′) is the projection Zα ⊕ Zχ → Zα.
Therefore cT̂ belongs to the kernel of H2(T ) → H2(F ′). This proves that cTn , p , q

∈ Zχ. Set
cTn , p , q

= χ(n, p, q)χ.

Proposition 2.2. We have χ(n, p, q) = 12n − 15p − 20q.

Proof. Observe first the following lemma.

Lemma 2.2. The function χ(n, p, q) : Z3 → Z is linear.

Proof. The group T contains all finite cyclic subgroups. Let us fix some positive integer k
and set yk ∈ T for an element of order k. Denote by Gk ⊂ T the cyclic subgroup generated
by yk .

We want to compute the restriction cTn , p , q
|Gk

, namely, the image of cTn , p , q
under the obvious

morphism H2(T ) → H2(Gk ). Since Gk is cyclic H2(Gk ) is the cyclic Z/kZ of order k, generated
by the restriction of the Euler class χ|Gk

. In particular,

cTn , p , q
|Gk

= χ(n, p, q)χ|Gk
∈ Z/kZ = H2(Gk ).

On the other hand, we can compute the Euler class of a central extension of a cyclic subgroup
of T ⊂ Homeo+(S1) by means of the following Milnor–Wood algorithm. Assume that yk =
wk (α, β) is given by a word in the generators α, β of T . Consider next the element yk =
wk (α, β) ∈ Tn,p,q . Then yk

k = ze for some e and the Euler class is given by the value of e
modulo k.
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However, yk
k is an element of the centre of Tn,p,q and thus it is a product of conjugates

of (β α)5 , α4 , β
3

and the commutation relations (which do not involve z). If ϕn,p,q (w) is the
additive map that associates to any subword of w from the subset {(β α)5 , α4 , β

3} respectively
n, p, and q, it follows that

ϕn,p,q (w) = nϕ1,0,0(w) + pϕ0,1,0(w) + qϕ0,0,1(w).

In particular, by choosing w = wk (α, β)k , we obtain that the coefficient of the Euler class
χ(n, p, q, r) verifies

χ(n, p, q) = nχ(1, 0, 0) + pχ(0, 1, 0) + qχ(0, 0, 1) (mod k).

This equality holds for all natural k and therefore χ(n, p, q) is linear.

End of the proof of Proposition 2.2. By the definition of the extension class, χ(n, p, q) takes
the same value for those Tn,p,q that are isomorphic by an isomorphism-inducing identity on
T and on the centre. Such isomorphisms L have the form L(α) = αzx and L(β) = βzy . Thus,
Tn,p,q is isomorphic as extension to Tn ′,p′,q ′ if and only if there exist integers x, y ∈ Z such
that

n = n′ + 5x + 5y, p = p′ + 4x, q = q′ + 3y.

In particular, the linear form χ(n, p, q) should be invariant by the transforms corresponding to
arbitrary x, y ∈ Z and thus it should be a multiple of 12n − 15p − 20q.

Last, the extension T̃ ⊂ Homeo+(R) is known to have Euler number 1. The central element
z acts as the unit translation on the line and in order to identify it with an element of the
family Tn,p,q it suffices to compute the rotation index associated to the elements α4 , β3 , and
(βα)5 . One obtains that T̃ is actually isomorphic to T3,1,1 . Thus χ(n, p, q) is precisely given by
the claimed linear form.

Corollary 2.1. We have cT ∗
a b

= 12χ.

Remark 4. The extension T ∗ → T also splits over the subgroup 〈α2 , β〉, which is
isomorphic to PSL(2, Z) (see [16]). This implies that cT ∗

a b
is a multiple of 6χ.

3. Quantum Teichmüller space and dilogarithmic representations

3.1. The Ptolemy–Thompson group and the Ptolemy groupoid

We will use the terms triangulation of H2 for ideal locally finite triangulations of the hyperbolic
space H2 , that is, a countable locally finite collection of geodesics whose complementary regions
are triangles. The vertices of the triangulation are the asymptotes of the constitutive geodesics,
viewed as points of the circle at infinity S1

∞.
Consider the basic ideal triangle having vertices at 1,−1,

√
−1 ∈ S1

∞ in the unit disk model
D of H2 . The set of orbits of its sides by the group PSL(2, Z) is the so-called Farey triangulation
τ0 .

A triangulation τ is marked if one fixes a distinguished oriented edge (abbreviated d.o.e.) �a
of it. The standard marking of the Farey triangulation τ0 is the oriented edge �a0 joining −1
to 1.

We define next a marked tessellation of H2 to be an equivalence class of marked triangulations
of H2 with respect to the action of PSL(2, R). Since the action of PSL(2, R) is 3-transitive each
tessellation can be uniquely represented by its canonical marked triangulation containing the
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basic ideal triangle and whose d.o.e. is �a0 . The marked tessellation is of Farey type if its
canonical marked triangulation has the same vertices and all but finitely many triangles (or
sides) as the Farey triangulation. Unless explicitly stated otherwise all tessellations considered
in the sequel will be Farey-type tessellations. In particular, the ideal triangulations have the
same vertices as τ0 and coincide with τ0 for all but finitely many ideal triangles.

Definition 6. The objects of the (universal) Ptolemy groupoid Pt are the marked tessel-
lations of Farey type. The morphisms between two objects (τ1 , �a1) and (τ2 , �a2) are eventually
trivial permutation maps φ : τ1 → τ2 such that φ( �a1) = �a2 . When marked tessellations are
represented by their canonical triangulations, the latter coincide for all but finitely many
triangles. Recall that φ is said to be eventually trivial if the induced correspondence at the
level of canonical triangulations is the identity for all but finitely many edges.

Now we define particular elements of Pt called flips. Let e be an edge of the marked
tessellation represented by the canonical marked triangulation (τ,�a). The result of the flip
Fe on τ is the triangulation Fe(τ) obtained from τ by changing only the two neighbouring
triangles containing the edge e, according to the diagram below.

e
e′

This means that we remove e from τ and further add the new edge e′ in order to get Fe(τ).
In particular, there is a natural correspondence φ : τ → Fe(τ) sending e to e′ and identity
for all other edges. The result of a flip is the new triangulation together with this edge’s
correspondence.

If e is not the d.o.e. of τ , then Fe(�a) = �a. If e is the d.o.e. of τ , then Fe(�a) = �e′, where the
orientation of �e′ is chosen so that the frame (�e, �e′) is positively oriented.

Now we define the flipped tessellation Fe((τ,�a)) to be the tessellation (Fe(τ), Fe(�a)). It
is proved in [24] that flips generate the Ptolemy groupoid, that is, any element of Pt is a
composition of flips.

For any marked tessellation (τ,�a), there is defined a characteristic map Qτ : Q − {−1, 1} →
τ . Assume that τ is the canonical triangulation representing this tessellation. We label first by
Q ∪∞ the vertices of τ , by induction:

(1) −1 is labelled by 0/1, 1 is labelled by ∞ = 1/0 and
√
−1 is labelled by −1/1.

(2) If we have a triangle in τ having two vertices already labelled by a/b and c/d, then its
third vertex is labelled (a + c)/(b + d). Notice that vertices in the upper half-plane are labelled
by negative rationals and those from the lower half-plane by positive rationals.

As is well known, this labelling produces a bijection between the set of vertices of τ and
Q ∪∞.

Let e now be an edge of τ , which is different from �a. Let v(e) be the vertex opposite to e
of the triangle Δ of τ containing e in its frontier and lying in the component of D − e, which
does not contain �a. We then associate to e the label of v(e). Give also �a the label 0 ∈ Q. This
way one obtains a bijection Qτ : Q − {−1, 1} → τ .

Note that if (τ1 , �a1) and (τ2 , �a2) are marked tessellations then there exists a unique map
f between their vertices sending triangles to triangles and marking on the marking. Then
f ◦ Qτ1 = Qτ2 .
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The role played by Qτ is to allow flips to be indexed by the rationals and not on edges of τ .

