A Note on the Bonnet-Myers Theorem

V. Boju and L. Funar

Abstract. The aim of this note is to derive a compactness result for complete manifolds whose Ricci curvature is bounded from below. The classical result, usually stated as Bonnet-Myers theorem, provides an estimation of the diameter of a manifold whose Ricci curvature is greater than a strictly positive constant. Weaker assumptions that the Ricci curvature function tends slowly to zero (when the distance from a fixed point goes to infinity) were already considered in [2, 3]. We shall improve here their results.

Keywords: Ricci curvature, Jacobi equation

AMS subject classification: 53C20, 53C21

We will be concerned with the following analytic

Problem. Given a function \(a : [r_0, +\infty) \rightarrow (0, +\infty) \) we consider positive solutions \(y = y(r) \) of the differential equation

\[
y'' + ay = 0
\]

satisfying \(y(r_0) = 0 \). Obviously, \(y \) has to be concave. We have to determine the functions \(a = a(r) \) for which \(y \) has a further zero \(r_1 > r_0 \) which may be bounded from above.

It is clear that there is such a bound in case \(a \) is a positive constant, but this bound tends to infinity as \(a(r) \rightarrow 0 \). The above problem seems to be interesting for functions \(a \) satisfying \(\lim_{r \rightarrow +\infty} a(r) = 0 \). It turns out that the right asymptotic is \(a(r) \sim cr^{-2} \), with critical value \(c = \frac{1}{4} \). In fact, for \(c = \frac{1}{4} + v^2 \) one gets the solution \(y(r) = r^{\frac{1}{2}} \sin v \left(\log \frac{r}{r_0} \right) \), and hence there is a second zero. In this paper we show that in fact the constant \(v^2 \) may be replaced by a function which tends as weakly as an iterated logarithm to zero, which enters in our definition of some function \(A_{k,v} = A_{k,v}(r) \).

Let us first make some notations. For each natural number \(k \) we set

\[
\begin{align*}
\Log_0 (r) &= r \\
L_k (r) &= \log \ldots \log r \\
&\quad \text{under the k-fold logr}
\end{align*}
\]

V. Boju: Univ. of Craiova, Dept. Math., Str. Al. I. Cuza 13, Craiova 1100, Romania
L. Funar: Université de Grenoble I, Institut Fourier, B.P.74, 38402 Saint-Martin-d’Hères Cedex, France. e-mail: funar@fourier.ujf-grenoble.fr

ISSN 0232-2064 / $ 2.50 © Heldermann Verlag
whenever is defined, and
\[
A_{k,v}(r) = \frac{1}{4r^2} \left(1 + \frac{1}{L_1(r)^2} + \ldots + \frac{1}{L_{k-1}(r)^2} \right) \\
+ \frac{1 + 4v^2}{L_1(r)^2L_2(r)^2 \ldots L_k(r)^2}.
\]

For a Riemannian manifold \(M \), we denote by \(\text{Ric}_x(Y) \) the Ricci curvature in the direction \(Y \in T_x(M) \), for a point \(x \in M \) and \(T_x(M) \) being the tangent space to \(M \) in \(x \). The space \(M \) is said to have an almost positive asymptotic Ricci curvature (abbreviated to be an AP-Riemannian space) if there exist \(k, v, r_0 > 0 \) and \(p \in M \) such that
\[
\text{Ric}_x(Y) \geq (n - 1) A_{k,v}(r) |Y|^2
\]
holds for all \(x \in M \) whose distance from a fixed point \(p \) is \(r = \text{dist}(p, x) \geq r_0 \) and for all vectors \(Y \in T_x(M) \). Also \(|\cdot| \) stands for the norm in the tangent space induced by the metric, and \(n \) is the dimension of \(M \).

Our result can be stated now as follows.

Theorem 1. A complete AP-Riemannian manifold is compact, and its diameter \(d(M) \) is bounded by
\[
d(M) \leq e_{k-1} \left(L_{k-1} \left(\exp \frac{\pi}{v} \max\{r_0, e_k(0)\} \right) \right)
\]
where \(e_0(x) = x \) and \(e_{m+1}(x) = \exp e_m(x) \) for \(m > 0 \).

Notice that the case \(k = 0 \) is discussed in [2] and the case \(k = 1 \) is covered by [3]. Also, Dekster and Kupka [3] proved that the constant \(\frac{1}{4} \) is sharp, i.e. for any function \(A = A(r) \) using in the place of \(A_{k,v} \) so that Theorem 1 holds we must have
\[
\lim_{r \to +\infty} A(r)r^2 \geq \frac{1}{4} \quad \text{and} \quad \lim_{r \to +\infty} \left(A(r)r^2 - \frac{1}{4} \right) (\log r)^2 \geq 1.
\]
So our result identifies the higher order terms which might be added in spite to preserve the boundedness of the manifold. We think that the function \(A_{k,v} \) is sharp.

