"Adiabatic theory and topological aspects in molecular physics and solid state physics" or "Geometric and topological aspects of slow and fast coupled dynamical systems in quantum and classical dynamics".

29 April 2001

Lectures notes for lectures given in:
Service Phys. Théorique de Saclay, March April 2002,
http://www-sphl.cea.fr/fr/
and M.A.S.I.E. Spring School, Warwick, March 2002,
http://www.maths.warwick.ac.uk/~mark/symposium

Frédéric Faure,
Laboratoire de Physique et Modélisation des Milieux Condensés (LPM2C)
Maison des Magistères Jean Perrin, CNRS
BP 166 38012 Grenoble Cedex 9 France
email: frederic.faure@ujf-grenoble.fr
web page: http://lpm2c.polytechnique.fr/
Contents

1 Introduction and Overview
1.1 Fast and slow coupled systems in physics
1.1.1 Examples in the macroscopic world
1.1.2 Examples in the microscopic (quantum) world
1.2 Geometrical and topological aspects
1.3 Classical versus Quantum models
1.3.1 Expression of the dynamics for a single system
1.3.2 Hamiltonians for a slow/fast system
1.3.3 Effective dynamics in fiber bundle
1.4 In the next chapters

2 Berry's Connection and Berry's phase in quantum mechanics
2.1 Introduction
2.2 The Rauhut pendulum and parallel transport in T S²
2.2.1 The Levi-Civita Connection
2.2.2 Holonomy and curvature
2.2.3 Fiber bundle description
2.3 The canonical quantum bundle over P (Hilbert space)
2.3.1 The projective space P (H)
2.3.2 Berry's connection between the fibers of H → P (H)

3 The Semi-classical limit, Example of the Angular momentum dynamics
3.1 The free rigid body motion
3.1.1 In classical mechanics
3.1.2 In quantum mechanics
3.2 The Classical limit of the Angular momentum dynamics
3.2.1 The su(2) algebra and the coherent states
3.2.2 Expectation values of operators
3.2.3 Schrödinger equation and classical limit
3.2.4 The quantized line bundle over S²

4 Topological aspects in the Semi-quantum model of slow-fast coupled systems
4.1 Introduction
4.2 Model for coupling between: slow rotation and quantum vibrational levels
4.2.1 The semi-quantal model
4.2.2 Modifications of bands by an external parameter λ
4.2.3 Quantum model: (rotation is quantized)
4.3 Model with more interesting topological phenomena: Slow motion on CP², dimension 4
4.3.1 Classical mechanics
4.3.2 Quantum mechanics
4.3.3 Slow Vibrations coupled with 3 electronic states
4.3.4 Band spectrum in Born-Oppenheimer approximation
4.3.5 Topology of a vector fiber bundle over CP²
4.3.6 Quantization of vibrations
4.3.7 Summary
4.3.8 Remark on Index formula for the sphere (angular momentum phase space)
4.3.9 Remark on the surface of degeneracy S in the model between bands 2α
4.3.10 Remark on Semi-classical expansion for H → 0; Weyl formula with correction
4.4.11 Remark on “Naturality” of index formula
4.4.12 Index theorem and group theory
4.4 Main “Born-Oppenheimer” theorem of adiabaticity

5 Topological aspects in the Classical model of slow-fast coupled systems
5.1 A simple class of models, Topology of the tori bundle
5.2 Semi quantum model; Energy Bands and their topology by semi classical calculation
5.3 Relation with classical and quantum monodromy
5.4 Classical Hansay connection; Semi-classical correspondence with Berry's connection
5.4.1 Classical Hansay connection
5.4.2 Semi-classical correspondence between Hansay and Berry's connection
5.5 References
6 Topological Chern indices and the Integer Quantum Hall effect

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>77</td>
</tr>
<tr>
<td>6.2 Band Spectrum and topology for the Quantum Hamiltonian</td>
<td>78</td>
</tr>
<tr>
<td>6.2.1 A dimensionless model</td>
<td>78</td>
</tr>
<tr>
<td>6.2.2 Band Spectrum and topological Chern indices</td>
<td>80</td>
</tr>
<tr>
<td>6.2.3 Decomposition of $D^j (\mathbb{R}^{n_0})$ in eigenspaces of T_x and T_y</td>
<td>81</td>
</tr>
<tr>
<td>6.2.4 Topological indices of the bands</td>
<td>82</td>
</tr>
<tr>
<td>6.3 Interpretation of the Topological Chern indices: the quantized Hall conductivity</td>
<td>82</td>
</tr>
<tr>
<td>6.3.1 Delocalized Bloch waves and Localized Wannier waves</td>
<td>82</td>
</tr>
<tr>
<td>6.3.2 Physical consequence on temporal evolution</td>
<td>84</td>
</tr>
<tr>
<td>6.3.3 Addition of a weak external electric field $\vec{E} = \frac{\eta \vec{E}}{\eta} = F_x \vec{u}_x$</td>
<td>84</td>
</tr>
<tr>
<td>6.4 Born Oppenheimer Approximation with strong magnetic field; Effective dynamics in a Landau Level</td>
<td>85</td>
</tr>
<tr>
<td>6.4.1 Formula for Chern indices C_n</td>
<td>86</td>
</tr>
<tr>
<td>6.4.2 Sum of Chern indices in a Landau Level</td>
<td>86</td>
</tr>
<tr>
<td>6.5 Semi-classical calculation of Chern indices in a Landau Level</td>
<td>87</td>
</tr>
<tr>
<td>6.5.1 Classical Hamiltonian and trajectories of $H(q,p)$</td>
<td>88</td>
</tr>
<tr>
<td>6.5.2 Quasi modes: Quasi mode on a contractible trajectory of type $(0,0)$</td>
<td>89</td>
</tr>
<tr>
<td>6.5.3 Semi-classical spectrum and tunnelling effect:</td>
<td>90</td>
</tr>
<tr>
<td>6.5.4 General result:</td>
<td>91</td>
</tr>
<tr>
<td>6.5.5 Total Chern index:</td>
<td>91</td>
</tr>
<tr>
<td>6.5.6 The Chern indices for a chaotic dynamics:</td>
<td>92</td>
</tr>
<tr>
<td>6.6 References:</td>
<td>93</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction and Overview

The objective of these lectures is mainly to present a general framework for the description of dynamical systems containing a slow sub-dynamical system coupled with a faster sub-dynamical system, shortly called slow-fast coupled systems.

In the examples, we will mainly be concerned with nice examples in physics of such a situation, namely small molecules.

We will describe the total dynamics in term of fiber space, where the slow motion takes place in the base space, whereas the fast motion takes place within the fibers.

This problematics can be considered in classical mechanics, or in (mixed description) Classical-Quantum mechanics, or in Quantum mechanics.

Using semi-classical rules, we will present the relations between the topological and geometrical properties respectively in these three possible descriptions.

In particular we will see the strong similarity between the semi-classical limit and the adiabatic limit.

The usefulness of using different descriptions will be clear for example, when we will see that topological characterization of fiber bundles within the mixed Classical-Quantum description (i.e. the Born-Oppenheimer description) gives a nice insight in the full exact quantum spectrum: the precise numbers of energy levels in each bands.

To summarize:

The subject of these lectures is:

Geometric and topological aspects of slow and fast coupled dynamical systems in quantum and classical dynamics.

In this introduction, we give some preliminary explanations to these three adjectives.

The author acknowledges the Service of physique théoretique of Saclay for its kind hospitality during two months, and the M.A.S.I.E. group (Mechanics and Symmetry in Europe) for good scientific discussions and collaborations.

1.1 Fast and slow coupled systems in physics

We give here few examples of slow-fast mechanical coupled systems in physics.

1.1.1 Examples in the macroscopic world:

The ordinary Pendulum

with length \(l(t) \) varying slowly. See figure.

The Classical adiabatic theorem says: The enclosed area in phase space \(I = E(t)/\omega(t) \) is approximately conserved.

One says that \(I \) is an adiabatic invariant.

(More precisely, if \(dl/dt \sim \varepsilon \), then \(|I(t)| = C \varepsilon \) for \(t \in [0,T/\varepsilon] \),

We have say nothing about the angular position.

The Foucault pendulum:

The fast oscillations direction of the Foucault Pendulum follow parallel transport on the earth,
1.1. FAST AND SLOW COUPLED SYSTEMS IN PHYSICS

After one revolution, appearance of a geometrical phase (holonomy): the Hannay angle

\[\varphi_{\text{Hannay}} = \int_{\text{total}} d\theta \cdot 2\pi \left(1 - \sin(\text{latitude})\right) \]

For a rotating pendulum, the phase shift is a dynamical phase + geometrical phase:

\[\Delta \varphi = \omega T + \varphi_{\text{Hannay}} \]

(This is a general relation).

Revolution and Precession of planets

This is the first historical application of the averaging method by Lagrange, Laplace, Gauss. They observed the absence of secularity in the variations of the major axes \(a \) of orbits.

In other terms, \(a \) is a adiabatic invariant.

Statistical systems

Ergodicity on energy surfaces conserves phase space volume:

\[V(E) = V \{ q, p \}, \quad H(q, p) \leq E \]

and then gives entropy conservation \(S(E) = k \log V(E) \).

(This gives important results in statistical physics).

Biological systems

Fast dynamics: the reproduction cycle of a predator-prey system.
Slow dynamics: climate evolution, modified by the vegetable food consumption by the prey.

1.1.2 Examples in the microscopic (quantum) world

In these lectures we will consider mainly the following examples.

Small molecules,

are a very rich place to observe slow and fast coupled systems:

with fast electrons (typical period \(T_e \approx 10^{-16} \to 10^{-18}s \)),

slower vibrations of the nuclei \((T_v \approx 10^{-14} \to 10^{-15}s) \)

slower rotation of the molecule \((T_{rot} \approx 10^{-10} \to 10^{-12}s) \).

Spin precession

of a neutron in a slowly varying external magnetic field \(\vec{B}(t) \).

The Quantum Adiabatic theorem tells: The spin state follows approximately the instantaneous eigenstate \(|\text{spin} \rangle \approx |\pm \rangle \), up to a quantum phase.

After one period \(T \) of \(\dot{B}(t) \), the final phase is \(\theta_{\text{adiabatic}} = \omega T \) plus \(\theta_{\text{Hannay}} = \frac{1}{2} \int_{\text{total}} d\theta \cdot 2\pi \left(1 - \sin(\text{latitude})\right) \).
1.2 Geometrical and topological aspects

They concern fiber bundles with connections which naturally occur in the previous situations of slow and fast coupled systems.

A fiber bundle is a continuous collection of isomorphic space.

Here the base space is the dynamical space of the slow sub system, or the parameter space for Time-adiabatic systems.

The Fiber space is the dynamical space of the fast sub-system.

Note that from a global point of view, one can consider the Topology of the bundle related to possible twists of the fibers:

1.3 Classical versus Quantum models

In the above examples, the fast or slow motions can sometimes be consider in a quantum or classical description, independently. We recall some basic facts.
1.3, CLASSICAL VERSUS QUANTUM MODELS

1.3.1 Expression of the dynamics for a single system

- The classical dynamics is express by Hamilton equation in Phase space \(X = (q, p) \in P \) (dimension 2n):

\[
\begin{align*}
\frac{dq}{dt} &= \frac{\partial H(q, p)}{\partial p} \\
\frac{dp}{dt} &= -\frac{\partial H(q, p)}{\partial q}
\end{align*}
\]

- The quantum dynamics is expressed by Schrödinger equation in Hilbert space \(\mathcal{H} \):

\[
\frac{i\hbar}{\partial t}\left| \psi(t) \right> = \hat{H}\left| \psi(t) \right>
\]

- **Semi-classical rules** relate the Classical and Quantum dynamics, in the limit \(\hbar/\text{action} \to 0 \):

 - Phase space \(P \leftrightarrow \) Hilbert space \(\mathcal{H} \)
 - Hamiltonian \(H \leftrightarrow \) Hamiltonian \(\hat{H} \)

1.3.2 Hamiltonians for a slow-fast system

For a slow-fast system (class A), there are then 4 possibilities of description:

<table>
<thead>
<tr>
<th>Slow</th>
<th>Fast</th>
<th>Classical in (P_{\text{slow}})</th>
<th>Quantum in (\mathcal{H}_{\text{fast}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical in (P_{\text{slow}})</td>
<td>Function (H_{\text{int}}(X_{\text{slow}}, X_{\text{fast}}))</td>
<td>Matrix Symbol (X_{\text{slow}} \to H_{\text{fast}}(X_{\text{slow}})) (Classical)</td>
<td></td>
</tr>
<tr>
<td>Quantum in (\mathcal{H}_{\text{slow}})</td>
<td>No meaning (?)</td>
<td>(H_{\text{int}}) in (\mathcal{H}{\text{slow}} \otimes \mathcal{H}{\text{fast}}) (Quantum)</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

- Superposition property in quantum dynamics:
 - One can not treat the influence of a quantum system on a classical system.
 - Then the Quantum-Classical description has no real dynamical meaning.