Definition 7. Let FT be the set of marked tessellations of Farey type. Define the action
of the free monoid M generated by Q − {−1, 1} on FT by means of the following:

q · (τ,�a) = FQτ (q)(τ,�a), for q ∈ Q − {−1, 1}, (τ,�a) ∈ FT.

We set f ∼ f ′ on M if the two actions of f and f ′ on FT coincide. Then the induced composition
law on M/∼ is a monoid structure for which each element has an inverse. This makes M/∼ a
group, which is called the Ptolemy group T (see [24] for more details).

In particular, it makes sense to speak of flips in the present case and thus flips generate the
Ptolemy group.

The notation T for the Ptolemy group is not misleading because this group is isomorphic
to the Thompson group T and for this reason, we preferred to call it the Ptolemy–Thompson
group.

Given two marked tessellations (τ1 , �a1) and (τ2 , �a2), the combinatorial isomorphism f : τ1 →
τ2 from above provides a map between the vertices of the triangulations, which are identified
with P 1(Q) ⊂ S1

∞. This map extends continuously to a homeomorphism of S1
∞, which is

piecewise-PSL(2, Z). This establishes an isomorphism between the Ptolemy group and the
group of piecewise-PSL(2, Z) homeomorphisms of the circle.

An explicit isomorphism with the group T in the form introduced above was provided
by Lochak and Schneps (see [23]). Send α to the flip Fa of (τ0 , �a0) and β to the element
((τ0 , �a0), (τ0 , �a1)) of the Ptolemy group, where �a1 is the oriented edge in the basic triangle of
the Farey triangulation τ0 next to �a0 .

3.2. Quantum universal Teichmüller space

Here and henceforth, for the sake of brevity, we will use the term ‘tessellation’ instead of marked
tessellation. For each tessellation τ , let E(τ) be the set of its edges. We further associate a
skew-symmetric matrix ε(τ) with entries εef , for all e, f ∈ E(τ), as follows. If e and f do not
belong to the same triangle of τ or e = f , then εef = 0. Otherwise, e and f are distinct edges
belonging to the same triangle of τ and thus have a common vertex. We obtain f by rotating
e in the plane along that vertex such that the moving edge sweeps out the respective triangle
of τ . If we rotate clockwise then εef = +1, otherwise εef = −1.

The couple (E(τ), ε(τ)) is called a seed in [12]. Observe that in this particular case, seeds
are completely determined by tessellations.

Let (τ, τ ′) be a flip Fe in the edge e ∈ E(τ). Then the associated seeds (E(τ), ε(τ)), and
(E(τ ′), ε(τ ′)) are obtained one from the other by a mutation in the direction e. Specifically,
this means that there is an isomorphism μe : E(τ) → E(τ ′) such that

ε(τ ′)μe (s)μe (t) =

⎧⎪⎨⎪⎩
−εst , if e = s or e = t,

εst , if εseεet ≤ 0,

εst + |εse |εet , if εseεet > 0.

The map μe comes from the natural identification of the edges of the two respective tessellations
out of e and Fe(e).

This algebraic setting appears in the description of the universal Teichmüller space T . Its
formal definition (see [10, 11]) is the set of positive real points of the cluster X -space related
to the set of seeds above. However, we can give a more intuitive description of it, following [24].
Specifically, T is the space of all marked tessellations (denoted T ess in [24]). Each tessellation
τ gives rise to a coordinate system βτ : T → RE (τ ) . The real numbers xe = βτ (e) ∈ R specify
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the amount of translation along the geodesic associated to the edge e, which is required when
gluing together the two ideal triangles sharing that geodesic to obtain a given quadrilateral in
the hyperbolic plane. These are called the shearing coordinates (introduced by Thurston and
then considered by Bonahon, Fock and Penner) on the universal Teichmüller space and they
provide a homeomorphism βτ : T → RE (τ ) . There is an explicit geometric formula (see also [9,
14]) for the shearing coordinates, as follows. Assume that the union of the two ideal triangles
in H2 is the ideal quadrilateral of vertices pp0p−1p∞ and the common geodesic is p∞p0 . Then
the respective shearing coordinate is the cross-ratio

xe = [p, p0 , p−1 , p∞] = log
(p0 − p)(p−1 − p∞)
(p∞ − p)(p−1 − p0)

.

Let τ ′ be obtained from τ by a flip Fe and set {x′
f } for the coordinates associated to τ ′. The

map βτ ,τ ′ : RE (τ ′) → RE (τ ) given by

βτ ,τ ′(x′
s) =

{
xs − ε(τ)se log(1 + exp(−sgn(εse)xe)), if s �= e,

−xe, if s = e

relates the two coordinate systems, namely, βτ ,τ ′ ◦ βτ ′ = βτ .
These coordinate systems provide a contravariant functor β : Pt → Comm from the Ptolemy

groupoid Pt to the category Comm of commutative topological ∗-algebras over C. We associate
to a tessellation τ the algebra B(τ) = C∞(RE (τ ) , C) of smooth complex valued functions on
RE (τ ) , with the ∗-structure given by ∗f = f . Further, to any flip (τ, τ ′) ∈ Pt one associates the
map βτ ,τ ′ : B(τ ′) → B(τ).

The matrices ε(τ) have a deep geometric meaning. In fact the bi-vector field

Pτ =
∑
e,f

ε(τ)ef
∂

∂xe
∧ ∂

∂xf
,

written here in the coordinates {xe} associated to τ , defines a Poisson structure on T , which is
invariant by the action of the Ptolemy groupoid. The associated Poisson bracket is then given
by the formula

{xe, xf } = ε(τ)ef .

Kontsevich proved that there is a canonical formal quantization of a (finite-dimensional)
Poisson manifold. The universal Teichmüler space is not only a Poisson manifold but also
endowed with a group action, and our aim will be to achieve an equivariant quantization.
Chekhov, Fock and Kashaev (see [6, 21]) constructed an equivariant quantization by means
of explicit formulas. There are two ingredients in their approach. First, the Poisson bracket is
given by constant coefficients, in any coordinate charts and second, the quantum (di)logarithm.

To any category C whose morphisms are C-vectors spaces, one associates its projec-
tivization PC having the same objects and new morphisms given by HomP C (C1 , C2) =
HomC (C1 , C2)/U(1), for any two objects C1 , C2 of C. Here U(1) ⊂ C acts by scalar
multiplication. A projective functor into C is actually a functor into PC.

Let A∗ now be the category of topological ∗-algebras. Two functors F1 , F2 : C → A∗

essentially coincide if there exists a third functor F and natural transformations F1 → F ,
F2 → F providing dense inclusions F1(O) ↪→ F (O) and F2(O) ↪→ F (O), for any object O
of C.

Definition 8. A quantization T h of the universal Teichmüller space is a family of
contravariant projective functors βh : Pt → A∗ depending smoothly on the real parameter h
such that:
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(i) The limit limh→0 βh = β0 exists and essentially coincide with the functor β.
(ii) The limit limh→0 [f1 , f2 ]/h is defined and coincides with the Poisson bracket on T .

Alternatively, for each τ we have a C(h)-linear (non-commutative) product structure � on the
vector space C∞(RE (τ ) , C(h)) such that

f � g = fg + h{f, g} + o(h),

where {f, g} is the Poisson bracket on functions on T and C(h) denotes the algebra of smooth
C-valued functions on the real parameter h.

We associate to each tessellation τ the Heisenberg algebra Hh
τ , which is the topological

∗-algebra over C generated by the elements xe, e ∈ E(τ) subjected to the relations

[xe, xf ] = 2πihε(τ)ef , x∗
e = xe.

We then define βh(τ) = Hh
τ .

The quantization should associate a homomorphism βh((τ, τ ′)) : Hh
τ ′ → Hh

τ to each element
(τ, τ ′) ∈ Pt. It actually suffices to consider the case when (τ, τ ′) is the flip Fe in the edge
e ∈ E(τ). Let {x′

s}, s ∈ E(τ ′) be the generators of Hh
τ ′ . Then we set

βh((τ, τ ′))(x′
s) =

{
xs − ε(τ)se φh(−sgn (ε(τ)se)xe) , if s �= e,

−xs, if s = e.