Proof of Theorem 1. We write the Jacobi equation associated to the sectional curvature function \(A_{k,v} \), namely
\[
y'' + A_{k,v}(r)y = 0.
\]
We claim that this equation admits the basic solutions
\[
\Psi_0 = \Phi_k(r) \cos vL_k(r) \quad \text{and} \quad \Psi_1 = \Phi_k(r) \sin vL_k(r)
\]
where
\[
\Phi_k(r) = r^{\frac{1}{2}} L_1(r)^{\frac{1}{2}} \ldots L_{k-1}(r)^{\frac{1}{2}}.
\]
For \(k = 1 \) it is easy to see that \(r^\frac{1}{2} \cos(u \log r) \) and \(r^\frac{1}{2} \sin(u \log r) \) are solutions for equation (2). By recurrence we prove first that the following relations are fulfilled (for \(k = 1 \) they are simply to check):

\[
\Phi_k'' + A_{k,0} \Phi_k = 0 \quad \text{and} \quad 2 \Phi_k' L_k' + \Phi_k L_k'' = 0.
\]

In fact we have

\[
\Phi_{k+1} = \Phi_k L_k^\frac{1}{2} \quad \text{and} \quad L_{k+1} = \log L_k,
\]

hence

\[
2 \Phi_{k+1}' L_{k+1}' + \Phi_{k+1} k L_{k+1}'' = (2 \Phi_k' L_k' + \Phi_k L_k') L_k^{-\frac{1}{2}} = 0.
\]

On the other hand

\[
\frac{\Phi''_{k+1}}{\Phi_{k+1}} = -A_{k,0} + (L_k')^2 L_k^{-2} = -A_{k+1,0}
\]

holds and the two relations stated above are proved.

Furthermore we verify that

\[
\Psi_0'' = \Phi_0'' \cos(v L_k) - v (2 \Phi_0' L_k' + \Phi_k L_k') \sin(v L_k) - v^2 \Phi_k L_k'^2 \cos(v L_k).
\]

The two relations stated above and the obvious identity

\[
L_k = L_0^{-1} L_1^{-1} \cdots L_{k-1}^{-1}
\]

complete the proof of our claim for \(\Psi_0 \) (the case of \(\Psi_1 \) is similar).

Both \(\Psi_0 \) and \(\Psi_1 \) are defined on the interval \([e_k(0), +\infty)\). Set \(r_1 = \max\{r_0, e_k(0)\} \).

Therefore, for each \(\lambda \geq e_k(0) \) the linear combination

\[
Y_{k,v,\lambda}(r) = -\sin(v L_k(\lambda)) \Psi_0(\lambda) + \cos(v L_k(\lambda)) \Psi_1(\lambda)
\]

is a solution for equation (2), which satisfies also \(Y_{k,v,\lambda}(\lambda) = 0 \). Also, we may write

\[
Y_{k,v,\lambda}(r) = \sin(v(L_k(r) - L_k(\lambda))) \Phi_k(r) L_k(r)
\]

so that \(Y_{k,v,\lambda} \) is positive on the interval \((\lambda, \beta(\lambda)) \) where \(\beta(\lambda) = e_{k-1}(L_{k-1}(\lambda) \exp(\frac{\pi}{v})) \) and vanishes again in \(\beta(\lambda) \). This is a consequence of the straightforward formula

\[
L_k(\beta(\lambda)) - L_k(\lambda) = \frac{\pi}{v}.
\]

A standard argument (see, for instance, [1]) proves that the diameter of the manifold \(M \) is less than \(\beta(r_1) \). Since \(M \) is complete from the Hopf-Rinow theorem it follows that \(M \) is in fact compact and this ends the proof of the theorem.

Remark 2. The form of the function \(A_{k,v} \) is in some sense sharp. In fact, for \(v = 0 \) the analog result is false: We may choose on \(M = \mathbb{R}^n - K \), with \(K \) being a sufficiently large compact, the metric with radial symmetry \(dr + P_k(r)d\theta \) (in polar coordinates) where \(d\theta \) is the metric form on the standard sphere \(S^{n-1} \) and

\[
P_k(r) = r \left(\sum_{i=1}^{k} L_i(r)^{-2} \right)^{-\frac{1}{2}}.
\]

Then a straightforward computation shows that \(\text{Ric}_r(Y) = A_{k,0}(r)|Y|^2 \) for all points \(z \) outside the compact \(K \) and all tangent vectors \(Y \).

Acknowledgements. We wish to thank the referees for pointing out some errors and missprints in the earlier version of this note. Their suggestions substantially improved the revision.
References

Received 10.06.1995; in revised form 15.01.1996