- The semi-quantum description is the Born-Oppenheimer approximation.

1.3.3 Effective dynamics in fiber bundle

- For a Classical dynamics, with integrable fast motion:

 - The fast motion in fibers follows tori with constant action, and follows the (geometric) Hannay connection plus a dynamical phase.
Chapter 2

Berry’s Connection and Berry’s phase in quantum mechanics

2.1 Introduction

The purpose of this chapter is to present the quantum dynamics in Hilbert space from a geometrical point of view, initiated in physics by Berry in 1984. The Hilbert space is seen as a line bundle over its Riemannian space, with a natural connection, the Berry’s connection. (In geometry, this is common since a longer time, and the Berry’s connection is sometimes called the Chern’s connection).

Here we will present this connection as a Levi-Civita connection which is the connection which defines parallel transport of tangent vectors on a surface embedded in \(\mathbb{R}^3 \).

This chapter contains more geometric informations than physics, and is to prepare the subsequent chapters.

Other important tools related to fiber bundles in physics will be presented in next chapters,

- The first section introduces the Levi-Civita connection on the sphere. This is an introduction to vector bundles from an intuitive point of view,
- The second section defines the Berry’s connection and shows that any quantum evolution follows this natural connection plus a dynamical phase.

2.2 The Foucault pendulum and parallel transport in \(TS^2 \)

References: [13][5].

Objective of this section: introduction to a vector bundle, the tangent bundle \(TS^2 \), with its connection.

16 CHAPTER 2, BERRY’S CONNECTION AND BERRY’S PHASE IN QUANTUM MECHANICS

We consider the sphere \(S^2 \) which is the earth surface, fixed in an inertial frame (actually the earth rotates in this frame, with period \(T = 24 \) hours). The attached point of the Foucault pendulum is forced to follow a path \(\gamma(t) \) on the sphere, which is parallel to the equator.

In this section, we will also imagine any possible path \(\gamma(t) \) on the sphere \(S^2 \).

2.2.1 The Levi-Civita Connection

We suppose small oscillations of the pendulum, and simplify the physical discussion by assuming that [from conservation of angular momentum along the local z axis] the oscillations try to maintain their direction in space \(\mathbb{R}^3 \), but are constrained to the tangent plane of the sphere. The result is that the oscillations follows the so-called parallel transport on the sphere, or Levi-Civita connection which we now define.

![Figure 2.1: Foucault Pendulum](image1)

![Figure 2.2: Levi-Civita Connection](image2)

For a given point \(x \in S^2 \), we note \(T_x S^2 \) the tangent plane. Over each point \(x(t) = \gamma(t) \) of the path, we denote \(v_x \in T_x S^2 \) the tangent vector (which could be the velocity of the pendulum measured after each pendulum period). At a given point \(x \in T_x S^2 \), and for small displacement \(\delta x \) on the path, there corresponds a small variation \(\delta v = v_{x+\delta x} - v_x \).

Using the scalar product in \(\mathbb{R}^3 \), one defines the orthogonal projection \(P_x \) of vectors of \(\mathbb{R}^3 \) onto the tangent plane \(T_x S^2 \).
2.2. THEFOUCALTPENDULUMANDPARALLELTRANSPORTINTS2

Then the continuous family of tangent vectors \(v_t \) is said to follow the Levi-Civita connection or parallel transport over the path \(\gamma \) if:

\[
D_{\gamma v} = P_{\gamma v} = 0
\]

Covariant Derivative

Property: The Levi-Civita connection conserves the norm of the transported vector.

Indeed: \(|v_t|^2 = d(v, v) = 2\langle v, dv \rangle = 2 \langle Pv, dv \rangle = 2 \langle v, Pdv \rangle = 0 \).

Remarks

- We have said that for physical reasons the Foucault pendulum follows the Levi-Civita connection. This is an exact result if \(\gamma \) is parallel to the equator, and can be shown using Coriolis forces in the pendulum frame [2].

- For any slowly varying path \(\gamma(\varepsilon t) \in S^2 \) with \(\varepsilon \to 0 \) (slow compared to the pendulum oscillations), the Foucault pendulum would follow approximately the Levi-Civita connection, with an error less than \(\varepsilon \) on the time interval \(t \in [0, 1/\varepsilon] \). This results from the Classical Adiabatic theorem [3][18], but not directly because this theorem needs a fast rotational motion of the pendulum around the z axis (see discussion in [11]).

- This connection is geometric in the sense that in that limit, the direction of the pendulum depends only on the geometry of the path \(\gamma \) on \(S^2 \).

2.2.2 Holonomy and curvature

Consider now any closed path \(\gamma \) on the sphere \(S^2 \). After one loop, one can compare the initial and final directions of the pendulum \(v_t, v_f \in T_0S^2 \). These two vectors have the same length, but they differ by an angle \(\theta(\gamma) \), which depends only on the geometry of the path \(\gamma \), and is called the holonomy of the Connection on the path \(\gamma \).

From the second picture, one easily guesses that \(\theta(\gamma) \) is related to the surface enclosed by the so called curvature integral:

\[
\theta(\gamma) = \frac{\int_{\gamma} \text{curvature}}{2\pi} = \frac{\int_{\gamma} \left(\frac{d^2s}{R^2} \right)}{2\pi} : \text{holonomy} \in [0, 2\pi]
\]

For the adiabatic pendulum the Holonomy is the Hannay angle. (See below for a more precise definition of the Hannay angle).

18CHAPTER 2, BERRY'S CONNECTION AND BERRY'S PHASE IN QUANTUM MECHANICS

2.2.3 Fiber bundle description

Over each point \(x \in S^2 \) is attached a tangent plane \(T_xS^2 \). Each tangent plane \(T_xS^2 \) defines the fiber over the point \(x \) in base space \(S^2 \).

The collection of these fibers is called the tangent bundle \(TS^2 \). More precisely, \(TS^2 \) is a real vector bundle of rank 2 over \(S^2 \). In general, the rank of a vector bundle is the dimension of each fiber.

Two different tangent planes \(T_x \) and \(T_x' \) are not identical, and there is no unique an

natural way to identify them. If \(\gamma \) is a path which connect \(x \) and \(x' \), we have seen that \(T_x \) and \(T_x' \) can be identified with the parallel transport (or Levi-Civita connection) of the fibers over the path \(\gamma \). We insist that this connection has been defined from the scalar product in \(\mathbb{R}^3 \).

The whole set of fibers can have a global twist over the base space \(S^2 \) as in the well

known example of the Möbius strip which is a real vector bundle of rank 1 over \(S^1 \).

Topology of a real vector bundle of rank 1 over \(S^1 \)

The topology of such a bundle is characterized by an integer which represents the number of twists: the Stiefel-Whitney index \(SW \in \mathbb{Z}_2 = \{0, 1\} \). (see [5][8]).

(This characterization is an intrinsic one: two bundles are isomorphic if there is a bijection mapping between them which respects the fibers. So the third example on the figure is trivial even if it can not be continuously deformed in \(\mathbb{R}^3 \) to the first example which is also trivial).

Topology of a complex vector bundle of rank 1 over \(S^2 \)

Because each tangent plane \(T_xS^2 \) is oriented, one can identify \(T_xS^2 \) with the complex plane \(\mathbb{C} \), and consider the bundle \(TS^2 \) as a complex vector bundle of rank 1 over \(S^2 \).
Figure 2.4: Vector bundle description

Figure 2.5: Real vector bundle of rank 1 over S^1.

20CHAPTER 2, BERRY'S CONNECTION AND BERRY'S PHASE IN QUANTUM MECHANICS

As explained in the figure, the topology can be characterized by an integer $C \in \mathbb{Z}$ called the Chern index. (or first Chern class).

Property:

$\text{Chern}(TS^3) = +2$

(See other examples below.)

proof: see figure.

Figure 2.6: Complex line Bundle over S^2. The topology is characterized by the homotopy type of the clutching function, $C \in \mathbb{Z}$.

Figure 2.7: Topology of the tangent bundle TS^3.
2.2. THE FOUCALP PENDULUM AND PARALLEL TRANSPORT IN TS^2

Remarks:

- The connection (curvature, holonomy,...) is a geometric structure on the fiber bundle (sensitive to continuous deformations of the metric).
- The Chern index $C \in \mathbb{Z}$ is topological property, robust (i.e. not sensitive) under continuous deformations.
- Geometrical structures can be used to compute topological properties. Example: Gauss-Bonnet curvature formula:

$$\text{Chern} (TS^2) = \frac{1}{2\pi} \int \int_{S^2} \text{Curvature} = \frac{4\pi}{2\pi} = 2$$

- The sign definition of the Chern index we use is from algebraic geometry conventions [7] and is opposite to algebraic topology conventions [9].

Topology from the zeros of a global section

A Global section of the bundle is a continuous choice of vectors in each fiber.

For a real vector bundle of rank 1 over S^1 (as the Möbius strip), the Stiefel-Whitney index SW is the parity of the number of zeros of a section (0 = even number of zeros or 1 = odd number zeros), see figure.

![Fibers](image1)

For a complex vector bundle of rank 1 over S^2, the Chern index C is obtained by the opposite of the sum of the orientations (± 1) of isolated zeros of a generic section.

Remark: We saw two possibilities to compute the Chern index. This is very general. First, from an integral curvature, which more generally use tools of cohomology (integrals). The second possibility is from zeros of global sections and use tools of homology (intersections) (historically the first definition of Chern classes). The two approaches are related by Poincaré duality [7].

2.3. THE CANONICAL QUANTUM BUNDLE OVER $\mathbb{P} (H)$

For a quantum system described by the state $|\psi(t)\rangle \in \mathcal{H}$ in Hilbert space \mathcal{H}, the Schrödinger equation is linear:

$$i\hbar \frac{d|\psi(t)\rangle}{dt} = \hat{H}(t)|\psi(t)\rangle$$

so if $|\psi(0)\rangle = \lambda |\psi(0)\rangle$ then $|\psi(t)\rangle = \lambda |\psi(t)\rangle$.

It is therefore natural to identify vectors $|\psi\rangle \sim \lambda |\psi\rangle$, for any $\lambda \in \mathbb{C}$. They are represented by an equivalence class $[\psi]$, which a dimensional one complex vector space in \mathcal{H}.

The set of equivalence class is the projective space:

$$\mathbb{P} (\mathcal{H}) = (\mathcal{H} \setminus \{0\}) / \sim$$

So $\mathcal{H} \to \mathbb{P} (\mathcal{H})$ is a complex fiber bundle of rank 1 over $\mathbb{P} (\mathcal{H})$.

![Hilbert Space H](image2)

Figure 2.8: Möbius strip, Zero of sections.

Figure 2.9: A section of TS^2 is a vector field on S^2. It gives the topology of the bundle TS^2.

2.3.1. The projective space $\mathbb{P} (H)$

![Projective Space $\mathbb{P} (H)$](image3)

Figure 2.10: Projective Space $\mathbb{P} (\mathcal{H})$
Figure 2.11: Quantum evolution in $\mathbb{P}(\mathcal{H})$

Because it is linear, the quantum dynamics in \mathcal{H} projects onto $\mathbb{P}(\mathcal{H})$ (i.e., gives well-defined trajectories on $\mathbb{P}(\mathcal{H})$).

Remark that if $\dim_{\mathbb{C}}\mathcal{H} = n$ then $\dim_{\mathbb{C}}\mathbb{P}(\mathcal{H}) = n + 1$.

Example of $\mathcal{H} = \mathbb{C}^2$

$\mathbb{P}(\mathbb{C}^2) = \mathbb{P}^1 \cong S^2$ is the Riemann Sphere, or Bloch Sphere, and $\mathcal{H} = \mathbb{C}^2$ is a complex fiber bundle over $\mathbb{P}(\mathbb{C}^2) \cong S^2$: (so called “canonical bundle”), with

$$Chern(\mathbb{C}^2 \to \mathbb{P}^1) = 1$$

Proof:

If $|+\rangle, |\rangle$ is an orthonormal basis of \mathbb{C}^2,

$$|\psi\rangle = a|+\rangle + b|\rangle + b \left(|+\rangle + |\rangle \right) : |b| \neq 0$$

$$\sim z|+\rangle + \bar{z}|\rangle = (z = a/b \in \mathbb{C}) \text{ unique representative in } \mathbb{P}(\mathbb{C}^2)$$

but if $b = 0$, i.e., $|z| \to \infty$

$$|\psi\rangle_0 \sim |+\rangle : \text{ unique point at infinity}$$

So we have shown that $\mathbb{P}(\mathbb{C}^2)$ is the complex plane $z \in \mathbb{C}$ with the infinity identified to a unique point. This is a sphere S^2.