Here φh is the quantum logarithm function, namely,

φh(z) = −πh

2

∫
Ω

exp(−itz)
sh(πt) sh(πht)

dt,

where the contour Ω goes along the real axes from −∞ to ∞ bypassing the origin from above.
Some properties of the quantum logarithm are collected below:

lim
h→0

φh(z) = log (1 + exp(z)) , φh(z) − φh(−z) = z, φh(z) = φh (z) ,
φh(z)

h
= φ1/h

( z

h

)
.

A convenient way to represent this transformation graphically is to associate to a tessellation
its dual binary tree embedded in H2 and to assign to each edge e the respective generator xe .
Then the action of a flip reads as follows.

z)a + 

cd

a b

−zz
F b −       φ (

φ (z)φ (−z)

φ (−z)

a − c +

h

h

h

h

We then have the following.

Proposition 3.1 [6, 13]. The projective functor βh is well defined and it is a quantization
of the universal Teichmüller space T .

One proves that βh((τ, τ ′)) is independent of the decomposition of the element (τ, τ ′) as a
product of flips. In the classical limit h → 0, the quantum flip tends to the usual formula of
the coordinates change induced by a flip. Thus the first requirement in Definition 8 is fulfilled,
and the second one is obvious, from the defining relations in the Heisenberg algebra Hh

τ .
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3.3. The dilogarithmic representation of T

The subject of this section is to give a somewhat self-contained definition of the dilogarithmic
representation of the group T . The case of general cluster modular groupoids is developed in
full detail in [12, 13] and the group T as a cluster modular groupoid is explained in [11].

The quantization of a physical system in quantum mechanics should provide a Hilbert space
and the usual procedure is to consider a Hilbert space representation of the algebra from
Definition 8. This is formalized in the notion of representation of a quantum space.

Definition 9. A projective ∗-representation of the quantized universal Teichmüller space
T h , specified by the functor βh : Pt → A∗, consists of the following data.

(i) A projective functor Pt → Hilb to the category of Hilbert spaces. In particular, one
associates a Hilbert space Lτ to each tessellation τ and a unitary operator K(τ ,τ ′) : Lτ → Lτ ′ ,
defined up to a scalar of absolute value 1.

(ii) A ∗-representation ρτ of the Heisenberg algebra Hh
τ in the Hilbert space Lτ , such that

the operators K(τ ,τ ′) intertwine the representations ρτ and ρτ ′ , that is,

ρτ (w) = K−1
(τ ,τ ′)ρτ ′(βh((τ, τ ′))(w))K(τ ,τ ′) , w ∈ Hh

τ .

The classical Heisenberg ∗-algebra H is generated by 2n elements xs, ys , 1 ≤ s ≤ n and
relations

[xs, ys ] = 2πi h, [xs, yt ] = 0, if s �= t, [xs, xt ] = [ys, yt ] = 0, for all s, t

with the obvious ∗-structure. The single irreducible integrable ∗-representation ρ of H makes
it act on the Hilbert space L2(Rn ) by means of the operators

ρ(xs)f(z1 , . . . , zn ) = zsf(z1 , . . . , zn ), ρ(ys) = −2πi h
∂f

∂zs
.

The Heisenberg algebras Hh
τ are defined by commutation relations with constant coefficients

and hence their representations can be constructed by selecting a Lagrangian subspace in the
generators xs , called a polarization, and let the generators act as linear combinations in the
operators ρ(xs) and ρ(ys) above.

The Stone von Neumann theorem then holds true for these algebras. Specifically, there
exists a unique unitary irreducible Hilbert space representation of given central character that
is integrable, that is, one that can be integrated to the corresponding Lie group. Notice that
there exist in general also non-integrable unitary representations.

In particular, we obtain representations of Hh
τ and Hh

τ ′ . The uniqueness of the representation
yields the existence of an intertwiner K(τ ,τ ′) (defined up to a scalar) between the two
representations. However, neither the Hilbert spaces nor the representations ρτ are canonical,
as they depend on the choice of the polarization.

We will give below the construction of a canonical representation when the quantized
Teichmüller space is replaced by its double. First we need to switch to another system of
coordinates, from the cluster A-varieties. Define, after Penner (see [24]), the universal decorated
Teichmüller space A to be the space of all marked tessellations endowed with one horocycle
for each vertex (decoration). Alternatively (see [10]), A is the set of positive real points of the
cluster A-space related to the previous set of seeds.

Each tessellation τ yields a coordinate system ατ : A → RE (τ ) , which associates to the edge
e of τ the coordinate ae = ατ (e) ∈ R. The number ατ (e) is the algebraic distance between the
two horocycles on H2 centred at vertices of e, measured along the geodesic associated to e.
These are the so-called lambda coordinates of Penner.
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There is a canonical map p : A → T (see [24, Proposition 3.7], and [10]) such that, in the
coordinate systems induced by a tessellation τ , the corresponding map pτ : R(E (τ ) → RE (τ ) is
given by

pτ

⎛⎝ ∑
t∈E (τ )

ε(τ)stat

⎞⎠ = xs.

Let (τ, τ ′) be the flip on the edge e and let a′
s be the coordinates system associated to τ ′.

Then the flip induces the following change of coordinates:

ατ ,τ ′(as) =

{
as, if s �= e

−ae + log
(
exp

(∑
t;ε(τ )e t >0 ε(τ)etat

)
+ exp

(
−

∑
t;ε(τ )e t <0 ε(τ)etat

))
, if s = e.

It can be verified that pτ are compatible with the action of the Ptolemy groupoid on the
respective coordinates.

The vector space Lτ is defined as the space of square integrable functions with finite-
dimensional support on A with respect to the ατ coordinates, that is, the functions f : RE (τ ) →
C, with support contained into some RF × {0} ⊂ RE (τ ) , for some finite subset F ⊂ E(τ). The
coordinates on RE (τ ) are the ae, e ∈ E(τ). The function f is square integrable if∫

RF

|f |2
∧
e∈F

dae < ∞

for any such F as above. Let f, g ∈ Lτ . Then let RF × {0} contain the intersection of their
supports. Choose F minimal with this property. Then the scalar product

〈f, g〉 =
∫

RF

f(a)g(a)
∧
e∈F

dae

makes Lτ a Hilbert space.
To define the intertwining operator K, we set

Ge((as)s∈F ) =
∫

exp

⎛⎝∫
Ω

exp(it
∑

s∈F ε(τ)esas) sin(tc)
2ish(πt)sh(πht)

dt

t
+

c

πih

⎛⎝ ∑
s;ε(τ )e s <0

ε(τ)esas +ae

⎞⎠⎞⎠ dc.

The key ingredient in the construction of this function is the quantum dilogarithm (going back
to Barnes [1] and which was used by Baxter [4] and Faddeev [7]):

Φh(z) = exp
(
−1

4

∫
Ω

exp(−itz)
sh(πt) sh(πht)

dt

t

)
,

where the contour Ω goes along the real axes from −∞ to ∞ bypassing the origin from above.
Some properties of the quantum dilogarithm are collected below:

2πihd log Φh(z) = φh(z), lim
�z−→−∞

Φh(z) = 1,

lim
h−→0

Φh(z)/ exp(−Li2(− exp(z))) = 2πih, where Li2(z) =
∫ z

0
log(1 − t)dt,

Φh(z)Φh(−z) = exp
(

z2

4πih

)
exp

(
−πi

12
(h + h−1)

)
,

Φh(z) = (Φh(z))−1 , Φh(z) = Φ1/h
( z

h

)
.

Let now f ∈ Lτ , namely, some f : RF × {0} −→ C. Consider (τ, τ ′) to be the flip Fe on the
edge e. Let as, s ∈ F be the coordinates in RF . If e �∈ F , then we set

K(τ ,τ ′) = 1.
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If e ∈ F , then the coordinates associated to τ ′ are as, s �= e and a′
e . Then set

(K(τ ,τ ′)f)((as,s∈F,f �=e , a′
e)) =

∫
Ge((as)s∈F,s �=e , ae + a′

e)f((as)s∈F )das.

