On the cohomology of weighted complete intersections

By

LOUIS FUNAR

The weighted projective space \(P(a_0, a_1, \ldots, a_n) \) is defined as the quotient of \(CP^n \) by the following action of \(G = \mathbb{Z}/a_0 \mathbb{Z} \oplus \mathbb{Z}/a_1 \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/a_n \mathbb{Z} \):

\[
(k_0, k_1, \ldots, k_n) (z_0, z_1, \ldots, z_n) = (z_0^{k_0}z_0^{-k_0}, z_1^{k_1}z_1^{-k_1}, \ldots, z_n^{k_n}z_n^{-k_n}),
\]

where \(\xi_i = \exp(2\pi i/l) \).

It is known that the integral homology groups of \(P(a_0, a_1, \ldots, a_n) \) are torsion free (see [6, 3]) so they are isomorphic to the homology groups of \(CP^n \). An entirely elementary computation was carried out for \(n = 2 \) in [4].

Let now \((V, 0)\) be an isolated singularity of complete intersection in \(\mathbb{C}^{n+k+1} \) defined by the weighted homogeneous polynomials \(f = (f_1, f_2, \ldots, f_k) \). We suppose that \(f_i \) has degree \(d_i \) with respect to the weights \(\omega(z_j) = a_j, j = 0, 1, \ldots, n + k \). There are two spaces naturally associated to the singularity \((V, 0)\), namely the link \(K = V \cap S^{2(n+k)+1} \) and the quasi-smooth weighted complete intersection \(Y_m \) defined by the polynomials \(f_i \) in \(P(a_0, a_1, \ldots, a_{n+k}) \). Notice that \(K \) is a smooth compact oriented \((2n+1)\)-dimensional manifold which is \((n-1)\)-connected (see [5]). The middle Betti numbers of \(K \) have been computed in terms of the \(a_j \)’s and the \(d_j \)’s by Dimca ([2]). The aim of this note is to give a brief insight into the cohomology of \(Y_m \). All the cohomology groups considered below have integer coefficients. We say that \((a_0, a_1, \ldots, a_{n+k+1})\) is \(m \)-prime if the greatest common divisor of any \(m \) of the \(a_j \)’s equals one.

Proposition 1. Suppose that \((a_0, a_1, \ldots, a_{n+k+1})\) is \(m \)-prime. Then the relative cohomology groups vanish:

\[
H^i(P(a_0, a_1, \ldots, a_{n+k}), Y_m) = 0 \quad \text{for } i \leq n - m + 1.
\]

Proof. Consider \(F_i(z) = f_i(z_0^{a_0}, z_1^{a_1}, \ldots, z_{n+k}^{a_{n+k}}) \) and set \(Z_\infty \) for the complete intersection defined by the polynomials \(F_i \) in \(CP^{n+k} \). Remark that the \(G \)-action on \(CP^{n+k} \) leaves \(Z_\infty \) invariant and we have \(Z_\infty / G = Y_m \). Let now \(P = \mathbb{Z}/p^m \mathbb{Z} \oplus \mathbb{Z}/p^m \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/p^m \mathbb{Z} \subset G \) be a \(p \)-subgroup of \(G \). Therefore \(p^m \) divides \(a_i \) for all \(i = 0, 1, \ldots, n + k \). Then the \(P \)-invariant subsets are

\[
(CP^{n+k})^P = \{ z_i z_i = 0 \},
\]

and

\[
(Z_\infty)^P = Z_\infty \cap \{ z_i z_i = 0 \}.
\]
Since \(Z_{\infty} \) is a complete intersection \((Z_{\infty})^p\) is also a complete intersection, eventually using only part of the original equations \(F_i \). Next the number of non-zero \(a_i \)'s cannot exceed \((m-1)\) because \((a_0, a_1, \ldots, a_{n+k})\) is \(m \)-prime. Then Lefschetz’s theorem for complete intersections implies
\[
\pi_j((C\cdot P^{m+k})^p, (Z_{\infty})^p) = 0 \quad \text{for } j \leq n - m + 1.
\]
But this holds for all primes \(p \) and all maximal \(p \)-subgroups \(P \) so from [1] we derive our claim.

Corollary 2. For a prime number \(p \) write \(a_i = p^{r_i} \cdot c_i \) with \(r_i \) maximal. Choose a permutation \(\sigma \) of \([0, 1, 2, \ldots, n + k]\) such that
\[
r_{\sigma(1)} \geq r_{\sigma(2)} \geq \cdots \geq r_{\sigma(n+k)} \geq r_{\sigma(n+k+1)} = 0,
\]
and set:
\[
b_i = \prod_{l \leq j \leq n} p^{r_{\sigma(l)}} \quad \text{and} \quad b_i = \prod_{p} b_i(p).
\]
If \((a_0, a_1, \ldots, a_{n+k})\) is \(m \)-prime then the set of numbers
\[
R_{ij} = b_i b_j b_{i+j} \quad \text{with} \quad 0 \leq i, j, i + j \leq (n - m + 1)/2
\]
is a topological invariant of the isolated singularity \((V, 0)\).