The stereographic (or inhomogeneous) coordinate on $S^2 \cong \mathbb{P}(\mathbb{C}^2)$ are $z = e^{i\theta}/2$ and $\bar{z} = e^{-i\theta}/2 \in \mathbb{C}$.

Consider now the orthogonal projection of $|\rangle$ onto the fiber Fiber_θ. This gives a global section of the bundle $|\psi\rangle = P|\psi\rangle = |\psi\rangle |\rangle - |\rangle |\psi\rangle$ which is zero only if $|\psi\rangle = |+\rangle$. You can show that this zero has orientation -1.

Remark: the normalized states $\langle \psi |\psi\rangle = 1$, form the Hopf bundle $S^3 \to S^2$.

24 CHAPTER 2, BERRY'S CONNECTION AND BERRY'S PHASE IN QUANTUM MECHANICS

Figure 2.12: Stereographic coordinates on $\mathbb{P}(\mathbb{C}^2)$

Remarks

- If $|\psi\rangle = a|+\rangle + b|\rangle$ is a spin 1/2 state, then $[\psi] \in \mathbb{P}(\mathbb{C}^2)$ is identical with the “mean spin direction” $\delta - \langle \psi |\psi\rangle \in S^2$ in \mathbb{R}^2.

2.3.2 Berry's connection between the fibers of $\mathcal{H} \to \mathbb{P}(\mathcal{H})$

Similarly with the TS^2 case, the Scalar product in \mathcal{H} defines a Levi-Civita connection on the bundle $\mathcal{H} \to \mathbb{P}(\mathcal{H})$.

A section $|\psi(X)\rangle$ is parallel transported over δX if

$$D[\psi] = P\delta[\psi] = 0$$

but $P = \frac{\delta[\psi]}{\delta[\psi]}$ so

$$D[\psi] - \langle \psi |\psi\rangle \delta[\psi] = 0 \iff \delta[\psi] - \langle \psi |\psi\rangle = 0$$

Figure 2.13: Connection on $\mathcal{H} \to \mathbb{P}(\mathcal{H})$
If an other section has an additional phase \(|\psi/X\rangle = e^{i\gamma X}|\psi/X\rangle\) (and therefore is not parallel transported), then \(|d\psi| = i d' \langle \psi | \psi \rangle\).

\[
\langle \psi | d\psi \rangle = i d' \langle \psi | \psi \rangle
\]

This connection is called the Berry's connection in physics (but is known since a long time in mathematics, see [7]).

Quantum evolution and the Berry's Connection

Consider any quantum dynamics defined by the Schrödinger equation (with possibly time dependent operator \(H(t)\))

\[
i\hbar \frac{d\psi}{dt} = iH(t)|\psi\rangle
\]

This gives

\[
\langle \psi | d\psi \rangle = \frac{\langle \psi | H(t)|\psi\rangle}{\hbar} dt = i d' \langle \psi | \psi \rangle
\]

with

\[
\frac{df}{dt} = \frac{\langle \psi | H(t)|\psi\rangle}{\hbar \langle \psi | \psi \rangle} = \frac{E_{d,0}}{\hbar}
\]

so the quantum evolution follows the Berry's connection plus an additional dynamical phase (related to the mean energy \(E_{d,0}\)).

CHAPTER 2, BERRY'S CONNECTION AND BERRY'S PHASE IN QUANTUM MECHANICS

Suppose now that \(|\psi/t\rangle\) is a closed trajectory in \(\mathbb{P}(\mathcal{H})\). After a period \(T\), the state comes back to the original fiber, so \(|\psi(T)\rangle = e^{i\gamma}|\psi(0)\rangle\). The total phase is

\[
\varphi = \varphi_{\text{Berry}} + \varphi_{\text{Dyn}}
\]

\[
\varphi_{\text{Berry}} = \frac{\hbar}{\gamma} \text{ : Holonomy or Berry's phase}
\]

\[
\varphi_{\text{Dyn}} = \int_0^T \frac{E_{d,0}}{\hbar} dt \text{ : Dynamical phase}
\]

As we have shown this Berry's phase is quite general in quantum mechanics and occurs in different contexts when there is a closed (or almost closed) trajectory \(|\psi/t\rangle\) in \(\mathbb{P}(\mathcal{H})\):

1. **Adiabatic motion**; a closed loop of in parameter space \(X(t)\) gives (from quantum adiabatic theorem) an approximated closed loop of \(|\psi/X(t)\rangle\) : this is the original adiabatic Berry's phase. See below.

2. **Semi-classics**; motion of a wave packet on a closed trajectory. See more detail below. Then

\[
\varphi_{\text{Berry}} = \frac{1}{\hbar} \int p d\gamma = \frac{\text{Action}}{\hbar},
\]

and gives quantization rules: \(\varphi_{\text{Berry}} \equiv 0 \iff \text{Action} = n \hbar, \ n \in \mathbb{N}\).

(This bundle description with wave packets is the basis of "geometrical quantization theory" with complex polarization, see [21][6].)

Proof: from \([\hat{q}, \hat{p}] = i\hbar\), and \(T_0 = e^{-Q(0)\hbar}, \ T_p = e^{-q(0)\hbar}\), one deduces \(T_0 = T_0^{-1} T_0 T_Q \rho_{\text{Action}/\hbar}\). On the other hand, as explained above, these unitary operators generate parallel transport of wave packets at mean position \((q, p)\).
Parallel transport

Figure 2.16: Quantization rule

Other properties (*) Natural metric (Fubini-Study) on $\mathbb{P}(\mathcal{H})$, $d\hat{s}^2 = d\hat{a}^2 [\psi, [\psi + d\psi]] - 1 - \frac{1}{2}(\psi|\psi + d\psi)_{\mathcal{H}}$

The velocity of $[\psi(t)]$ measured with this metric is $v = \frac{d\hat{a}}{dt} = \frac{\Delta \hat{E}}{\Delta t}$, with $\Delta E^2 = \langle \psi | \hat{H}^2 | \psi \rangle - \langle \psi | \hat{H} | \psi \rangle^2$ the energy uncertainty.

Reference: Amandan et al [1].
Chapter 3

The Semi-classical limit. Example of the Angular momentum dynamics

This chapter is an introduction to quantization of reduced phase space, coherent states, and some semi-classical limit concepts, in the simple example of angular momentum dynamics.

We will begin with the simple and concrete example of the free rigid body dynamics.

We explain at the end of the chapter, why and how the semi-classical limit is related to the adiabatic limit.

3.1 The free rigid body motion

For a precise theory of the free rigid body motion, see Arnold [2], or Ratiu [9] for symplectic reduction theory.

Here, we only give a short description of some (known) results, inspired from [12].

See also [10].

3.1.1 In classical mechanics

Consider a free rigid body, that is a rigid body with no external forces (for example a falling rigid object).

Consider a fixed inertial frame \mathcal{R}_e with origin at the body's center of mass, and a frame \mathcal{R}_i fixed with respect to the body.

A configuration of the rigid is specified by its orientation with respect to an inertial frame, that is by the rotation matrix $\mathbf{R} \in SO(3)$ which relates frames \mathcal{R}_e and \mathcal{R}_i. The configuration space is then the group $SO(3)$ of rotation matrices which is 3 dimensional (2 angles for the direction of rotation, and one angle for the magnitude of rotation).

The phase space $P = T^*SO(3)$ includes the momenta denoted by \mathbf{J} and is therefore 6 dimensional.

The reduced phase space: $S^2_\mathcal{R}$

Because of symmetry by rotation of the problem, the total angular momentum is conserved. This means that, with respect to the inertial frame \mathcal{R}_e, the total angular momentum $\mathbf{J}_e \in \mathbb{R}^3$ is a fixed vector.

Euler showed how to simplify the equations of motion by going to the frame \mathcal{R}_i attached to the body. In this frame $\mathbf{J}(t)$ moves. But $\mathbf{J} = \mathbf{R}_i \mathbf{J}_e$, so $|\mathbf{J}| = |\mathbf{J}_e|$ is constant, so $\mathbf{J}(t)$ moves on the surface of a 2 dimensional sphere $S^2_{\mathcal{R}_i}$.

This sphere is called a reduced phase space of the problem (it is shown in [9] that $S^2_{\mathcal{R}_i}$ has indeed a canonical reduced symplectic two form).

The kinetic energy is

$$H(\mathbf{J}) = \frac{1}{2} \mathbf{R}^{-1} \mathbf{J} = \frac{1}{2} \left(\frac{J_x^2}{I_x} + \frac{J_y^2}{I_y} + \frac{J_z^2}{I_z} \right)$$

where \mathbf{I} is the moment of inertia tensor, a symmetric positive definite matrix, we suppose diagonal in the frame \mathcal{R}_i, with eigenvalues (I_x, I_y, I_z).

The energy levels (which coincide with the trajectories) are depicted on figure 3.1.

There are 6 fixed points, 2 minima of energy, 2 saddle points, and 2 maxima.

Figure 3.1: Rigid body trajectories on the reduced phase space $S^2_{\mathcal{R}_i}$.

The equation of motion of \mathbf{J} can be written as:

$$\frac{d\mathbf{J}(t)}{dt} = \frac{\partial H(\mathbf{J})}{\partial \mathbf{J}} \wedge \mathbf{J}$$

Each fixed point on the sphere corresponds to special cases when \mathbf{J} coincide with one of the principal axis of the body. The motion of the body in \mathcal{R}_i is then a rotation around
3.1. THE FREE RIGID BODY MOTION

\(\tilde{J} \). Try to launch a book, and observe these stationary points, called relative equilibria (because the motion is still on a circle).

The fiber bundle over \(S^2 \), "A Berry's phase from the XVIII century"

Let us denote by \(M_{\tilde{J}} \) the points of phase space \(P \) which corresponds to a given \(\tilde{J} \). Of course \(M_{\tilde{J}} \approx SO(3) \) is 3 dimensional. Because \(\tilde{J} \) is constant of motion, the dynamics stay inside \(M_{\tilde{J}} \).

We have seen that the reduced phase space \(S^2 \) defined above, miss to describe the rotation of the body around the vector \(\tilde{J} \). This means that \(S^2 \) is obtained from \(M_{\tilde{J}} \) by identification of points related by such a notation:

\[
S^2 = M_{\tilde{J}} / \sim \approx SO(3)/SO(2)
\]

So \(M_{\tilde{J}} \) is actually seen as a fiber bundle over the sphere \(S^2 \). The fibers are circles, and the dynamics of the body takes place in the fibers, whereas the reduced dynamics is on \(S^2 \). See figure 3.2. With our conventions, the topology of this fiber bundle is \(\text{Chern} - 2 \), (because it is isomorphic to the unit subbundle of \(TS^2 \)).

Figure 3.2: True trajectories in a Circle bundle over the reduced phase space \(S^2 \).

Consider now any closed reduced trajectory \(\gamma \) on the reduced phase space \(S^2 \), with period \(T \) and energy \(E \). The actual trajectory in \(M_{\tilde{J}} \) is not closed and after the period \(T \), it comes back in the initial fiber, shifted by an angle \(\Delta \theta \), measured in inertial frame \(\mathcal{R} \).

In [12], R. Montgomery showed that this angle can be express as:

\[
\Delta \theta = \frac{2ET}{|\gamma|} - \Omega,
\]

where \(\Omega \) is the solid angle enclosed by the closed trajectory \(\gamma \) on the reduced phase space \(S^2 \). The angle \(\Omega \) is the holonomy of the path \(\gamma \) with respect to a natural connection in the fiber bundle \(M_{\tilde{J}} \). This connection is induced from the natural symplectic form in phase space \(T^*SO(3) \).

The angle \(2ET/|\gamma| \) is a dynamical phase, and \(\Omega \) is a geometrical phase, very similar with \((2.1) \).

3.1.2 In quantum mechanics

The Hilbert space of the quantum free rigid body is

\[
\mathcal{H} = L^2 (SO(3))
\]

Angular momentum operators are acting in \(\mathcal{H} \) with the usual commutation relations of the \(so(3) \) Lie algebra:

\[
\begin{align*}
&[\hat{J}_x, \hat{J}_y] = i \hat{J}_z, \quad [\hat{J}_y, \hat{J}_z] = i \hat{J}_x, \\
&[\hat{J}_z, \hat{J}_x] = i \hat{J}_y.
\end{align*}
\]

Two rotations act in this problem. A first rotation which rotates together the rigid body and the vector \(\tilde{J} \), is a symmetry of the problem.

A second rotation which rotates the rigid body alone (or equivalently the vector \(\tilde{J} \) in the body frame), is not a symmetry of the problem.