The last piece of data is the representation of the Heisenberg algebra Hh
τ in the Hilbert space

Lτ . We can actually do better, namely, to enhance the space with a bimodule structure. Set

ρ−τ (xs) = −πih
∂

∂as
+

∑
t

ε(τ)stat ,

ρ+
τ (xs) = πih

∂

∂as
+

∑
t

ε(τ)stat .

Then ρ−τ gives a left module and ρ+
τ a right module structure on Lτ and the two actions

commute. We then have the following.

Proposition 3.2 [6, 12, 13]. The data (Lτ , ρ±τ ,K(τ ,τ ′)) is a projective ∗-representation
of the quantized universal Teichmüller space.

We call it the dilogarithmic representation of the Ptolemy groupoid. The proof of this result
is given in [12] and a particular case is explained with lots of details in [19].

The last step in our construction is to observe that a representation of the Ptolemy groupoid
Pt induces a representation of the Ptolemy–Thompson group T by means of an identification
of the Hilbert spaces Lτ for all τ .

Projective representations are equivalent to representations of central extensions by means of
the following well-known procedure. To a general group G, Hilbert space V and homomorphism
A : G → PGL(V ), we can associate a central extension G̃ of G by C∗, which resolves the
projective representation A to a linear representation Ã : G̃ → GL(V ). The extension G̃ is the
pull-back on G of the canonical central C∗-extension GL(V ) → PGL(V ).

However, the central extension that we consider here is a subgroup of the C∗-extension
defined above, obtained by using a particular section over G. Let us write G = F/R as the
quotient of the free group F by the normal subgroup R generated by the relations. Then our
data consist in a homomorphism A : F → GL(V ) with the property that A(r) ∈ C∗, for each
relation r ∈ R, so that A induces A : G → PGL(V ). This data will be called an almost linear
representation, in order to distinguish it from a projective representation of G.

The central extension Ĝ of G associated to A is Ĝ = F/(ker A ∩ R), namely, the smallest
central extension of S resolving the projective representation A to a linear representation
compatible with A. Then Ĝ is a central extension of G by the subgroup A(R) ⊂ C∗ and hence
it is naturally a subgroup of G̃. In other terms, A determines a projective representation A
and a section over G, whose associated 2-cocycle takes values in A(R) and which describes the
central extension Ĝ.

Now, the intertwiner functor K is actually an almost linear representation (in the obvious
sense) of the Ptolemy groupoid and thus induces an almost linear representation of the
Ptolemy–Thompson group T into the unitary group. We can extract from [12] the following
results (see also the equivalent construction at the level of Heisenberg algebras in [3]).

Proposition 3.3. The dilogarithmic almost linear representation K has the following
properties.

(i) Images of disjoint flips in T̂ commute with each other.
(ii) The square of a flip is the identity.
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(iii) The composition of the lifts of the five flips from the pentagon relation below is
exp(2πih) times the symmetry permuting the two edges coordinates.

e
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e e
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1 2
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1

1
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2
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f
5

Fe Fe

FeFe

2

34

5

Proof. The first condition is that images by K of flips on disjoint edges should commute.
This is obvious by the explicit formula for K. The second and third conditions are proved
in [12].

Therefore, the image by K of relations of the Ptolemy groupoid into C∗ is the subgroup U
generated by exp(2πih). We can view the pentagon relation in the Ptolemy–Thompson group
T as a pentagon relation in the Ptolemy groupoid Pt. Thus, the image by K of relations of
the Ptolemy–Thompson group T into C∗ is also the subgroup U . In particular the associated
2-cocycle takes values in U . If h is a formal parameter or an irrational real number, we obtain
a 2-cocycle with values in Z.

Definition 10. The dilogarithmic central extension T̂ is the central extension of T by
Z associated to the dilogarithmic almost linear representation K of T , or equivalently, to the
previous 2-cocycle.

3.4. Identifying the two central extensions of T

The main result of this section is the following proposition.

Proposition 3.4. The dilogarithmic extension T̂ is identified to T ∗
ab .

Proof. The main step is to translate the properties of the dilogarithmic representation of
the Ptolemy groupoid in terms of the Ptolemy–Thompson group. Since T̂ is a central extension
of T , it is generated by the lifts α̂, β̂ of α and β together with the generator z of the centre.
Let us see what are the relations arising in the group T̂ . According to Proposition 3.3, lifts of
disjoint flips should commute. By a simple computation, we can show that the elements βαβ,
α2βαβα2 , and α2βα2βαβα2β2α2 act as disjoint flips on the Farey triangulation. In particular,
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we have the relations

[β̂α̂β̂, α̂2 β̂α̂β̂α̂2 ] = [β̂α̂β̂, α̂2 β̂α̂2 β̂α̂β̂α̂2 β̂2 α̂2 ] = 1

satisfied in T̂ . Moreover, by construction we also have

β̂3 = α̂4 = 1,

meaning that the α̂ is still periodic of order 4 while β̂ is not deformed.
Eventually, the only non-trivial lift of relations comes from the pentagon relation (β̂α̂)5 .

The element (β̂α̂)5 is actually the permutation of the two edges in the pentagon times the
composition of the five flips. The pentagon equation is no longer satisfied but Proposition 3.3
shows that the dilogarithmic image of (β̂α̂)5 is a scalar operator. Since z is the generator of
the kernel Z of T̂ → T , it follows that the lift of the pentagon equation from T to T̂ is given by

(β̂α̂)5 = z.

According to Proposition 2.1, all relations presenting T ∗
ab are satisfied in T̂ . Since T̂ is a

non-trivial central extension of T by Z, it follows that the groups are isomorphic.

Remark 5. The key point in the proof above is that all pentagon relations in Pt are
transformed in a single pentagon relation in T and thus the scalars associated to the pentagons
in Pt should be the same.

4. Classification of central extensions of the group T

4.1. The family Tn,p,q ,r of central extensions

Our main concern here is to identify the cohomology classes of all central extensions of T in
H2(T ). Before doing that, we consider a series of central extensions Tn,p,q ,r,s of T by Z, having
properties similar to those of T̂ .

Definition 11. The group Tn,p,q ,r,s is presented by the generators α, β, z and the relations

(β α)5 = zn ,

α4 = zp ,

β
3

= zq ,

[β α β, α2β α β α2 ] = zr ,

[β α β, α2β α2β α β α2β
2
α2 ] = zs,

[α, z] = [β, z] = 1.

Let us denote Tn,p,q ,r = Tn,p,q ,r,0 and Tn,p,q = Tn,p,q ,0,0 .

According to [16], we can identify T̂ with T1,0,0 . In fact the group T ∗ is split over the smaller
Thompson group F ⊂ T and thus T̂ is split over F . Further, F is generated by the elements
β2α and βα2 and thus relations of F are precisely given by the commutation relations above.
Thus, the last two relations hold true, while z is central and thus T̂ is given by the presentation
above.
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Remark 6. We considered in [16] the twin group T � and gave a presentation of it. Then,
using a similar procedure, there is a group obtained from T � by abelianizing the kernel B∞,
which is identified actually to T3,1,0 .

Proposition 4.1. Central extensions of T by Z are exhausted by the set of extensions
Tn,p,q ,r .

Proof. Consider the relations in Tn,p,q ,r,s other than

[β α β, α2β α2β α β α2β
2
α2 ] = zs.

It suffices to see that these relations already force

[β α β, α2β α2β α β α2β
2
α2 ] = 1.

The commutator [βαβ, α2βα2βαβα2β2α2 ] is the trivial element of T and thus it leads by means
of the Hopf theorem to a 2-cycle on T , given by the formula

δ = (βαβ, α2βα2βαβα2β2α2) − (α2βα2βαβα2β2α2 , βαβ).

