GENERALIZED HADWIGER NUMBERS
FOR SYMMETRIC OVALS

VALENTIN BOJU AND LOUIS FUNAR

(Communicated by Dale Alspach)

ABSTRACT. Some estimations for the "juxtaposition function" h_F and an asymptotic formula for the function h_F/h_G, where F, G are central symmetric convex bodies, are given. Hadwiger and Grünbaum gave for $h_F(1)$ the bounds $n^2 + n < h_F(1) < 3n - 1$. Grünbaum conjectured (and proved for $n = 2$ in Pacific J. Math. 11 (1961), 215-219) that for every even r between these bounds there exists in E^n an oval F such that $h_F(1) = r$. Lower bounds for h_F could be derived in the same way as in Theorems 1 and 2 from a good estimate of packing numbers on a Minkowski sphere, that is, from solutions to a Tammes-type problem in a Banach space.

For a topological disk $F \subseteq \mathbb{E}^n$ we shall denote by $h_F : (0, 1] \to \mathbb{N}$ the "juxtaposition function" introduced by the first author [2, 3] as follows. Let $A_{F, \lambda}$ denote the family of all sets, homothetic to F in the ratio λ, which have only boundary points in common with F. Then $h_F(\lambda)$ is the greatest integer k such that $A_{F, \lambda}$ contains k sets with pairwise disjoint interiors. In particular, $h_F(1)$ is just the Hadwiger number of F.

In case of convex F, Hadwiger [11] and Grünbaum [8] gave for $h_F(1)$ the bounds $n^2 + n < h_F(1) < 3n - 1$. Grünbaum [8] conjectured (and proved for $n = 2$; see also Boltyanski and Gohberg [4]) that for every even r between these bounds there exists in E^n an oval F such that $h_F(1) = r$.

Unless explicitly stated otherwise, throughout this paper F, G will denote symmetric plane ovals. Any such F determines a norm $\| \|$ by $\|x - y\|_F = \|x - y\|/\|o - z\|$, where $\| \|$ is the Euclidean norm, o is the center of F, and z is a point on the boundary ∂F of F such that oz and xy are parallel. With this norm \mathbb{E}^2 becomes a Banach space, with unit disk isometric to F. Set $p(F)$ for the perimeter of ∂F in its inner norm.

Theorem 1. For a symmetric oval F in the plane

$$p(F) = 2 \lim_{\lambda \to 0} \lambda h_F(\lambda).$$

Proof. Let x, y be points of ∂F, and let points x', y' be given by $ox' = (1 + \lambda)ox$ and $oy' = (1 + \lambda)oy$. Denote by F_x, F_y those sets in $A_{F, \lambda}$ which have centers at x' and y', respectively. If $F_x \cap F_y \neq \emptyset$, it follows from the
symmetry and convexity of F that $x'y' \subset F_x \cap F_y$. We put $x'y' \cap \partial F_x = \{a, b\}$, $x'y' \cap \partial F_y = \{c, d\}$, and $z \in \partial F$ such that oz is parallel to $x'y'$. Then
\[
\|x' - y'\| \leq \|x' - b\| + \|c - y'\| = 2\|x' - b\| = 2 \lambda \|o - z\|
\]
hence
\[
\|x - y\|_F = \|x' - y'\|/(1 + \lambda) \|o - z\| \leq 2 \lambda/(1 + \lambda).
\]
Reversing the reasoning we obtain
(2) \hspace{1cm} \text{int} F_x \cap \text{int} F_y = \emptyset \text{ if and only if } \|x - y\|_F \leq 2 \lambda/(1 + \lambda).

Now consider a maximal collection $\{F_i: i = 1, \ldots, k\} \subset A_{f, \lambda}$ of sets with disjoint interiors and the points $x_i \in \partial F$, $i = 1, \ldots, k$, for which $F_i = Fx_i$. From (2) it follows that $\|x_i - x_{i+1}\|_F \leq 2 \lambda/(1 + \lambda)$ and thus
\[
\sum_{1 \leq i \leq k} \|x_i - x_{i+1}\|_F \leq 2k \lambda/(1 + \lambda);
\]
however,
\[
p(k, F) = \sup \left\{ \sum_{1 \leq i \leq k} \|x_i - x_{i+1}\|_F, \ x_i \in \partial F \right\} \leq p(F).
\]
These inequalities yield
(3) \hspace{1cm} h_F(\lambda) = k \leq (1 + \lambda)p(k, F)/2 \lambda < (1 + \lambda)p(F)/2 \lambda.

Conversely, let P_λ be an inscribed polygon with $2k$ vertices u_1, \ldots, u_{2k} such that P_λ is symmetric about o and
\[
\|u_1 - u_2\|_F = \|u_2 - u_3\|_F = \cdots = \|u_{k-2} - u_{k-1}\|_F = 2 \lambda/(1 + \lambda),
\]
\[
2 \lambda/(1 + \lambda) \leq \|u_{k-1} - u_k\|_F < 4 \lambda/(1 + \lambda).
\]
Then the sets F_{u_i} have disjoint interiors and
\[
4(k + 1) \lambda/(1 + \lambda) > \sum_{1 \leq i \leq 2k} \|u_i - u_{i+1}\|_F \geq 4k \lambda/(1 + \lambda).
\]
Since $h_F(\lambda) \geq 2k$, it follows that
(4) \hspace{1cm} 2 + h_F(\lambda) \geq (1 + \lambda) \left(\sum_{1 \leq i \leq 2k} \|u_i - u_{i+1}\|_F \right)/2 \lambda.