With respect to these two rotations the Hilbert space decomposed as:

\[
\mathcal{H} = L^2 (SO(3)) = \bigoplus_{j \in \mathbb{N}} \mathcal{H}_j^{(1)} \oplus \mathcal{H}_j^{(2)}
\]

where \(\mathcal{H}_j \) is an irreducible representation space of the \(so(3) \) algebra, with dimension \(2j + 1 \).

In group theory, this decomposition is called the Peter-Weyl formula, see [17].

The quantum operator \(\hat{H} \) obtained from (3.1) acts in \(\mathcal{H}_j^{(1)} \) alone: this expresses the quantum reduced dynamics of the rigid body.

(Note that because \(\hat{H} \) has no action in \(\mathcal{H}_j^{(2)} \), every eigenvalue has multiplicity \((2j + 1) \).)

3.2 The Classical limit of the Angular momentum dynamics

In this section we recall some known results about the angular momentum coherent states and their role to define the classical limit, see [14] and [20]. We would like to stress the correspondence between the quantum dynamics of an angular momentum with a fixed modulus \(j \) (integer or half integer: \(2j \in \mathbb{N} \)), and the classical dynamics of an angular momentum vector \(\tilde{J} \) of length \(1 \). \(\tilde{J} \) belongs to a sphere \(S^2 \) with radius 1, which is the classical phase space of the angular momentum.
3.2. THE CLASSICAL LIMIT OF THE ANGULAR MOMENTUM DYNAMICS

3.2.1 The su(2) algebra and the coherent states

The quantum hermitian operators of the spin ̃J̃x, ̃J̃y, ̃J̃z form an irreducible representation of the su(2) algebra, in a Hilbert space H̃j with dimension 2j + 1:

\[[̃J̃x, ̃J̃y] = i ̃J̃z, \quad [̃J̃y, ̃J̃z] = i ̃J̃x, \quad [̃J̃z, ̃J̃x] = i ̃J̃y. \]

In order to have a nice correspondence with the classical limit, we now rescale these operators by:

\[\tilde{J} = \frac{1}{\hbar_{eff}} \tilde{J}. \]

We also write \(\tilde{J} \) instead of \(\tilde{J}_{new} \), so:

\[[J_x, J_y] = \frac{1}{2j} J_z, \quad [J_y, J_z] = \frac{1}{2j} J_x, \quad [J_z, J_x] = \frac{1}{2j} J_y. \]

So define

\[\hbar_{eff} = \frac{1}{2j}. \]

(remark that \(\hbar_{eff} = \frac{1}{2j} \) plays the role of an effective Planck constant, \(\hbar_{eff} \rightarrow 0 \) is the classical limit).

A basis are the vectors \(|m\rangle \), \(m = -j, -j+1, \ldots, +j \), eigenvectors of the \(\tilde{J} \) operator: \(\tilde{J}_z |m\rangle = (\frac{m}{j}) |m\rangle \). An element of the group \(g \in SU(2) \) is represented by the unitary operator

\[R(\tilde{c}) = \exp \left(i \alpha_3 \tilde{J}_z / \hbar_{eff} \right) \exp \left(-i \alpha_3 (2j) \tilde{J}_y / \hbar_{eff} \right) \exp \left(-i \alpha_3 \tilde{J}_y / \hbar_{eff} \right), \]

acting in \(H_\tilde{J} \), where \(\tilde{c} = (\alpha_1, \alpha_2, \alpha_3) \) are the Euler angles.

The state \(|m\rangle = |j\rangle \) corresponds to the classical vector \(\tilde{J} = (0, 0, 1) \). In order to obtain a quantum state \(|\tilde{J}\rangle \) associated with the classical vector \(\tilde{J} \) with any spherical coordinates \((\theta, \varphi) \) we only need to apply the rotation operator (3.2) on \(|m\rangle = |j\rangle \), with \(\tilde{c} = (0, \theta = \pi, \varphi) \), see figure 3.3 (a). Such a state \(|\tilde{J}\rangle = R(\tilde{c})|j\rangle \) is called a coherent state. One can show that [20]:

\[\langle \tilde{J}|\tilde{J}\rangle = \cos^2 \left(\frac{\Theta}{2} \right) \simeq 1 - \frac{\Theta^2}{2} + o(\Theta^2), \]

where \(\Theta \) is the angle between \(\tilde{J} \) and \(\hat{J} \) on the sphere.

More generally, for every state \(|\psi\rangle \in H_\tilde{J} \), one can define its Husimi distribution [20],[18, 19]:

\[H_{us}(\tilde{J}) = \langle \tilde{J} | \psi \rangle |^2, \]

which is a positive function on the sphere.

3.2.2 Expectation values of operators

One can compute [20]:

\[\langle \tilde{J}|\tilde{J}\rangle = J_z, \]

\[\langle \tilde{J}_1\tilde{J}_2 \rangle = J_1 J_2 + \frac{\hbar_{eff}}{2} (1 - \delta_1^2), \]

and more generally, the expectation value of an operator \(\hat{O} \) over coherent states gives function on the sphere, noted

\[O(\hat{J}) = \langle \tilde{J}|\hat{O}|\tilde{J}\rangle \]

called the Berezin symbol of the operator (or Normal symbol). The operators constructed from the elementary operators \(\tilde{J} \) as above, have a symbol which admits a formal series in power of \(\hbar_{eff} \):

\[O(\tilde{J}) = Q(\hat{J}) + \hbar_{eff} O_1(\hat{J}) + \ldots, \]

Figure 3.3: (a) Husimi distribution \(H_{us}(\tilde{J}) = \langle \tilde{J}|\tilde{J}\rangle \) of a coherent state \(|\tilde{J}\rangle \), with its zeros.
(b) Husimi distribution \(H_{us}(\tilde{J}) = \langle \tilde{J}|\tilde{J}\rangle \) of the state \(|\tilde{J}\rangle \) with its zeros.
3.2, THE CLASSICAL LIMIT OF THE ANGULAR MOMENTUM DYNAMICS

The map $\hat{O} \to O$ is injective [4], so the symbol characterizes the operator. The first term $O_h(\hat{J})$ is the principal symbol, or classical observable. In the limit $h_{eff} \to 0$ the symbols are dense in the space of C^∞ functions on the sphere. See [4][10] for the more general "deformation quantization" framework.

Thanks to the injectivity of the symbol, one can define the star product of two symbols $a \star b$, to be the product of the two operators (see figure):

$$a \star b = \hat{a} \hat{b}$$

![Function on phase space](image)

Figure 3.4: Symbols and star product.

Then one has the property (common to all star products, and choice of quantization):

$$a \star b = ab + i h_{eff} \{a, b\} + o (h_{eff}^2)$$

where the second term involves the Poisson brackets of the symbols. The star product allows to work (as possible) with symbols on phase space instead of operators.

3.2.3 Schrödinger equation and classical limit

The quantum dynamics is defined by Hamiltonian \hat{H}, a self adjoint operator in \mathcal{H}_f. A quantum state $|\psi(t)\rangle$ evolves under the Schrödinger equation:

$$i h_{eff} \frac{\partial |\psi(t)\rangle}{\partial t} = \hat{H} |\psi(t)\rangle$$

(3.4)

Remark: one put the factor $1/j$ in front of \hat{H} in order to have a nice classical limit.

The symbol of \hat{H} is written

$$\tilde{H} = \langle \hat{J} \hat{H} \hat{J} \rangle = \hat{H}_0 + h_{eff} \hat{H}_1 + \ldots$$

Consider a coherent state $|\psi(0)\rangle = |\hat{J}(0)\rangle$. One can show that this state is approximately a coherent state for not too long time evolution:

$$|\psi(t)\rangle = e^{i\theta t} |\hat{J}(t)\rangle = O(t)$$
3.2, THE CLASSICAL LIMIT OF THE ANGULAR MOMENTUM DYNAMICS 37

In this sense, the classical limit $\hbar_{\text{eff}} \to 0$ will be equivalent to the adiabatic limit of slow motion.

3.2.4 The quantized line bundle over S^2

For each point $\vec{J} \in S^2$ we have defined a coherent state $|\vec{J}\rangle \in \mathcal{H}_J$. The choice of the phase in the definition of $|\vec{J}\rangle$ is quite arbitrary, so the correct geometrical object to consider is the one dimensional vector space of vectors proportional to $|\vec{J}\rangle$.

This defines a complex line bundle over S^2, whose topology is characterized by an integer Chern index.

The Chern index of this line bundle is

$$C = -\langle 2J \rangle$$ \hspace{1cm} (3.5)

The easiest way is to see this is to construct a global section of the bundle and compute its square: Consider a reference coherent state $|\vec{J}_0\rangle$, its projection $|\vec{J}\rangle \langle \vec{J}| \vec{J}_0\rangle$ gives a global section. This section is zero if $\langle \vec{J}| \vec{J}_0\rangle = 0$. We said above that this happens for $\vec{J} = -\vec{J}_0$ with order $\langle 2J \rangle$. A correct inspection of the orientation gives $C = -\langle 2J \rangle$.

Remarks:

- In mathematical terms, the coherent states family defines a map $\vec{J} \in S^2 \to |\vec{J}\rangle \in \mathbb{P} (\mathcal{H}_J)$, and the line bundle in consideration is the pull back of the canonical bundle $\mathcal{H}_J \to \mathbb{P} (\mathcal{H}_J)$.

- This line bundle, and its topology will be important for the application of the index formula below, (it plays a key role in geometric quantization, see [21, 10]).
Bibliography

Chapter 4

Topological aspects in the Semi-quantum model of slow-fast coupled systems

4.1 Introduction

- A small molecule: a group of interacting (quantum) nuclei and electrons, with fast electrons $\tau \approx 10^{-15} \rightarrow 10^{-16}$ s.
- Slower vibrations of the nuclei $\tau \approx 10^{-14} \rightarrow 10^{-15}$ s.
- Slower rotation of the molecule $\tau \approx 10^{-13} \rightarrow 10^{-14}$ s.

Characteristics:

- Fast-Slow coupled, quantum, Hamiltonian system with finite number of degrees of freedom.
- We will be concerned with Topological properties of the spectrum (crude properties but robust against perturbations).

First example: Slow rotation coupled with fast vibrations of the nuclei.

Molecule CD_4.

4.2 Model for coupling between: slow rotation and semi-quantum vibrational levels:

4.2.1 The semi-quantal model

Suppose \hat{H}_{int} acts in $\hat{H}_{\text{int}} = \hat{H}_{\text{dwell}} \otimes \hat{H}_{\text{vib}} = \hat{H}_j \otimes \mathbb{C}^N$.

Its symbol admits a formal power series in $\hbar = 1/(2J)$:

\[\hat{H}_{\text{int}}(\hat{J}) = \langle \hat{J} | \hat{H}_{\text{int}} | \hat{J} \rangle = \hat{H}_0(\hat{J}) + \hbar \hat{H}_1(\hat{J}) + \cdots \]

- This is a operator valued symbol (the Born Oppenheimer Approximation):

\[E = BJ(J+1), \quad \text{Molecule } \text{CF}_4 \]
4.2. MODEL FOR COUPLING BETWEEN SLOW ROTATION AND N QUANTUM VIBRATIONS

\[
\begin{align*}
 \dot{\jmath} &\rightarrow \hat{H}_{\text{fast}}(\dot{\jmath}) \\
 \mathbf{S}_\jmath &\rightarrow \text{Hom}(\hat{H}_{\text{fast}} = \mathbb{C}^n)
\end{align*}
\]

- **Eigenvalues of** \(\hat{H}_0(\dot{\jmath}) \):

 are \(E_1(\dot{\jmath}), E_2(\dot{\jmath}), E_3(\dot{\jmath}), \ldots \), form \(n \) bands, provided there is no degeneracy.

![Energy bands](image)

We discuss below the important role of degeneracies.

- **The eigenspaces of** \(\hat{H}_0(\dot{\jmath}) \):

 \[\dot{\jmath} \rightarrow F_i(\dot{\jmath}) = \text{Ker}(\hat{H}_0(\dot{\jmath}) - E_i(\dot{\jmath}) \cdot \text{Id}) \subset \mathbb{C}^n \]

For model \(\hat{H}_{\text{fast}}(\dot{\jmath}) \), define \(n \) Complex Vector Bundle of rank 1: \(F_1, F_2, F_3 \).

4.2.2 Modifications of bands by an external parameter \(\lambda \):

Property about degeneracies:

If \(\lambda \in \mathbb{R}^n \rightarrow H(\lambda) \) is generic family of Hermitian operators, then degeneracies between two eigenvalues occur with codimension 3. And more generally, degeneracies with multiplicity \(k = 2, 3, \ldots \) occur with codimension \(k^3 \) \(1 = 3, 8, \ldots \).