However, the commutator above can be written as a commutator in the subgroup F as we
already remarked that

[βαβ, α2βα2βαβα2β2α2 ] = [AB−1 , A−2BA2 ],

where A = βα2 and B = β2α are the generators of F . Moreover, the last commutator defines
the 2-cycle

ε = (AB−1 , A−2BA2) − (A−2BA2 , AB−1)

in H2(F ) and the inclusion i : F ⊂ T sends the class of [ε] into i∗([ε]) = [δ]. However, it is
known from [18] that [ε] is in the kernel of i∗ : H2(F ) → H2(T ) and thus [δ] = 0. This shows
that 〈cTn , p , q , r , s

, [ε]〉 = 0, where 〈, 〉 : H2(T ) × H2(T ) → Z is the obvious pairing. Thus Tn,p,q ,r,s

splits over the subgroup generated by βαβ and α2βα2βαβα2β2α2 . Thus, up to changing each
one of the lifts α, β ∈ Tn,p,q ,r,s of α, β by a central factor, we have

[β α β, α2β α2β α β α2β
2
α2 ] = 1.

However, if we chose another lifts then central factors will cancel each other in the commutator
above and thus the identity above holds true for any choice of the lifts. In particular we have
s = 0.

The aim of this chapter is to prove Theorem 1.2, namely, to compute the class cTn , p , q , r
∈

H2(T ) of the extension Tn,p,q ,r . We denote by χ(n, p, q, r) the coefficient of χ and by α(n, p, q, r)
the coefficient of α in cTn , p , q , r

.

4.2. Computing α(n, p, q, r)

Proposition 4.2. We have α(n, p, q, r) = r.

Proof. Since the commutator [βαβ, α2βαβα2 ] is the identity in T , it gives rise to a 2-cycle
in homology given by

μ = (βαβ, α2βαβα2) − (α2βαβα2 , βαβ)
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and hence representing a class [μ] ∈ H2(T ). As in the proof of Proposition 4.1 we have [μ] =
i∗([η]), where

η = (AB−1 , A−1BA) − (A−1BA,AB−1)

is the 2-cycle on F associated to the commutator [AB−1 , A−1BA].
We claim the following.

Lemma 4.1. 〈α, [μ]〉 = 1, where 〈, 〉 : H2(T ) × H2(T ) → Z is the obvious pairing.

Proof. Consider the discrete Godbillon–Vey 2-cocycle gv : T × T → Z defined by the
formula

gv(g, h) =
∑

x∈S 1

det

(
log2 h′

r (x) log2(g ◦ h)′r (x)
h′′(x) (g ◦ h)′′(x)

)
.

Here γ′′ stands for
γ′′(x) = log2 γ′

r (x) − log2 γ′
l (x),

where γ′
r , γ

′
l are respectively the right and left derivatives of γ. Notice that the derivative of

γ ∈ T is a locally constant function having only finitely many discontinuity points.
It is well known (see [18]) that the 2-cocycle gv represents 2α in cohomology. A direct

computation using this cocycle shows that gv(μ) = 2 and hence proves the claim.

We have 〈
cTn , p , q , r

, i∗([η])
〉

=
〈
cTn , p , q , r

|F , [η]
〉

=
〈
cFr

, [η]
〉
,

where Fr is the central extension of F given by

Fr = 〈A,B, z; [AB−1 , A−1BA] = zr , [AB−1 , A−2BA2 ] = 1, [z,A] = [z,B] = 1〉.
According to the arguments from the proof of Proposition 4.1, these extensions exhaust the
set of all central extensions of F that arise from central extensions of T .

On the other hand, we have〈
cTn , p , q , r

, [μ]
〉

=
〈
α(n, p, q, r)α + χ(n, p, q, r)χ, i∗[η]

〉
=

〈
α(n, p, q, r)α|F + χ(n, p, q, r)χ|F , [η]

〉
= α(n, p, q, r)〈α|F , [η]〉 = α(n, p, q, r)

because the image of χ in H2(F ) vanishes.
Observe that Fr does not depend on n, p, q and thus nor does its class. This shows that

α(n, p, q, r) is a function on r. This function is computed through the choice of a setwise
section in the projection Fr → F , which is further evaluated to a fixed 2-cycle η and thus it
should be a linear function with integer coefficients and without constant terms. This implies
that α(n, p, q, r) = λr, for λ ∈ Z.

Eventually, by choosing explicit lifts of the elements AB−1 and A−1BA (and their products
in whatever order) in Fr , we can evaluate 〈cFr

, [η]〉 = r.

Corollary 4.1. The extensions Tn,p,q ,r describe all central extensions of T by Z.
The extensions Tn,p,q ,0 describe all central extensions of T by Z associated to multiples of

the Euler class, and all of them split over F .

Proof. The groups Tn,p,q ,0 are extensions of T by a cyclic group. Moreover, any central
extension of T has the form Tn,p,q ,r . The formula for α(n, p, q, r) shows that r = 0 if we want
its class to be a multiple of the Euler class. Further, the set of central extensions of T by Z up to
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isomorphism over T are in one-to-one correspondence with the classes of H2(T ). In particular,
any multiple of χ should be realized by one extension by Z. Now, for given m ∈ Z, there exists
only one isomorphism type of Tn,p,q ,0 for which n, p, q are solutions of 12n − 15p − 20q = m.
This follows from the uniqueness of solutions up to equivalence p ∼ p + 4x, q ∼ q + 3y, n ∼
n + 5x + 5y. Thus the respective extension must have kernel Z.

4.3. The Greenberg–Sergiescu extension AT

We know the value of χ(n, p, q, r) for r = 0, but in order to find the coefficient of r, we need to
know explicitly central extensions with non-trivial Godbillon–Vey class. Fortunately, Greenberg
and Sergiescu in [20] had constructed such an extension of T by B∞. The main difficulty in
analysing this extension comes from the fact that there are several perspectives for analysing
the group T , either as a group of dyadic piecewise affine homeomorphisms of S1 or else as a
group PPSL(2, Z) of piecewise PSL(2, Z) automorphisms of the circle at infinity. If we plug in
the discrete Godbillon–Vey then the formulas from [18, 20] use the first point of view. If we
are seeking the mapping class group perspective, it is the second point of view that is manifest
and there is no direct relationship between this and the former one. The key point in the
calculations below is to pass from one perspective to the other. We have therefore to give a
detailed account of the group AT , following Kapoudjian and Sergiescu [22].

We will use the mapping class group description of the Ptolemy–Thompson group but we
will enlarge the surface. We follow closely [16, 22].

The surface D occurs in the process of understanding the almost action of T on the infinite
binary tree. Recall that an almost automorphism of a tree is a map sending the complement of
a finite tree isomorphically on the complement of a finite tree. The action of T on the hexagon
decompositions of D induces an almost action on the binary tree. This point of view emphasizes
the realization of T as the group PPSL(2, Z).

We can think of T as the group of dyadic piecewise affine homeomorphisms of S1 . This will
lead to another, more subtle, way to construct an action of T on a regular tree. Let T be the
rooted binary tree with one finite leaf, obtained by splitting one edge of the usual binary tree
at some vertex (the root) and attaching one more edge. Label the vertices and edges (see [5])
of T inductively as follows. The leaf is labelled 0 ∼ 1 and the edge joining it with the root by
[0, 1]. The root is labelled 1

2 , its left descending edge is labelled [0, 1
2 ] and the right descending

one [ 1
2 , 1]. Further, if an edge is labelled [k/2n , (k + 1)/2n ], then its bottom vertex is labelled

(2k + 1)/2n+1 and the two edges issued from it are labelled, the left one [k/2n , (2k + 1)/2n+1]
and the right one [(2k + 1)/2n+1 , (k + 1)/2n ], respectively.