Proof. The \(\mathbb{Z} \)-cohomology algebra of \(P(a_0, a_1, \ldots, a_{n+k}) \) is determined in [6]; if \(g_i \) is the generator of \(H^1 P(a_0, a_1, \ldots, a_{n+k}) \) then \(g_i \cup g_j = R_{ij} g_{i+j} \). But in low rank the cohomology algebra of \(Y_{\infty} \) is induced from that of \(P(a_0, a_1, \ldots, a_{n+k}) \) (according to Proposition 1) and we are done.

Set now
\[
F = (F_1, F_2, \ldots, F_k),
\]

\[
\bar{F} = (F_1 - z_{n+k+1}, F_2 - z_{n+k+1}, \ldots, F_k - z_{n+k+1}),
\]
and
\[
\bar{f} = (f_1 - z_{n+k+1}, f_2 - z_{n+k+1}, \ldots, f_k - z_{n+k+1}).
\]

The link of the singularity defined by \(\bar{f} \) will be denoted by \(K \). Let \(Z \) be the fibre of \(F \) over \(1 \) (the global Milnor fibre) and \(\bar{Z} \) its projective closure. Observe that \(Z_{\infty} \) is in fact \(\bar{Z} - Z \). In fact \(P(a_0, a_1, \ldots, a_{n+k}) \) is the compactification of \(\mathbb{C}^{n+k+1} \) whose locus at infinity is precisely \(P(a_0, a_1, \ldots, a_{n+k}) \). If \(Y \) is the global Milnor fibre of \(f \) and \(\bar{Y} \) is the quasi-smooth weighted intersection in \(P(a_0, a_1, \ldots, a_{n+k}) \) associated to \(\bar{f} \) then \(Y \) may be identified with \(\bar{Y} - Y_{\infty} \). Otherwise we can look at the \(S^1 \)-action on \((S^{2n+k+3}, S^{2n+k+3})\) given by
\[
\theta \cdot z = (\theta^{a_0} z_0, \theta^{a_1} z_1, \ldots, \theta^{a_{n+k}} z_{n+k}, \theta z_{n+k+1}).
\]
Then \((K, K)/S^1 = (\bar{Y}, Y_{\infty}) \). Then \(Y_{\infty} \) is called strongly smooth ([2]) if the \(S^1 \)-action on \(K \) is semi-free.
Proposition 3. Assume that \(Y_\omega \) is strongly smooth. Then \(H_+(K) \) is torsion free and the Milnor lattice of \(f \) is equivalent to the cup product
\[
H^{n+1}(\overline{K}, K) \times H^{n+1}(\overline{K}, K) \to H^{2n+2}(\overline{K}, K) \cong \mathbb{Z}.
\]
Moreover if \(k = 1 \) then this may be expressed also as the cup product
\[
H^{n+k}(S^{2n+k+1}, K) \times H^{n+k}(S^{2n+k+1}, K) \to H^{2n+k}(S^{2n+k+1}, K).
\]

Proof. From the Smith-Gysin sequence associated to the \(S^1 \)-action on \(K \) we derive that \(H_+(K) \) is torsion free and:
\[
H_j(Y_\omega) = H_j(CP^n) \quad \text{for } j \neq n, \quad H_n(Y_\omega) = H_n(K) \oplus H_n(CP^n).
\]
Now \(Y_\omega \) is strongly smooth if and only if \(Y \) is strongly smooth. The long exact sequence of the pair \((\overline{K}, K) \) gives us:
\[
\begin{align*}
H^1(\overline{K}, K) &= 0 \quad \text{for } k \neq n + 1, n + 2, 2n + 2, 2n + 3, \\
H^{2n+2}(\overline{K}, K) &= H^{2n+3}(\overline{K}, K) = \mathbb{Z}.
\end{align*}
\]
But \(Y \) has the homotopy type of a bouquet of \((n + 1) \)-spheres (see [7]) so using the Lefschetz's duality we find:
\[
H^j(\overline{Y}, Y_\omega) = 0 \quad \text{for } j \neq n + 1.
\]
Now from the Smith-Gysin sequence associated to the \(S^1 \)-action on \((\overline{K}, K) \) we obtain:
\[
\begin{align*}
0 &= H^{2n}(\overline{Y}, Y_\omega) = \ker (H^{2n+2}(\overline{Y}, Y_\omega) \to H^{2n+2}(\overline{K}, K)), \\
0 &= H^{2n+1}(\overline{Y}, Y_\omega) = \ker (H^{2n+2}(\overline{Y}, Y_\omega) \to H^{2n+2}(\overline{K}, K)), \\
H^{n+2}(\overline{K}, K) &\cong H^{n+1}(\overline{Y}, Y_\omega), \\
H^{n+3}(\overline{Y}, Y) &\cong H^{n+1}(\overline{K}, K).
\end{align*}
\]
Using the functoriality of Lefschetz duality the first part of our claim follows. If \(k \) equals one then \(\overline{K} - K \) is a non-ramified \(\mathbb{Z}/d \mathbb{Z} \)-covering of \(S^{2n+k+1} \) and the Alexander duality gives the second claim.

References

Anschrift des Autors:
Louis Funar
Université de Grenoble I
Institut Fourier
Laboratoire de Mathématiques
associe au CNRS
B.P. 74
F-38402 Saint-Martin-d’Hères Cedex

Eingegangen am 9. 3. 1993

32°