Because the space of \(k \times k \) Hermitian matrices is \(k^2 \) dimensional, matrices with multiplicity \(k \) are \(\lambda \text{Id} \) with \(\lambda \in \mathbb{R} \).

Or because for a \(2 \times 2 \) matrix:

\[
H(\lambda) = \begin{pmatrix}
 \lambda_1 & \lambda_3 + i\lambda_4 \\
 \lambda_3 - i\lambda_4 & \lambda_2
\end{pmatrix}, \quad \Delta E = \sqrt{[\lambda_1 - \lambda_2]^2 + 4\lambda_3^2 + 4\lambda_4^2} : \text{splitting}
\]

Remarks:

- for the same reason in the case of real symmetric matrices, the codimension for a multiplicity \(k = 2, 3, \ldots \) event, is \(\frac{k(k+1)}{2} \) \(1 = 2, 5, \ldots \).
- In many physical problems, constraints by particular symmetries.

For model \(\hat{H}_{\text{fast}}(\dot{\jmath}) \), the external parameters are:

\[
\dot{\jmath} = \begin{pmatrix}
 \jmath \\
 \mathbf{I}
\end{pmatrix} \in (S^2 \times \mathbb{R}^4) = \mathbb{R}^3
\]

Modification of Chern index at a generic degeneracy:

\[\Delta C_2 = C_2 \quad C_2 = \pm 1 \]

Proof: in \(\dot{\jmath} \in \mathbb{R}^3 \) space,
4.2. MODEL FOR COUPLING BETWEEN SLOW ROTATION AND N QUANTUM VIBRATIONS

- **Energy Degeneracy Points**:
 - Energy vs. Angular Momentum
 - Degeneracy points \(\Delta C = \pm 1 \)

Local model near an isolated degeneracy:

\[
\hat{H}_i(q,p) = \begin{pmatrix}
\pm \lambda & q + \hat{\sigma}_z \\
q - \hat{\sigma}_z & \mp \lambda
\end{pmatrix}, \quad \Delta E = 2\sqrt{\lambda^2 + q^2 + p^2}
\]

- Giving (Berry 84):
 - \(\Delta C = \pm 1 \)

Because topology can be computed from zeroes of a global section:

- Here \(\hat{H}_i = \hat{\mathcal{H}}_i, \quad \hat{\mathcal{B}} = (\lambda, q, \hat{p}), \quad \hat{\mathcal{H}} : \) Pauli Matrices
 - Has eigenstates \(|\psi_i(\hat{B})\rangle \) define two complex vector bundles \(F_i, F \) of rank 1 over \(S^2 \).

4.2.3 Quantum model: (rotation is quantized)

\[\text{Opérateur } \hat{H}_{\text{rot}} = \hat{H}_{\text{ext}}(\hat{J}) \text{ sur } \mathcal{H}_i \otimes \mathbb{C}^n \]

Theorem:

- \(\text{Construct projectors in } \mathcal{H}_{\text{rot}}, \hat{P}_1, \hat{P}_2, \hat{P}_3, \ldots \text{ associated with bands, such that } \begin{pmatrix} \hat{H}_{\text{rot}}, \hat{P}_i \end{pmatrix} = O(\mathbb{K}_{ij}) \]
 - \(\hat{P}_i \) given by its symbol \(\hat{P}_{ib}(\hat{J}) + h_{ij} \hat{P}_{ib}(\hat{J}) + \ldots \)
 - With \(\hat{P}_{ib}(\hat{J}) \): spectral projector of \(\hat{H}_0(\hat{J}) \)

So define: \(N_i = \text{Rank } (\hat{P}_i) \): number of levels in band \(i \)

Remarks:
- This result is no so obvious if bands overlap in energy; (figure above).
- Corrections are due to possible tunnelling effect between bands,
- General theorem and proof below.

Summary:
4.2. MODEL FOR COUPLING BETWEEN SLOW ROTATION AND N QUANTUM VIBRATIONS

<table>
<thead>
<tr>
<th>1/2 Quantum (B,0)</th>
<th>Quantum</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J' \rightarrow H_{fast}(J')$</td>
<td>Operator $\hat{H} = H_{fast}(J')$ sur $\mathcal{H}_j \otimes \mathbb{C}^n$</td>
</tr>
<tr>
<td>$S_j^2 \rightarrow H_{term}(\mathbb{C}^n)$</td>
<td>Degeneracy points $\Delta C = \pm 1$</td>
</tr>
</tbody>
</table>

Chemical indices C_i for bands

<table>
<thead>
<tr>
<th>Energy (cm$^{-1}$)</th>
<th>Degeneracy points $\Delta C = \pm 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>J1, C1</td>
</tr>
<tr>
<td>950</td>
<td>J2, C2</td>
</tr>
<tr>
<td>900</td>
<td>J3, C3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angular momentum</th>
<th>Degeneracy points $\Delta C = \pm 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>J1, C1</td>
</tr>
<tr>
<td>90</td>
<td>J2, C2</td>
</tr>
<tr>
<td>80</td>
<td>J3, C3</td>
</tr>
</tbody>
</table>

Question: relation between band topology C_i and N_i?

$N_i = (2j + 1)$
$i.e., \Delta N_i = \Delta C_i$

Proof (simple):

For a generic contact, the local model gives $\Delta C = \mp 1$.

Its quantization:

$$\hat{H}_\lambda = \left(\begin{array}{cc} \pm \lambda & q + iq \\ q - iq & \mp \lambda \end{array} \right),$$

gives $\Delta N = \pm 1$

So $\Delta N_i = \Delta C_i$.

Consider a generic deformation of the given symbol \hat{H} to the trivial (uncoupled) situation $\hat{H}_\delta = \hat{S}_z$, where $N_i = (2j + 1), C_i = 0$.

Simple example: Spin-orbit coupling

A two state (fast) spin S ($s = 1/2$),

coupled with a (slow) angular momentum J with $2j + 1$ states, with $j \gg 1$:

What is particular here:

- Dim(phase space S^2) $- 2 < \text{Codim(dgneracies)} - 3$.

So vector bundles have rank 1.

With external parameter $\lambda \in \mathbb{R}$, isolated degeneracies local model.

- Rank 1 vector bundles over S^2 are characterized by

Chem Index: $C \in H^1(S^2, \mathbb{Z}) \equiv \mathbb{Z}$

Question: what happens with 4-dimensional compact slow phase space?
4.3. Model with more interesting topological phenomena: Slow motion on $\mathbb{C}P^2$, dimension 4.

4.3.1 Classical mechanics:
Three vibrations in 1:1:1 resonance on $T^*\mathbb{R}^3 = \mathbb{R}^6$:

$$H_{ab} = \sum_{i=1}^{3} \frac{1}{2} (\dot{q}_i^2 + \dot{q}_i^2) = \sum_{i=1}^{3} |Z_i|^2 = \langle Z | Z \rangle,$$
with $Z_1 = \frac{1}{\sqrt{2}} (\phi + i \psi) \in \mathbb{C}$, $Z = (Z_1, Z_2, Z_3) \in \mathbb{C}^3$.
so $Z(t) = Z(0) e^{-i \epsilon}$.

For a fixed energy $E = \langle Z | Z \rangle$, a trajectory is associated to a point [Z] in reduced phase space (dim 4)

$$\mathbb{C}P^2 = (\mathbb{C}^3 \setminus \{0\}) / \sim, \quad \text{with } Z \sim \lambda Z, \quad \lambda \in \mathbb{C}.$$

4.3.2 Quantum mechanics:
on $L^2(\mathbb{R}^3)$,
operators $\hat{q}_i : \psi(q) \to \hat{q}_i \psi(q), \quad \hat{p}_i : \psi(q) \to \frac{i \partial \psi(q)}{\partial q_i}$,

$$\hat{H} = \sum_{i=1}^{3} \frac{1}{2} (\hat{p}_i^2 + \hat{q}_i^2),$$

• Spectrum:

$$E = \sum_{i=1}^{3} \left(n_i + \frac{1}{2} \right) = n_1 + n_2 + n_3 + \frac{3}{2} = N + \frac{3}{2}$$

multiplicity: $\frac{1}{2} (N+2)(N+1)$
Phase space $\mathbb{C}P^2 \leftrightarrow$ Hilbert space $H_{PAdS, N}$

• Semi-classical limit: $N \to \infty$.

4.3.3 Slow Vibrations coupled with 3 electronic states:
Matrix symbol: with parameter $\lambda \in [0, 1]$ “magnetic field”,

$$\begin{align*}
\{ [Z] \to \hat{H}_{\text{fast,} \lambda} (Z) = (1 - \lambda) \hat{H}_{\text{fast,} 0} + \lambda \hat{H}_{\text{fast,} 1} (Z) \} \\
\mathbb{C}P^2 \to \hat{H}_{\text{fast,} \lambda} (Z) = \hat{H}_{\text{fast,} \text{erm}} (C_{\text{fast}}^{\text{erm}})
\end{align*}$$

For $\lambda = 0$, no dependence on $[Z] \in \mathbb{C}P^2$: $\hat{H}_{\text{fast,} 0} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, giving three trivial fibers bundles, rank 1, on $\mathbb{C}P^2$: T_1, T_2, T_3.

For $\lambda = 1$,

$$\hat{H}_{\text{fast,} 1} (Z) = [Z] (Z) = \frac{\langle Z | Z \rangle}{|Z|^2} (Z Z)^{-1} \quad \text{Projector onto line } [Z]$$

Eigenvalue ($E_3 = 1$): rank 1 fiber bundle V_{term} *
the canonical bundle

Eigenvalue ($E_1 = 0, E_2 = 0$): rank 2 fiber bundle V_{orb}.

4.3.4 Band spectrum in B.O approximation:
One compute $E_i (\lambda, [Z]) \leq E_3 (\lambda, [Z]) \leq E_2 (\lambda, [Z]), \quad \lambda \in \mathbb{R}, [Z] \in \mathbb{C}P^2$.

![Graph showing band spectrum](image)

Degeneracy surfaces

$\text{V line : fibré en droite canonic}$

$\text{V orb : fibré orthogonal rang 2}$

represents the decomposition of the trivial bundle $\mathbb{C}P^2 \times \mathbb{C}$:

$T_1 \oplus T_2 \oplus T_3 \oplus V_{\text{term}} \oplus V_{\text{orb}} \quad \text{Rank 1, trivial Rank 3, trivial Rank 1 @ Rank 2}$
4.3.5 Topology of a vector fiber bundle F over $\mathbb{C}P^2$:
Characterized by its Chern Class $C(F) \in H^*(\mathbb{C}P^2, \mathbb{Z})$
$$C(F) = 1 + Ax + Bx^2, \quad A, B \in \mathbb{Z}$$
and its rank: $r \in \mathbb{N}, \quad (B = 0 \text{ if } r = 1)$.
(x is symplectic two form on $\mathbb{C}P^2$).

- **Composition property:**
 $$C(F \oplus F') = C(F) \wedge C(F') = 1 + (A + A') x + (A A' + B + B') x^2$$

- **In the model:**
 $$1 = C(C^3) = C(V_{\text{line}}) \wedge C(V_{\text{circ}})$$

 $$C(V_{\text{line}}) = 1 + x, \quad C(V_{\text{circ}}) = 1 + x^2$$

But
$$C(V_{\text{circ}}) \neq (1 + A x) \wedge (1 + A' x) = 1 + (A + A') x + (A A') x^2$$
no solution with integers A, A'.

So V_{circ} is a rank 2 **undecomposable bundle**.

Physical interpretation:
A spectral gap can not appear inside the band V_{circ}, under any perturbation.

- **Remark:** One needs at least **three bands** because:
 $$(1 + A x) \wedge (1 + A' x) = 1 + (A + A') x + (A A') x^2 = 1$$
 $\Rightarrow A = A' = 0$: 2 trivial bands

52 CHAPTER 4, TOPOLOGICAL ASPECTS IN THE SEMIQUANTUM MODEL OF S

4.3.6 Quantization of vibrations:

$$\mathbb{C}P^2 \to \text{Hilbert space } \mathcal{H}_{\text{polyn.}} \quad Z = \frac{1}{2\pi} (q + ip) \to \dot{Z} = \frac{i}{\hbar} (q + ip)$$

Total Hilbert space:

$$\mathcal{H}_{\text{tot}} = \mathcal{H}_{\text{polyn.}} \otimes \mathbb{C}^3_{\text{electron}}$$

Numerical results for $N = 4$:

![Graph showing numerical results for $N = 4$]

One observes the exchange of "elementary group" of $\Delta N = N + 2 = (N + 1) + 1$ levels.

Question: relation between N and band topology (r, A, B)?