0~1

1/2
[0,1/2] [1/2,1]

3/41/4
[0,1/4] [3/4,1]

1/8 3/8 5/8 7/8

The almost action of T on T could be read off from the description of elements of T as
pairs of stable binary trees. Alternatively, we identify elements of T as dyadic piecewise affine
homeomorphisms of S1 = [0, 1]/0 ∼ 1. The action of such a homeomorphism induces a bijection
of the set of vertices of T (identified to their labels). This bijection is an almost automorphism
of the tree T .
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Consider next the tree ET obtained from T by adjoining a pending line (with infinitely many
vertices on it) to each vertex of T .

There is an obvious extension of the almost action of T from T to ET . However, there exists
a more interesting one as was discovered in [20].

Definition 12. Let Z[1/2]/Z ⊂ S1 denote the set of images of dyadic numbers. Assume
that T is identified with the subgroup of Homeo+(S1) of piecewise linear homeomorphisms. A
cocycle is a map K : T × Z[1/2]/Z → Z satisfying the following conditions.

(i) For any γ ∈ T , K(γ, x) vanishes for all but finitely many points x ∈ Z[1/2]/Z and∑
x∈

Z[ 1
2 ]

Z

K(γ, x) = 0.

(ii) K(γδ, w) = K(γ, δ(w)) + K(δ, w), for all γ, δ ∈ T , w ∈ Z[1/2]/Z.

For any cocycle K : T × Z[1/2]/Z → Z, we can associate such an action. Let γ ∈ T . Then γ
induces a bijection denoted by the same letter between the vertices of the rooted tree T , which
were identified with Z[1/2]/Z. This bijection induces an almost automorphism of the tree T .
Moreover, let n = maxx∈Z[1/2]/Z |K(γ, x)|. If v ∈ Z[1/2]/Z is a vertex of T , let fv denote the
pending line at v and f≥n

v ⊂ fv be the subtree of those points at distance at least n from v. We
define the almost action of γ on ET as being the unique isometric bijection from f≥n

v to
f
≥n+K(γ ,v )
γ (v ) .

Definition 13. The enhanced ribbon tree ED is obtained by thickening ET in the plane
and ED∗ by puncturing ED along the vertices of the pending lines. Notice that the vertices
of T are not among the punctures.
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The canonical rigid structures of ED and ED∗ are those from the diagram above, which
decomposes ED into (punctured) octagons centred at vertices of T and (punctured) squares
along the pending lines at vertices of T .

Admissible subsurfaces of ED or ED∗ are connected finite unions of elementary pieces.

Given a cocycle K, one finds that the almost action of T on ET induces an embedding of the
group T into the asymptotic mapping class group M(ED) with the given structure. Specifically,
define the content of an admissible subsurface Σ ⊂ ED to be the number of squares it contains.
Then T is the group of mapping classes that preserve the content, that is, those mapping classes
of homeomorphisms ϕ for which ϕ(Σ) and Σ have the same content for any admissible Σ.

We have an obvious exact sequence

1 −→ B∞ −→ M(ED∗) −→ M(ED) −→ 1.

Using the embedding ιK : T ↪→ M(ED), we can restrict M(ED∗) at ιK (T ). This restriction
is the group AT ,K , which fits also in the exact sequence

1 −→ B∞ −→ AT ,K −→ T −→ 1.

The main example of a non-trivial cocycle is the one associated to the discrete Godbillon–
Vey class. Specifically, identify T with the group of dyadic piecewise affine homeomorphisms
of [0, 1]/0 ∼ 1. For any γ ∈ T and v ∈ Z[1/2]/Z we set

K(γ, v) = γ′′(v) = log2 γ′
r (v) − log2 γ′

l (v),

where γ′
r , γ

′
l are respectively the right and left derivatives of γ. It is well known that K(γ, v) is

a cocycle [18, 20].
The extension AT ,K is obtained when K in the Godbillon–Vey cocycle above is simply

denoted by AT .

Remark 7. The definition from [22] was slightly different because it used n + 1 instead of
n in the definition and we have punctures at the vertices of T ; in particular, the vertex v of
T was always sent into γ(v). Nevertheless, the two groups AT in [22] and the present paper
coincide. Notice that there is a homeomorphism between the two differently punctured surfaces
that slide over all the punctures of the pending lines one unit such that their punctures are
now the vertices of T . This homeomorphism conjugates between the two versions of AT . Our
version has the advantage of simplifying the already cumbersome computations of the next
section.

4.4. The abelianized extension Aab
T

Proposition 4.3. The class cAa b
T

∈ H2(T ) is given by cAa b
T

= α.

Proof. This is already stated in [20]. In fact AT splits over the cyclic subgroups Z/2m Z ⊂ T
for all m and this implies that the coefficient of χ vanishes. Moreover, the coefficient of α is
shown in [20] to be one.

Proposition 4.4. There is an isomorphism of extensions between Aab
T and T30,16,3,1 .

Proof. We have to consider α and β as elements of the group of homeomorphisms preserving
the dyadics of S1 . Recall that T has the standard generators A,B,C from [5], as described in
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Section 2.1. Realizing A,B,C as (stable) couples of binary trees, we can identify

β = C−1 , α = C−1B

and thus

β(x) =

⎧⎪⎨⎪⎩
x
2 + 1

2 , if x ∈
[
0, 1

2

]
x + 1

4 , if x ∈
[ 1

2 , 3
4

]
2x − 3

2 , if x ∈
[ 3

4 , 1
] , α(x) =

⎧⎪⎨⎪⎩
x
2 + 1

2 , if x ∈
[
0, 3

4

]
x + 1

8 , if x ∈
[ 3

4 , 7
8

]
4x − 7

2 , if x ∈
[ 7

8 , 1
]
.

This implies that

β′′(0) = −2, β′′ ( 1
2

)
= 1, β′′ ( 3

4

)
= 1, α′′(0) = −3,

α′′ ( 1
2

)
= 0, α′′ ( 3

4

)
= 1, α′′ ( 7

8

)
= 2.

In the enhanced rooted tree model, we can therefore explain the action of α and β as in the
diagrams below.

15/1613/16

5/8

1/4

1/2

3/4

7/8

0

0

1

2

−3

α β

5/8

1/4

1/2

3/4

7/8

0

1

−2

1

It follows by direct calculation that the action of βα is described by the next diagram.

15/1613/16

1/4
3/4

7/8

0

−2

0

0

1/2

1

5/8
1

βα
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The problem we face now is to consider lifts α∗∗ and β∗∗ of α and β as mapping classes of
homeomorphisms of the enhanced surface ED∗.

For the sake of simplicity, we change in the diagrams below the labels corresponding to the
vertices of the rooted tree, as follows: A states for 0, B for 1/2, C for 3/4, D for 7/8, and E
for 1/4. Moreover, the pending line at A has its vertices labelled A1 , A2 , . . . and so on for all
other vertices.

The supports of these classes of homeomorphism correspond to suitable disks around the
vertices.

(i) β∗∗ has a support of a disk embedded into ED∗ containing Ai,Bi, Ci for i ≤ 3. Moreover,
the action of β is described as follows: first β acts as a rotation of order 3 in the plane; next
the vertices A1 and A2 are slid in counterclockwise direction towards the positions C1 and
B1 , respectively. In the meantime, the punctures Cj (and Bj ) are simultaneously translated
one unit along their pending lines and hence Cj (respectively Bj ) will arrive at the position
formerly occupied by Cj+1 (respectively Bj+1), for all j ≥ 1. The punctures Aj (for j ≥ 3) are
translated simultaneously two negative units along their pending line and hence Aj will arrive
at the position formerly occupied by Aj−2 .

3
2

1

C

1

2

3

A

1
2

3

B

3
2

1

1

2

3

1
2

3

C

A B

(ii) α∗∗ has a support of a disk embedded into ED∗ containing Ai,Bi, Ci,Di for i ≤ 4. The
action of α is described as follows: first α acts as a rotation of order 4 in the plane; further A1
and A2 are slid in counterclockwise direction respectively onto D1 and D2 , while A3 is slid into
C1 . The slidings occur simultaneously with the translations of all punctures Dj (j ≥ 1) two
units along their pending lines and the Cj (j ≥ 1) one unit along their pending line. Moreover,
the Aj (j ≥ 4) are translated three negative units along their pending line. The trajectories of
the points are represented below (we did not draw the obvious translations along the pending
lines).