If $p(\lambda)_F$ denotes the perimeter of P_λ in the $\|\cdot\|_F$ norm, then (see [1, 11])
(5) \hspace{1cm} \lim_{\lambda \to 0} p(\lambda)_F = p(F).

For symmetric ovals F, G relations (3)-(5) imply
\[
\lim_{\lambda \to 0} h_F(\lambda)/h_G(\lambda) \geq \lim_{\lambda \to 0} (-2 + (1 + \lambda)p(\lambda)_F)/2 \lambda)/(1 + \lambda)p(G)/2 \lambda
\]
\[
= p(F)/p(G),
\]
and similarly the reverse inequality. Therefore, taking for G a square we obtain the claim which was to be proved.

Denote by $\lfloor t \rfloor$ the integer part of $t \in \mathbb{R}$.

Theorem 2. For every symmetric oval F in the plane
\begin{equation}
 3 + \frac{3}{\lambda} \leq h_F(\lambda) \leq 4(1 + \lambda)/\lambda,
\end{equation}
with equality on the left if and only if $1/\lambda \in \mathbb{N}$, and F is an affine-regular hexagon and equality on the right if and only if $1/\lambda \in \mathbb{N}$ and F is a parallelogram.

Proof. A result of Golab [6] and Reshetnyak [14], generalized by Schäffer [15], asserts that $6 \leq p(F) \leq 8$. Hence we have
\[h_F(\lambda) \leq 4(1 + \lambda)/\lambda, \]
and, using the existence of an affine-regular hexagon inscribed in F [13], we obtain $h_F(2/(1 + k)) \geq 6k$. Since $h_F(\lambda)$ is a decreasing function of λ, we are done.

If the dimension of F is greater than two, the situation is essentially different. We shall prove (see also [7])

Theorem 3. Any symmetric convex body $F \subset \mathbb{E}^n$ satisfies the inequality
\begin{equation}
 h_F(\lambda) \leq ((1 + \lambda)^n - 1)/\lambda^n,
\end{equation}
with equality if and only if $1/\lambda \in \mathbb{N}$ and F is a parallelohedral body.

Proof. Let $B_{\lambda} = \bigcup_{H \in A_F, \lambda} H$. We shall prove that
\begin{equation}
 B_{\lambda} \subset (1 + 2\lambda)F.
\end{equation}
Indeed, let x be a point on the boundary of F_v, $|ox| \cap \partial F = \{a\}$, $|ov| \cap \partial F_v = \{q\}$, and let ux'' be parallel to qx with $x'' \in \partial F$. Then $\zeta v'x = \zeta v'xo + \zeta v'ox \geq \zeta v'ox$, which yields $\zeta vox = \zeta vox'' = \zeta qv'x$. Since F is convex, we can take a point b in the nonempty intersection $|oa| \cap |ux''|$. Then $|ux''| \subset F$, $b \in F$, $b \in |ox|$. Since
\[\|o + a\|/\|o - x\| \geq \|o - b\|/\|o - x\| \geq \|o - v\|/\|o - q\| = 1/(1 + 2\lambda), \]
the point x belongs to $(1 + 2\lambda)F$, and (9) is proved.

If $\{F_i, i = 1, \ldots, k\} \subset A_{F, \lambda}$ have disjoint interiors, then
\[\bigcup_{1 \leq i \leq k} F_i \subset B_{\lambda} \subset (1 + 2\lambda)F; \]
therefore,
\[\text{vol}(F) + \text{vol}(F_1) + \cdots + \text{vol}(F_k) \leq (1 + 2\lambda)^n \text{vol}(F) \]
where $\text{vol}(F)$ denotes the volume of F. This gives the desired estimation on $h_F(\lambda)$. The equality case is treated in [7].

Lower bounds for $h_F(\lambda)$ could be derived in the same way as in Theorems 1 and 2 from a good estimate of packing numbers on a Minkowski sphere, that is, from solutions to a Tammes-type problem in a Banach space.

Grünbaum asked what happens to relation (1) in case F is not centrally symmetric. We recall that for an arbitrary oval F and $z \in \text{int} F$ a norm (nonsymmetric, in general) is defined by the Minkowski functional
\[\|x\|_{F, z} = \inf\{\lambda > 0 : x - z \in \lambda(F - z)\}. \]
Using the (possibly nonsymmetric) distance derived from this norm it is possible to define arc-length for oriented arcs. For an oriented closed curve \(C \) let the length of \(C \) in the metric derived from \(\| \|_{F,z} \) be denoted by \(p_{F,z}(C) \). The intrinsic perimeter (self-circumference [6, 10]) of \(F \) is \(P(F) = \inf\{p_{F,z}(\partial F) : z \in \text{int} F\} \). Then it follows that

\[
g(F) = \lim_{\lambda \to 0} \lambda h_F(\lambda)/P(F)
\]

is a measure of symmetry (see [8]). By the same method as used above, it is possible to show that \(g(F) \leq \frac{1}{2} \), with equality if \(F \) is centrally symmetric. If \(F \) is a triangle then \(g(F) = \frac{1}{3} \), and we conjecture that \(g(F) \geq \frac{1}{3} \) for any oval \(F \).

ACKNOWLEDGMENT

We wish to thank Professor Branko Grünbaum for valuable suggestions, comments about this paper, and references.

REFERENCES

Department of Mathematics, University of Craiova, A. I. Cuza No. 13, Craiova 1100, Romania

Institute of Mathematics, P.O. Box 1-700, 70700 Bucharest, Romania

Current address, L. Funar: Université de Paris-Sud, Mathématiques, Bat. 425, 91405, Orsay Cedex, France

E-mail address, L. Funar: funar@matups.matups.fr