Atiyah-Singer Index formula (1965), Fedosov (1990)
(A twist version of the Hirzebruch-Riemann-Roch Formula)
relating Analysis (number of levels) and topology of bundles:

$$\mathcal{N}(F) = [Ch(F^*) \wedge Ch(\text{Polyad}_N) \wedge \text{Todd}(T\mathbb{C}P^2)]/\text{det} d_e$$

with

$$Ch(F^*) = r \to Ax + \frac{1}{2} (A^2 + 2B) x^2 : \text{Band topology of the dual bundle}$$

$$Ch(\text{Polyad}_N) = \exp(Nx) : \text{geometric quantization of } \mathbb{C}P^2$$

$$\text{Todd}(T\mathbb{C}P^2) = 1 + \frac{3}{2} x + x^2 : \text{Base space}$$
4.3 MODEL WITH MORE INTERESTING TOPOLOGICAL PHENOMENA: SLOW MOTION ON

In the above model:

\[N(V_{\text{Line}}) = \left(1 + x + \frac{x^2}{2} \right) \land \left(1 + \frac{(N x^2)^2}{2} \right) \land \left(1 + \frac{3}{2} x + x^2 \right) \bigg|_{/x^1} \frac{1}{2} (N + 3) (N + 2) \]

\[N(V_{\text{Orth}}) = \left(2 - x - \frac{x^2}{2} \right) \land \left(1 + \frac{(N x^2)^2}{2} \right) \land \left(1 + \frac{3}{2} x + x^2 \right) \bigg|_{/x^1} N (N + 2) \]

4.3.7 Summary:

- Semi-classical correspondence between the Topological aspects of Semi Quantum and the Qualitative aspects of the Quantum problem:

This topology is related to the number of energy levels in each group of the quantum problem.

- Bifurcations: A change of band topology gives an exchange of levels between groups of levels.

- In QCD, Instantons are solitons of the gluon field, with a non trivial topology.

The index formula gives them an axial charge. The consequences is a breaking of the chiral symmetry and explaining the important mass of the mesons \(\eta, \eta' \).

The index theorem is “one of the deepest and hardest results of mathematics” which “is probably less known more widely with topology and analysis than any other single result” (Hirzebruch-Zagier 1974).

4.3.8 Remark on Index formula for the sphere (angular momentum phase space)

Chern Class of a line bundle is \(C(F^*) \) = \(1 \ - \ Cx \in H^1(S^2, \mathbb{Z}) \), with \(C \in \mathbb{Z} \),

\[N(F) = [C h(F^*) \land C h(\text{Quad}_j) \land T_{\text{odd}}(T S^2)]_{/\text{coeff of } x} \]

with

\[C h(F^*) = 1 \ - \ Cx \quad : \text{band} \]
\[C h(\text{Quad}_j) = \exp ((2j)x) \quad : \text{geometric quantization of } S^2 \]
\[T_{\text{odd}}(T S^2) = 1 + (1 \ - g)x \quad : \text{Base space, genre } g = 0 \]

54 CHAPTER 4, TOPOLOGICAL ASPECTS IN THE SEMI-QUANTUM MODEL OF S

\[N(F) = [(1 \ - Cx) \land (1 + (2j)x) \land (1 + (1 \ - g)x)]_{/x} = (2j) + (1 \ - g) \]

4.3.9 Remark on the surface of degeneracy \(S \) in the model between bands 2-3

In Parameter space \(\{\lambda_i[Z]\} \in \mathbb{R} \times \mathbb{C} P^2 \).

This surface \(S \subset \mathbb{R} \times \mathbb{C} P^2 \) is homologic to \(CP^1 \subset \mathbb{C} P^2 \) (Sphere: \(Z_i = 0 \))

Locally, one has a rank 2 bundle over \(\text{Normal}(CP^1) \):

Rank 2 bundle

\[\text{Chern} = 1 \]

Slow Base Space: \(\text{Normal}(CP^1) \)

This gives transfert of states:

\[\Delta N = (N + 1) + 1 \]

4.3.10 Remark on Semi-classical expansion for \(h \to 0 \); Weyl formula with correction

For a line bundle over a Riemann surface,

\(h_{\text{eff}} = 1/(2j), \ \text{Vol}(S^2) = 1 \).

\[N(F) = \frac{V_{\text{vol}}}{h_{\text{eff}}} + (1 - g) - C \]

The first term is Usual Weyl “number of quanta” in total phase space (Below, this will give the local density of states.)
4.3. MODEL WITH MORE INTERESTING TOPOLOGICAL PHENOMENA: SLOW MOTION ON \mathbb{CP}^2.

For a line $(r-1)$ bundle \mathcal{F} over \mathbb{CP}^2,

the number of levels $\mathcal{N}(\mathcal{F})$ is a polynomial in N:

$$\mathcal{N}(\mathcal{F}) = \left(1 - Ax + \frac{1}{2}x^2\right) \wedge \left(1 + Nx + \frac{(Nx)^2}{2}\right) \wedge \left(1 + \frac{3}{2}x + x^2\right),$$

$$= \frac{1}{2}N^2 + 9A + \frac{3}{2}A + 1.$$

Interpretation: $h_{eff} = 1/N$, $\text{Vol}(\mathbb{CP}^2) = 1/2$.

So

$$\mathcal{N}(\mathcal{F}) = \frac{V_{\text{eff}}}{h_{eff}} + \frac{1}{h_{eff}} \left(\frac{3}{2} A\right) + \cdots.$$

4.3.11 Remark on “Naturality” of index formula

The Chem Class is a map:

$$C : F \in \text{Vec}(M) \rightarrow C(F) \in H^*(M, \mathbb{Z}).$$

The main interest of Chern class $C(F)$ is that coefficients are integers.

But $C(F \otimes F^*) = C(F) \wedge C(F^*)$.

For two bundles over $(\dim 2n)$ phases spaces,

$F_1 \rightarrow M_1, \quad F_2 \rightarrow M_2$

one expects:

$$\mathcal{N}(F_1 \otimes F_2) \rightarrow (M_1 \times M_2) = \mathcal{N}(F_1 \rightarrow M_1) \mathcal{N}(F_2 \rightarrow M_2) : \text{product of Hilbert spaces}$$

$$\mathcal{N}(F_1 \otimes F_2) \rightarrow M = \mathcal{N}(F_1 \rightarrow M) + \mathcal{N}(F_2 \rightarrow M) : \text{Sum of bands}$$

This comes from

$$\text{Ch}(F_1 \otimes F_2) = \text{Ch}(F_1) \wedge \text{Ch}(F_2)$$

$$\text{Ch}(F_1 \otimes F_2) = \text{Ch}(F_1) \wedge \text{Ch}(F_2)$$

$$T_{\text{odd}}(T(M_1 \times M_2)) = T_{\text{odd}}(T(M_1) \wedge T_{\text{odd}}(T(M_2))$$

So the index formula is an expected formula:

$$\mathcal{N}(F) = [\text{Ch}(F_1 \otimes \text{Line}_N) \wedge T_{\text{odd}}(T_{M})]_{\text{odd} \neq x^n}.$$

But $\text{Ch}, T_{\text{odd}} \in H^*(M, \mathbb{Q})$ (not integer classes).

56CHAPTER 4. TOPOLOGICAL ASPECTS IN THE SEMI-QUANTUM MODEL OF S.

4.3.12 Index theorem and group theory:

In the model, for $\lambda = 1$, \hat{H}_1 is constructed from equivariance by $\text{SU}(3)$:

$$\hat{H}_{\text{tot}} = \hat{H}_{\text{polyad}} \otimes \hat{H}_{\text{elec}} = \text{Band "Line"} \otimes \text{Band "Orth"}$$

Weyl formula of group theory gives correct dimensions $N_{\text{Line}}, N_{\text{Orth}}$.

Remark on relations with vector coherent states, and weight diagramm, induced representations, equivariant vector bundles.

Irrep: $\begin{bmatrix} \text{Irrep:} & \text{Irrep:} \end{bmatrix}$

Orbit of \bullet: Line bundle over: $\text{SU}(3)/U(2)=\mathbb{CP}^2$

Orbit of \bullet: Line bundle over: $\text{SU}(3)/\text{U}(1)^*\text{U}(1)$

Orbit of \bullet: Rank 2 bundle over $\text{SU}(3)/U(2)=\mathbb{CP}^2$

4.4 Main “Born-OpPenheimer” theorem of adiabaticity

Consider:

- a Phase space P_{slow} (a symplectic manifold for slow motion),
- an Hilbert space $\mathcal{H}_{\text{fast}}$ (for fast motion)
4.4. MAIN "BORN\-OPPENHEIMER" THEOREM OF ADIABATICITY

- a **Matrix symbol** \(p \in P_{\text{dew}} \to \hat{H} (p) \in \text{Herm}(\mathcal{H}_{\text{fud}}) \) which can be written
 \[
 \hat{H} (p) = \hat{H}_0 (p) + \hbar \hat{H}_1 (p) + \hbar^2 \hat{H}_2 (p) \ldots ,
 \]

- **Hypothesis:** \(\forall p \in P_{\text{dew}} \), eigenvalues \((\lambda_j)_{j=1}^{\dim \mathcal{H}} \) of \(\hat{H}_0 (p) \) are separated from the other part of the spectrum \((\mu_j)_{j=1}^{\dim \mathcal{H}} \):
 \[
 \forall i,j \neq i \quad \lambda_i (p) \neq \mu_j (p)
 \]
 So eigenvalues \((\lambda_j (p))_{j=1}^{\dim \mathcal{H}} \) define a subspace \(E (p) \subset \mathcal{H}_{\text{fud}} \), with orthogonal projector \(\hat{\pi} (p) \).
 \(E \to P_{\text{dew}} \) is a rank \(m \) complex vector bundle over \(P_{\text{dew}} \).

- Then for any \(k \in \mathbb{N} \), there is a **unique** matrix valued symbol:
 \[
 \hat{\pi} (p) = \hat{\pi}_0 (p) + \hbar \hat{\pi}_1 (p) + \cdots + \hbar^k \hat{\pi}_k (p)
 \]
 which defines a self-adjoint operator \(\hat{\pi}_{\text{tot}} \) in \(\mathcal{H}_{\text{tot}} \), such that:
 \[
 \begin{align*}
 \hat{\pi}_{\text{tot}}^2 & = \hat{\pi}_{\text{tot}} + O (\hbar^{k+1}) : \text{quasi projector}, \\
 [\hat{H}_{\text{tot}}, \hat{\pi}_{\text{tot}}] & = O (\hbar^{k+1}) : \text{almost commute}.
 \end{align*}
 \]

Remarks

- One can thus modify \(\hat{\pi}_{\text{tot}} \) (move slightly the eigenvalues towards 1 or \(0 \), without moving the eigenspaces) to obtain a true projector \(\hat{\pi}_{\text{tot}} \) (i.e. \(\hat{\pi}_{\text{tot}}^2 = \hat{\pi}_{\text{tot}} \)). Let:
 \[
 \mathcal{N} = \text{Rank}(\hat{\pi}_{\text{tot}})
 \]
 \(\mathcal{N} \) is the number of eigenvalues close to 1 of the principal symbol \(\hat{\pi}_0 (\hat{J}) \).

- The **index formula** above gives \(\mathcal{N} = \text{Rank}(\hat{\pi}_{\text{tot}}) \) in terms of topology of the bundle \(E \).

- **Generic case:** each eigenvalue \(E_i \) and eigenvector \(| \phi_i \rangle \) of \(\hat{H}_{\text{tot}} \), \(i \in [1, \ldots \dim \mathcal{H}_{\text{tot}}] \), can be associated with the vector bundle \(E \) or its complement \(E^\perp \); i.e., \(| \phi_i \rangle \in \text{Im}(\hat{\pi}(p)) \) or \(\text{Ker}(\hat{\pi}(p)) \).

- **Consequence:** a quantum state which initially belongs to the space \(\text{Im}(\hat{\pi}(p)) \), will stay in this space forever during its evolution, with a good approximation (if \(k \) high).

- **Non generic case:** by resonances between two eigenvalues the associated states can be equidistributed on \(\text{Im}(\hat{\pi}(p)) \) and \(\text{Ker}(\hat{\pi}(p)) \), as it occurs usually in the tunneling effect.

58 CHAPTER 4. TOPOLOGICAL ASPECTS IN THE SEMIQUANTUM MODEL OF SYSTEMS

Indications for the proof:

By induction on \(k \in \mathbb{N} \). One works only with symbols, hypothesis for a given \(k \):

\[
\begin{align*}
\pi \ast \mu & = \pi + O (\hbar^{k+1}) \\
[\pi, H] & = \hbar^{k+1} F + O (\hbar^{k+1})
\end{align*}
\]

Check that the hypothesis is true for \(k = 0 \).