1
2

3

1
2

3

1
2

3

1
2

3
1

2
3

1
2

3

A

CD

B
A

C

D

B

1
2

3

1

3
2

We are now able to figure out the element β∗∗α∗∗ ∈ AT . Its support is now a disk embedded
into ED∗ containing Ai,Bi, Ci,Di, Ei for i ≤ 4.
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Notice, however, that the shape of the punctures, trajectories is not sufficient for recovering
the relative position of punctures. We have to specify somewhat the speed of each puncture
along its trajectory, or equivalently, to specify a parameterization. There is a way to give a
discrete parameterization by associating natural numbers to arcs of trajectories as follows.
The time interval is divided into N smaller intervals for some N . The arc λ is given the label
k ∈ {1, 2, . . . , N} if the respective puncture travels along λ precisely in the kth interval of
time. Actually, this says that whenever we have two arcs (disjoint or not) labelled j and k,
with j < k the respective punctures travel first along the arc j and next along the arc k. A
mapping class group element written as a word in the α∗∗ and β∗∗ will lead naturally to a
discrete parameterization. Moreover, N is chosen such that the mapping class of the respective
homeomorphism is uniquely determined by the discrete parameterization.

As an example, β∗∗α∗∗ is completely described by the following diagram (including
parameterization).

2
3

3

2

1

AC

D

B E

1
2

3

1

3

2

1

CD

A B

E

1

2
3

3

2

1

1
2

3

3

2

1

1
1

2

2

2

3

1

3

2

1

Recall that lifts in AT of the relations in T should give elements of the infinite braid
group B∞, the kernel of the projection AT → T . Denote by a : AT → Aab

T the projection
homomorphism. The restriction a|B∞ : B∞ → Z is then identified to the abelianization
homomorphism. We have, therefore, to compute the integers n, p, q so that a(β∗∗3) = zq ,
a(α∗∗4) = zp , a((β∗∗α∗∗)5) = zn .

Lemma 4.2. The braid β∗∗3 ∈ B∞ is given by the diagram below.

B

3
2

1

1

2

3

1
2

3

3
2

1

C

1

2

3

A3

1

2

C

B

A

In particular, a(β∗∗3) = z3 .
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Proof. We will give an explicit proof of what is going on in this (simplest) situation. The
terminology is somewhat unconventional. We say that punctures ‘travel’ from one location to
another, in certain intervals of time. One chooses the time intervals so that their simultaneous
trajectories do not intersect and one can recover the class of the associated homeomorphism.
It is of course sufficient to have a finite number of such intervals, which we also call steps, and
the relative speed within each interval is not important, because any two speed values lead
to isotopic homeomorphisms. Eventually, we can compose the classes obtained by describing
them step by step. The labels are assigned to the punctures and thus they travel around; at
each step there are induced (infinite) permutations of the labels. At the end we find an element
of a finite braid group inside B∞ and trajectories of punctures are now viewed as strands of
that braid. Strands are said to be trivial if they are trivial as braid strands. We will exemplify
this below with β∗∗3 .

Each time we have an action of β, there is a first step comprising an order 3 rotation in the
plane and a second step, the sliding, where two punctures keep travelling in the counterclockwise
direction, while the others are fixed, along a circle arc respectively of angle 4π/3 (a 2

3 -turn)
and 2π/3, according to the diagram of β∗∗: the puncture labelled A1 is the one that travels
faster while A2 travels a shorter distance. There are also some translations along the pending
lines so that, for instance, B1 is sent into B2 and C1 onto C2 . In general, we will not bother
to represent on the diagram these translations, except when their final action is non-trivial.

Assume now that we want to compose two such classes β∗∗. Then, we draw first the result
of the first β∗∗ action and further we resume with the first step, namely, an order 3 rotation.
One applies next the second step sliding and observe that the puncture labelled A1 is again
located in the position from which it has to be slid. Its fellow traveller this time is the puncture
labelled C1 , which has moved at the previous step from position C1 onto C2 .

It is clear now how to add one more β∗∗: an order 3 rotation sends the puncture labelled A1
again into the position to be slid and thus it completes one more 2

3 -turn to arrive at its initial
position. Its fellow traveller in the sliding step is the puncture labelled A2 , which followed
before the path from A2 to B1 and then from B1 onto the location of B2 . The sliding will send
it into the location of C1 .

3
2

1

C

1

2

3

A

1
2

3

3

1

1

2

3

1
2

3

C

A B
2

B

3
2

1

1

2

3

1
2

3

C

A B

3

1

2

3

1
2

3

A

C
2

1

B

3

1

1

2

3

1
2

3

C

A B
2

=
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The trajectory of A1 is a strand of the braid β∗∗3 , which can be split off. This implies that,
by means of an isotopy, we can assume that A1 is fixed. This isotopy corresponds to shrinking
the trajectory of A1 to a point. This shrinking could be done without touching the others’
trajectories, which means that it lifts to an isotopy between braids in the three-dimensional
space. It follows that the only non-trivial part of the braid β∗∗3 is the exchange between the
punctures A2 and C1 . The translations along the pending lines yield trivial strands for the
remaining punctures.

The remaining calculations are of the same sort, but involve more complicated braids. We
were unable to find the braids (as the two-dimensional diagram is misleading) but we will make
use of additional simplifications to help computation of the images under the abelianization
map.

First, one can find a(σ) using only the winding numbers of the trajectories of the braid σ.
Let σ be given as a geometrical braid in R2 × [0, 1] by the parameterizations (xk (t), t), for
t ∈ [0, 1], each subscript k corresponding to one strand. The (relative) winding number ν(j, k)
of the strands j and k is the angle that the vector xj (t) − xk (t) swept when t goes from 0 to
1. Turning counterclockwise yields positive angles. If the punctures sit all on the same line in
R2 × 0, then relative winding numbers are multiples of π. However, they make sense even when
the punctures are given arbitrary positions in the plane. The (total) winding number ν(σ) is
the sum of all relative winding numbers of its (distinct) strands.

Lemma 4.3. We have πa(σ) = ν(σ).

Proof. Both sides are group homomorphisms and their values on the generators coincide.

It is much simpler to compute winding numbers when trajectories are known.

Lemma 4.4. We have ν(α∗∗4) = 16π.

Proof. We draw each trajectory individually, along with its discrete parameterization. The
only non-trivial trajectories are those of the strands starting at A1 , A2 , A3 , and D1 . The
remaining ones are easily shown to be trivial and having zero winding numbers with all
others.
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1
23

1
2

3

A

C

D

B

1
2

3

1

3
2

4
3

2
1

2
3

2
3

A

C

D

B
2

3

3
2

1
2

3

1
2

3

1
2

3

1
2

3

D

C B

A

3

2

1

1 1

1 1

4

1
2

3

1
2

3

A

C

D

B

1
2

3

1

3
2

4
3

2

1
2

3

1
2

3

A

C

D

B

1
2

3

1

3
2

3
4

2
1

1

Then we compute easily from the diagram above the relative winding numbers between
strands (hereby identified to their start point):

ν(A1 , A2) = 6π, ν(A1 , A3) = ν(A2 , A3) = ν(A3 ,D1) = ν(A2 ,D1) = ν(A1 ,D1) = 2π.

This ends the proof of the lemma.

Lemma 4.5. We have ν((β∗∗α∗∗)5) = 30π.

Proof. Recall that diagrams define mapping classes of homeomorphisms. Then, for any
mapping classes H1 and H2 for which the compositions below make sense and represent
elements of B∞, we have the identity

a

⎛⎜⎝H1 ◦ ◦H2

⎞⎟⎠ − a

⎛⎜⎜⎝H1 ◦ ◦H2

⎞⎟⎟⎠ = 2.
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In fact the first braid is obtained from the second one by inserting some σ2 , which braids
two punctures twice. Replacing the first braid by the second one will be called a (direct)
simplification of the braid diagram.