Because \([\pi_0, H_0] = 0 \), one can find a basis (for a given \(p \in P \)) such that:

\[
\pi_0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad H_0 = \begin{pmatrix} (\lambda_j) & 0 \\ 0 & (\mu_j) \end{pmatrix} \equiv \begin{pmatrix} H_0^p & 0 \\ 0 & H_1 \end{pmatrix},
\]

and write in this basis:

\[
A = \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix}, \quad \text{idem for } F.
\]

Lemma 1: \([A, \pi_0] = 0 \), so \(A = \begin{pmatrix} A_{00} & 0 \\ 0 & A_{11} \end{pmatrix} \).

Lemma 2: \(F_{00} = [A_{00}, H_0] \).

Write:

\[
\hat{\pi} = \pi + \hbar^{k+1} K
\]

with unknown \(K = \begin{pmatrix} K_{00} & K_{01} \\ K_{10} & K_{11} \end{pmatrix} \) such that:

\[
\begin{align*}
\hat{\pi} \ast \hat{\pi} & = \pi + O (\hbar^{k+1}) \\
[\hat{\pi}, H] & = \hbar^{k+1} F + O (\hbar^{k+1})
\end{align*}
\]

Lemma 3: \(K_{00} = A_{00} , K_{11} = A_{11} \).

Lemma 4: \(H_0 K_{01} = K_{00} H_1 = F_{01} \) and \(H_1 K_{10} = K_{11} H_0 - F_{00} \), i.e.: \((K_{01})_{ij} = (\lambda_j)_{i}^{-1} (F_{01})_{ij} \), idem for \(K_{10} \).

So Matrix \(K(p) \) is determined, giving \(\hat{\pi} \).

Lemma 1,2,3,4 are not difficult to prove.

4.5 Berry's connection, Chern Class and Characteristic Classes

We give here the definitions of the Characteristic classes used in Index formula above.
4.5. **BERRY'S CONNECTION, CHERN CLASS AND CHARACTERISTIC CLASSES**

Consider

\[
\mathcal{H} : \text{fixed Hilbert space}
\]

\[x \in M : \text{Parameter space (Phase space Manifold)}\]

A \(x\)-dependent decomposition of \(\mathcal{H}\):

\[\mathcal{H} = \bigoplus_i \mathcal{H}_{x,i}, \quad \mathcal{H}_{x,i} = \text{Im} \left(\hat{P}_{x,i} \right), \quad \hat{P}_{x,i} : \text{projector}\]

- Think that \(\hat{H}_x\) is a \(x\)-dependent Hermitian operator with eigen-spaces \(\mathcal{H}_{x,i}\).
- If \(\hat{P}_{x,i}\) has a smooth dependence with respect to \(x \in M\), then \(F_x : \mathcal{H}_{x,i} \to M\) is a well defined vector bundle over \(M\) of rank \(m_i = \text{dim}_{\mathbb{C}}(\mathcal{H}_{x,i})\).
- Consider a parametrized path \(x(t) \subset M\). Lift \(x\) in \(\mathcal{H} \times M\) with respect to the parallel transport (Levi-Civita) in each subspace \(\text{Im} (\hat{P}_{x})\).

This defines a unitary family of operators \(\hat{U}(t_1, t_2)\) in \(\mathcal{H}\), with Hermitian generator \(\hat{K}\) :

\[i\hbar \frac{d}{dt} \hat{U}(t_1, t_2) = \hat{K}(t_2) \hat{U}(t_1, t_2)\]

Remark:
- Operator \(\hat{K}\) express the Berry's connection.

\[\hat{K}(t_2)\] depends only on the tangent vector \(v = \frac{dx}{dt} \in T_xM\) so \(\hat{K}\) is a 1-form on \(M\) with values in \(\text{Herm} (\mathcal{H})\).

Property:

\[\hat{K}(t_2) = \sum_i \frac{d}{dt} \hat{P}_{x,i} \hat{P}_{x,i}\]

Proof:
We saw that the Levi-Civita connection on space \(\mathcal{H}_{x,i}\) can be expressed by:

\[|\psi + d\psi\rangle_i = \hat{P}_i (x + dx) |\psi\rangle_i\]

where \(|\psi\rangle \in \mathcal{H}_{x,i}\)

\[\boxed{\text{4.5.1. **Berry's Curvature**}}\]

Consider two tangent vectors \(v_1, v_2 \in T_xM\), defining an infinitesimal loop in \(M\), with sides \(v_1dt\) and \(v_2dt\).

The Curvature is the Riemann on this loop,
It is expressed by an infinitesimal unitary operator

\[\hat{U} = 1 + \frac{i}{\hbar} \hat{K}(t_2) dt + o(dt^2)\]

A standard calculation gives the Hermitian generator of this Berry's curvature:

\[\hat{K}(t_2) = \frac{i}{\hbar} [\hat{K}, \hat{K}]\]

Remarks:
- \(\hat{K}(t_2)\) is a 2-form on \(M\) with values in \(\text{Herm} (\mathcal{H})\).
- By construction \(\hat{K}\) leaves \(\mathcal{H}_{x,i}\) invariant. \(\forall i\). The restriction is:

\[\hat{K}(t_2)|_{\mathcal{H}_{x,i}}\]

- If \(d\text{dim} \mathcal{H}_{x,i} = 1\), then \(\hat{K}(t_2)|_{\mathcal{H}_{x,i}} \in \mathbb{R}\) is called the (Scalar) Berry's curvature for level \(i\).
- One can check the formula:

\[\hat{K}(t_2) = \sum_i \hat{P}_i [d_{x,i}, d_{x,i}, P_i] P_i\]
4.5. BERRY'S CONNECTION, CHERN CLASS AND CHARACTERISTIC CLASSES

We will see below that in the semi-classical limit, if the dynamics is integrable, then H^{Berr} is the quantization of a classical Hamiltonian H^{Hamm} corresponding to the Hannay connection between Tors.

4.5.2 Characteristic Class

Consider a complex vector bundle $F: \mathcal{H} \to M$, over compact manifold M. Define

$$ C(F) = \det \left(1 + \frac{1}{2\pi i} \hat{\Omega}^{Berr} \right); \quad \text{Total Chern Class} $$

Remarks and Properties:

- $\hat{\Omega}^{Berr}$ is a 2-form on M so $C(F)$ is a differential form with even degree only.
- One writes also: $C(F) = 1 + C_1 + C_2 + \ldots$, with $C_k \in H^{2k}(M, \mathbb{R})$; k^{th} Chern Class
- If $\text{Rank}_e(F) = r$, then $C_k = 0$ for $k > r$.
- If $n = \dim_{\mathbb{R}} M$, then $C_k = 0$ for $2k > n$.
- $C(F)$ is an integral class $C(F) \in H^{e.e.}(M, \mathbb{Z})$; which means that C_k gives integers after integration over any closed submanifold $S \subset H^k(M, \mathbb{Z})$.
- (One check this in the Universal Classifying Grassmanian bundle $C^m \rightarrow G_m(M)$, and use invariance of differental forms by pull-back; see Hatcher's book, or Eichner).
- If $r = \text{Rank}_e(F) = 1$, then

$$ C_1 = \frac{1}{2\pi i} \hat{\Omega}^{Berr} \in H^2(M, \mathbb{Z}) $$

characterizes the topology of the bundle F. (See Wells's book).

This is not true in general for higher ranks.

- On CP^2, we used the fact that

$$ H^2(CP^2) = \mathbb{Z} + \mathbb{Z} \omega + \mathbb{Z} \omega^2 $$

where ω is the (normalized) symplectic 2-form.

- More generally, for any polynomial P (or formal serie) on \mathbb{R}, then

$$ T_F \left(P \left(\frac{1}{2\pi i} \hat{\Omega}^{Berr} \right) \right) \in H^{e.e.}(M, \mathbb{R}) $$

is a topological invariant (does not depend on the connection). To have nice relations with \boxtimes, \boxtimes, (important for the index formula) define

$$ Ch(F) = \text{Tr} \left(e^{\frac{1}{2\pi i} \hat{\Omega}^{Berr}} \right); \quad \text{Chern Character} $$

62

4.5.3 Important physical remarks:

We show here that the Index formula is more precise than just giving the total number of states.

- The Index formula can be written:

$$ N(F) = \int_{M} \mu $$

$$ \mu = [Ch(F^*) \wedge Ch(Polyad_N) \wedge \text{Todd(TCP^2)}]_{/V} $$

The Volume form μ is interpreted as the local density of states in phase space M.

- μ is still well defined if M is not compact.

- By the Semi-classical Symbol of the Hamiltonian $p \in M \rightarrow H[p] \in \mathbb{R}$ one obtains then the Energy density of states.

- For $h_{eff} = 1/N \rightarrow 0$, the expansion of μ is the Weyl formula, "Averaged part" of the Gutwiller Trace-Formula, and involves no dynamics.

4.6 References

Ro-Vibrational coupling:

Introduction to topology of vector bundles, and Index formulae

- Nakaham "Geometry, topology and physics", graduate students series in physics, Adam Hilger, Bristol and N.Y.
4.6. REFERENCES

Semiclassical Theory of Slow-Fast systems:

Index formula and geometric quantization:

Index formula and topology in molecular spectra:

Chapter 5

Topological aspects in the Classical model of slow-fast coupled systems

5.1 A simple class of models. Topology of the tori bundle.

Model: A slow angular momentum $\tilde{J}(t)$ coupled with fast Angular momentum $\tilde{S}(t)$.

• Total classical phase space:

$$P_{\text{tot}} = P_{\text{slow}} \times P_{\text{fast}} = S_j^3 \times S_s^3$$

• Total quantum Hilbert space:

$$\mathcal{H}_{\text{tot}} = \mathcal{H}_{\text{slow}} \otimes \mathcal{H}_{\text{fast}} = \mathcal{H}_j \otimes \mathcal{H}_s, \quad \text{dim} = (2j + 1)(2s + 1)$$

• With the adiabatic assumption:

$$j \gg s$$

and the (optional) semi-classical limit for fast variable:

$$s \gg 1$$

• The classical model is specified by a total symbol:

$$H(\tilde{J}, \tilde{S})$$

• Total Dynamics is nearly integrable (well identified tori: $S_{\text{fast}}^3 \times S_{\text{slow}}^3$).

Simple example “Spin-orbit coupling”:

$$H(\tilde{J}, \tilde{S}) = (1 - \lambda)\tilde{S} + \lambda \tilde{S}, \quad \lambda \in [0, 1]$$

Summary:

<table>
<thead>
<tr>
<th>Slow \tilde{J}</th>
<th>Fast \tilde{S}</th>
<th>Classical in $P_{\text{fast}} = S_s^3$</th>
<th>Quantum in \mathcal{H}_{tot}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical in $P_{\text{slow}} = S_j^3$</td>
<td>Function $H_{\text{tot}}(\tilde{J}, \tilde{S})$</td>
<td>$\mathcal{H}_{\text{tot}} = \mathcal{H}_j \otimes \mathcal{H}_s$ (Classical, phase space $S_j^3 \times S_s^3$)</td>
<td>H_{tot} (Quantum in \mathcal{H}_{tot})</td>
</tr>
</tbody>
</table>

Restricted Hypothesis:

• For every \tilde{J} fixed, $H_{\text{tot}}(\tilde{J}, \tilde{S})$ is a function on S_s^3, with only a minimum min and Maximum Max.

C: this class of models.

![Reeb graph](image)

If $\text{Max} > \text{min}$, Topology of the fast trajectories, characterized by degree $d \in \mathbb{Z}$ of:

$$\text{degree of:} \quad \tilde{J} \in S_j^3 \rightarrow \text{Max} \in S_s^3$$

So Topological subclass of models

$$\mathcal{C} = (\cup_d \mathcal{G}_d) \cup \text{Singulars}$$

Path...
5.2 Semi-quantum model; Energy Bands and their topology by semi-classical calculation

For \(\mathcal{H} \in \mathcal{C}_d \), there are \(2m + 1 \) isolated bands, with Chern index \(C_{B_{\sigma},m} = -s \)

Property:

\[
C_{B_{\sigma},m} = -2m \frac{\partial C_{B_{\sigma},m}}{\partial m} = 2m
\]

Proof: Count the zeros of a global section of band \(F_m: \tilde{J} \rightarrow \mathcal{H}_{f|\tilde{J}} = \mathcal{H}_{f|m} \).

Consider a fixed coherent state \(|\tilde{s}_0\rangle \). A global section is \(|\psi_{f|m}\rangle \langle \psi_{f|m}|\tilde{s}_0\rangle \).

Same zeros as the Husimi distribution at point \(\tilde{s}_0 \):

\[
H_{\text{Hus}} \left(\tilde{s} \right) = \left| \langle \tilde{s}_0 | \psi_{f|m} \rangle \right|^2
\]

5.3 Relation with classical and quantum monodromy:

Local model at a transition between \(\mathcal{C}_d \) and \(\mathcal{C}_{d+1} \). Transition occurs if \(\tilde{J}(\tilde{J}) \sim 0 \) for \(\tilde{J} \neq \tilde{J}' \).