We can use a direct simplification within the diagram of β∗∗α∗∗ in order to remove the
loop trajectory based at A2 . Thus, after five simplifications within (β∗∗α∗∗)5 , we obtain the
following trajectories.
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We did not draw them, but the non-trivial trajectories are of two types: a long trajectory
of the strand starting at A1 and a braid cycle permuting circularly the nine punctures
A2 , A3 , C1 , E1 , E2 ,D1 ,D2 , B1 , and B2 . The braid cycle admits four direct simplifications by
sliding C1 outward to E2D1 , B1 outward A3C1 , E1 outward of D2B1 and D1 outward of B2A2
and becomes the following braid b.
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By direct calculation (taking care of the discrete parameterizations for both b and the
trajectory of A1), we obtain ∑

X

ν(A1 ,X) = 4π,

where the sum is over all strands X of the braid b. Since the braid b is now a cycle of length
9, we find that ν(b) = 8. Summing up all contributions to ν((β∗∗α∗∗)5), we obtain 30, as
claimed.

Remark 8. The elements β, α, βα are respectively of order 3, 4, and 5. Since the Euler
class of AT is zero, it splits over cyclic subgroups of T and the same then holds for Aab

T . This
implies that q ≡ 0(mod 3), p ≡ 0(mod 4), n ≡ 0(mod 5). Moreover, the permutation induced
by (β∗∗α∗∗)5 is a cycle of length 9 and thus is even. In particular n ≡ 0(mod 2) and so n ≡
0(mod 10).

4.5. End of the proof of Theorem 1.2

In order to finish the proof, we need to compute χ(n, p, q, r). We first have the following.

Proposition 4.5. We have χ(n, p, q, r) = 12n − 15p − 20q + cr, for some c ∈ Z.

Proof. It suffices to use Proposition 2.2 and the linearity of the function χ(n, p, q, r) : Z4 →
Z. For the latter, use the arguments from the proof of Lemma 2.2, where the case r = 0 is
treated. We skip the details.

Propositions 4.3 and 4.4 show that χ(30, 16, 3, 1) = 0, and hence χ(n, p, q) = 12n − 15p −
20q − 60r. Then Proposition 4.2 finishes the proof of Theorem 1.2.

The analysis above can also be used in establishing the following.

Proposition 4.6. The group AT ,K is finitely generated.

Proof. Consider the group AT , the general case following the same way. The elements α∗∗

and β∗∗ generate the quotient T and it suffices to add sufficiently many elements to be able to
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generate all of B∞, which is the braid group on the punctures. Let σ be the braiding of the first
two punctures of the pending line at A. Let t denote the mapping class of the homeomorphism
that translates one unit along the line made by gluing together the two (half)-lines pending
at A and B. Observe now that t conjugates σ to any of the braid generators of the pending
line at A and B. On the other hand, the action of T by conjugation on AT is transitive on
the set of pending lines, as it is the action of PSL(2, Z) on the binary tree. This means that
for a vertex v of the rooted binary tree there exists a word w = w(α∗∗, β∗∗) such that the
corresponding element of AT sends the pending line at v asymptotically onto the pending line
at A. The meaning of the word asymptotically is that all but finitely many vertices of the
respective line are sent into the other ones. The first few vertices might be sent onto other
pending lines, as happens with α∗∗ and β∗∗, which slide finitely many points. However, sliding
of punctures occurs only at the supports of α∗∗ and β∗∗. Thus, the line pending at v is sent
into the line pending at A and slidings of its vertices could appear only when its first vertex
reaches the set {A1 , B1 , C1 ,D1 , E1}. Let M then be the mapping class group of an admissible
subsurface containing the supports of α∗∗ and β∗∗. It follows that adjoining the generators of
M to α∗∗, β∗∗, σ, t, we generate all of B∞ and thus AT .

5. Odds and ends

5.1. Geometric extensions

We would like to understand all extensions

1 −→ B∞ −→ G −→ T −→ 1

coming from nature. A tentative approach is to say that such an extension is geometric
if there exists a tessellation of a planar surface Σ with infinitely many punctures such that G is
the asymptotic mapping class group of Σ with this extra structure (see also [15]). Then B∞
is the braid group in the punctures.

In order to avoid trivial constructions, we restrict ourselves to those examples that are mini-
mal in some sense. The simplest minimality condition is to ask the natural homomorphism T →
Out(B∞) to have one orbit of generators of B∞, that is, T acts transitively on the first homology
of the surface Σ. Alternatively, this amounts to requiring that the lifts of the generators α and
β of T together with a standard braid generator σ form a generator system for G.

The groups T1,0,0 and T3,1,0 are geometric (see [16]) and minimal. Although A is also
geometric, one needs to modify the minimality condition above in order to be fit for it.

It seems that there are only finitely many such minimal geometric extensions, for appropriate
minimality conditions.

5.2. Finite surfaces

It is known that the mapping class group M(Σ) of a punctured surface Σ embeds into the
groupoid of flips acting on the triangulations of Σ with vertices at punctures. Quantization
of the Teichmüller space of the surface Σ then leads by the technology of [12] to projective
representations of the mapping class group M(Σ) and thus to a central extension M̂(Σ).

Recall also that H2(M(Σ)) is freely generated by the Euler class χ together with the classes
corresponding to each one of the punctures.

It seems plausible that the class cM̂(Σ)
of the extension is actually equal to 12χ ∈ H2(M(Σ)).

Notice that additional work is needed to obtain this result because of our lack of knowledge
of the Ptolemy groupoids and their associated groups (see [25]) for finite surfaces of positive
genus.
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Kashaev, Christophe Kapoudjian, and Greg McShane for useful discussions.

References

1. E. W. Barnes, ‘The genesis of the double gamma function’, Proc. Lond. Math. Soc. 31 (1899) 358–
381.

2. S. Baseilhac and R. Benedetti, ‘Classical and quantum dilogarithmic invariants of flat PSL(2,C)-bundles
over 3-manifolds’, Geom. Topol. 9 (2005) 493–569.

3. Hua Bai, F. Bonahon and X. Liu, ‘Local representations of the quantum Teichmüller space’, Preprint,
2007, arXiv:math.GT/0707.2151.

4. R. J. Baxter, Exactly solved models in statistical mechanics (Academic Press, London, 1989).
5. J. W. Cannon, W. J. Floyd, and W. R. Parry, ‘Introductory notes on Richard Thompson’s groups’,

Enseign. Math. 42 (1996) 215–256.
6. L. Chekov and V. Fock, ‘Quantum Teichmuller spaces’, Teoret. Mat. Fiz. 120 (1999) 511–528 (Russian),

Theoret. and Math. Phys. 120 (1999) 1245–1259 (English).
7. L. D. Faddeev, ‘Discrete Heisenberg–Weyl group and modular group’, Lett. Math. Phys. 34 (1995) 249–

254.
8. L. Faddeev and R. Kashaev, ‘Quantum dilogarithm’, Modern Phys. Lett. A 9 (1994) 427–434.
9. V. Fock, ‘Dual Teichmüller spaces’, Preprint, 1997, arXiv:math.DG-GA/9702018.

10. V. Fock and A. B. Goncharov, ‘Moduli spaces of local systems and higher Teichmüller theory’, Publ.
Math. Inst. Hautes Études Sci. 103 (2006) 1–211.

11. V. Fock and A. B. Goncharov, ‘Moduli spaces of convex projective structures on surfaces’, Adv. Math.
208 (2007) 249–273.

12. V. Fock and A. B. Goncharov, ‘The quantum dilogarithm and unitary representations of cluster modular
groupoids’, Invent. Math. 175 (2009) 223–286.

13. V. Fock and A. B. Goncharov, Cluster ensembles, quantization and the dilogarithm. II: The intertwiner,
Special volume dedicated to Yu. I. Manin’s 70th birthday (Birkhäuser, Basel, 2008) 559–678.
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