\((q,p) \) : local coordinates for \(\tilde{J} \in S^2_\mathcal{C} \).
5.3. Relation with Classical and Quantum Monodromy:

Generic local model in \((q, p, S) \in \mathbb{R}^2 \times S^2\):

\[
H_{loc}(q, p, S) = qS_y + pS_x - \lambda S_z
\]

Parameter space \((q, p, \lambda) \in \mathbb{R}^3\).

Singularity at \((0, 0, 0)\) gives:

\[
\Delta C_{H_{loc}} = 2, \quad \Delta C_{H_{loc}, m} = -2m, \quad \Delta N_m = 2m
\]

- For \(s = 1/2\), already considered:

\[
\dot{H}_{loc} = \begin{pmatrix}
-\lambda & p + iq \\
-p - iq & \lambda
\end{pmatrix}
\]

- This local model is integrable:

\[
N = S_x + \frac{1}{2}(q^2 + p^2), \quad \{H_{loc}, N\} = 0
\]

This local integrable model has a generic (classical and quantum) monodromy defect.

5.4. CLASSICAL HANNAY CONNECTION; SEMI-CLASSICAL CORRESPONDENCE WITH BERNSTEIN

- Adiabatic limit: \(x(\varepsilon t) \in M \) varies slowly, \(\varepsilon \ll 1 \).

 The Classical Adiabatic theorem: the trajectories follow tori with (approximatively) constant action.

Objective: explain the precise motion in the tori, in terms of a geometric Hannay connection.

“Spin precession” example:

Hamiltonian on \(P_{\text{fast}} = S^2 \) :

\[
H_x(\vec{S}) = \vec{B} \cdot \vec{S}
\]

with imposed Slow varying “Parameter”:

\(x(\varepsilon t) = \vec{B}(\varepsilon t) \in M = S^2 \), with \(\varepsilon \ll 1 \)

Tori trajectories are Circles around \(\vec{B} \) on \(S^2 \).

![Parameter space M](image1)

![Phase space P_fast](image2)

Adiabatic Averaging method:

The evolution vector field on \(M \times S^2 \)

\[
V = (V_x, V_S) = \left(\frac{d}{dt} \vec{H}_x(\vec{S}), \vec{S} \right) \in \mathbb{T}(M \times S^2)
\]

is approximated by its averaged over the motion of \(\vec{S} \):

\[
\langle V \rangle_{fast} = \langle (V_x, V_S) \rangle_{fast} = \langle (0, V_S) \rangle_{fast} + \langle (V_x, 0) \rangle_{fast} + \text{V _Hannay}
\]

\(\text{Dynamical Geometric} \)

decomposed

- in the “trivial” “Dynamical” fast motion (in Action-Angle coordinates, \(V_S : \frac{d}{dt} = 0, \frac{d\theta}{dt} = \omega(I) = \frac{\partial H}{\partial \theta} \)).

72. Chapter 5. TOPOLOGICAL ASPECTS IN THE CLASSICAL MODEL OF SLOW

- and the Hannay Hamiltonian Vector field \(V_{\text{Hannay}} \).

More explicitly:

On \(S^2 \), define \(R_{t, \alpha} : (I_x, \theta_x) \to (I_x, \theta_x + \alpha) \) the rotation by the same angle \(\alpha \) on each Tori.

\[
V_{\text{Hannay}} = \int_0^{\alpha} \left(\frac{d}{dx} \right) \frac{dR_{t, \alpha}^{-1} \cdot V_x}{dx} \, dx
\]

- \(V_{\text{Hannay}} = \langle (V_x, 0) \rangle_{fast} = \left(\frac{d}{dt} V_{\text{Hannay}} \right) \) has component in \(P_{\text{fast}} = S^2 \)

- \(V_{\text{Hannay}} \) is generated by a Hamiltonian \(K_{V_x, V_S} \).

Hannay Hamiltonian function \(K_{\text{Hannay}} \) is a one-form on \(M \) valued in Hamiltonian function in \(P_{\text{fast}} \).

It defines the Hannay Connection between tori, which connects tori with same action.” \(I = \int \rho \, dq \).”

Example of spin precession:

\[
K_{V_S}^{\text{Hannay}} = (\vec{B} \wedge V_x) \cdot \vec{S}
\]

- Parameter space M

- Phase space P_fast

- B(t+d\theta)

- B(t)

- B _V_x

- V_hannay
5.4. \textbf{CLASSICAL HANNAY \ CONNECTION; SEMI-CLASSICAL CORRESPONDENCE WITH BERRY'S CONNECTION.}

\textbf{Hannay's curvature:}

is the Hamiltonian vector field (valued two-form):

$\Omega^{\text{Hannay}}_{\psi, \xi} = \{ V^{\text{Hannay}}_{\psi}, V^{\text{Hannay}}_{\xi} \}$

or Hamiltonian function (valued two form):

$H^{\text{Hannay}}_{\psi, \xi} = \{ K^{\text{Hannay}}_{\psi}, K^{\text{Hannay}}_{\xi} \}$

By construction, they preserve the Tori. The Hannay curvature is then just a shift angle $\Omega^{\text{Hannay}}_\theta$ in each Tori:

$\Omega^{\text{Hannay}}_\theta = \frac{\partial H^{\text{Hannay}}}{\partial \theta}$

\textbf{Example of spin precession:}

$H^{\text{Hannay}}_{\psi, \xi} = \left(\psi_i \wedge \xi_i \right) B \hat{S} = \left(\psi_i \wedge \xi_i \right) H \left(\hat{S} \right)$

\textbf{Remark:} the Tori bundle has global topology $C^{\text{Hannay}} = \int \Omega^{\text{Hannay}}_\theta = 2$

5.4.2 \textbf{Semi-classical correspondence between Hannay and Berry's connection.}

$i)$ Now \hat{H}_s is the quantization of H_s on fixed Hilbert space \mathcal{H}.

* The eigenspaces of H_{s} define a β-dependent decomposition of \mathcal{H}:

$\mathcal{H} = \bigoplus_m \mathcal{H}_{m, \beta} \quad \mathcal{H}_{m, \beta} = \text{Im} \left(\hat{P}_{s, m} \right), \quad \hat{P}_{s, m} : \text{projector}$

Where m is the quantum number of quantized Tori, with Action: $I_m = m \hbar$.

* The quantization of $R_{s, \beta}$ is the unitary operator:

$\hat{R}_{s, \beta} = \sum_m e^{im \beta \phi_m} \hat{P}_m = \sum_m e^{im \beta} \hat{P}_m$

* The quantization of $K^{\text{Hannay}}_{s, \beta}$ is then

$\hat{K}^{\text{Hannay}}_{s, \beta} = i \hbar \int \frac{d\alpha}{2\pi} \hat{R}_{s, \beta} \hat{R}_{s, \beta}^\dagger$
5.5. REFERENCES

Classical Hannay’s Connection

Semi-classical correspondence between Hannay and Berry’s Connection

Chapter 6

Topological Chern indices and the Integer Quantum Hall effect

6.1 Introduction

Non interacting bi-dimensional electrons in a Magnetic field B, in a periodic potential V,

\[H(x, p_x, y, p_y) = \frac{1}{2m} \left(\mathbf{p} - \frac{e}{c} A \right)^2 + V(x, y), \quad A = \left(-\frac{1}{2} B y, \frac{1}{2} B x \right) \]

with a weak external electric field E.

\[\mathbf{E}_y \]

\[B_x \]

\[x \]

\[y \]

Motion of electrons:

- Slower motion of quasi-momentum over the Brillouin zone.

- If B is strong (not assumed for now): Fast Cyclotron motion on circles; Slower precession of the circles;

6.2 Band Spectrum and topology for the Quantum Hall effect

6.2.1 A dimensionless model

- We consider non-interacting electrons,

- Electron of mass m in plane (x, y) subject to a bi-periodic potential $V(x, y)$ (period L)

- a transverse constant magnetic field $\mathbf{B} = B \mathbf{e}_x$.

- The classical phase space is $T^* \mathbb{R}^2 \cong \mathbb{R}^4$, with coordinates (x, p_x, y, p_y).

Prop: (Thouless et al, 82)

\[\sigma_{xy} = \frac{j_s}{F_y} = \frac{e^2}{\hbar} \sum C_{\text{filled bands}} C_n \in \mathbb{Z} \]

\[\hbar/\tilde{c}^2 = 25812.807 \Omega \]

Observed by V. Klitzing et al. (1980).

Remarks:

- Recent experiments of Albrecht et al. (PRL 86,147 2001) to observe Hofstadter Spectrum,

- Plateaux are explained by intermediate localized states, due to disorder.

- Strong B is important: gives Landau gaps and plateaux.

- The Fractional Quantum Hall effect is related to interactions between electrons,
6.2 Band Spectrum and Topology for the Quantum Hamiltonian

- The Hamiltonian function is:
 \[H(x, p_x, y, p_y) = \frac{1}{2m} \left(\frac{\hat{p}_x^2}{\epsilon_x} + \frac{\hat{p}_y^2}{\epsilon_y} \right) + V(x, y) \]
 with \(\hat{H} = \text{rot} \left(A \right) = (\partial_y A_x - \partial_x A_y) \hat{\epsilon}_z. \)
- The symmetric Gauge is the choice: \(\hat{A} = \left(-\frac{i}{\hbar} B_y, \frac{i}{\hbar} B_x \right) = -\frac{i}{\hbar} \hat{\epsilon}_x \wedge \hat{B}, \)
 and gives:
 \[H = \frac{1}{2m} \left(\left(\frac{\hat{p}_x}{\epsilon_x} + \frac{eB_y}{2\epsilon_x} \right)^2 + \left(\frac{\hat{p}_y}{\epsilon_y} + \frac{eB_x}{2\epsilon_y} \right)^2 \right) + V(x, y) \]
- For the quantum dynamics, \(\hat{x}, \hat{p}_x, \hat{y}, \hat{p}_y \) are operators \(([\hat{x}, \hat{p}_x] = i\hbar, \ldots) \),
- The Hilbert space is \(\mathcal{H}_{\text{tot}} = L^2(\mathbb{R}^2) = \mathcal{H}_x \otimes \mathcal{H}_y \)
 and the Schrödinger equation reads:
 \[i\hbar \frac{d\psi}{dt} = \hat{H}\psi \]
 with Hamiltonian operator \(\hat{H} \) obtained by quantization of \(H \).
- Consider canonical linear transformations, with new dimensionless “fast and slow” variables (and idem for quantum operators):
 \[X_{\text{fast}} = \begin{cases} x_f = \sqrt{\frac{\hbar}{\epsilon_x}} p_x - \frac{i}{\sqrt{2\epsilon_x}} y_f & \\
 p_f = \sqrt{\frac{\hbar}{\epsilon_y}} p_y & \end{cases} \]
 \[X_{\text{slow}} = \begin{cases} x_s = \sqrt{\frac{\hbar}{\epsilon_x}} p_x + \frac{i}{\sqrt{2\epsilon_x}} y_s & \\
 p_s = \sqrt{\frac{\hbar}{\epsilon_y}} p_y & \end{cases} \]
 with the quanta of surface:
 \[S = \frac{\hbar}{eB} \]
 One can check that indeed:
 \[[\hat{x}_f, \hat{p}_f] = i, \quad [\hat{x}_s, \hat{p}_s] = i\hbar_{\text{eff}} \]
 (and other commutators are zero),
 with the dimensionless parameter “effective Planck constant”:
 \[\hbar_{\text{eff}} = \frac{S}{\mathcal{V}} \text{ : inverse of number of quanta flux per cell} \]

80 CHAPTER 6. Topological Chern Indices and the Integer Quantum Hall Effect

\[\hbar_{\text{eff}} \rightarrow 0 \] is the adiabatic limit \((\delta t \text{ assumed yet}) \)

Define the dimensionless time
\[\hat{t} = \omega t \]
with the cyclotron frequency
\[\omega = \frac{eB}{mc} \]
and the dimensionless Hamiltonian and potential
\[\hat{H} = \frac{1}{\hbar} H, \quad \hat{V}(a, b) = \frac{1}{\hbar} V(-X_a, -X_b) \]

Then the Schrödinger equation reads:
\[i\hbar \frac{d\psi}{dt} = \hat{H}\psi, \quad \text{in} \ \mathcal{H}_{\text{tot}} = L^2(\mathbb{R}_{\text{slow}}) \otimes L^2(\mathbb{R}_{\text{fast}}) = \mathcal{H}_{\text{slow}} \otimes \mathcal{H}_{\text{fast}} \]

and
\[\hat{H}(X_s, X_f) = \frac{1}{2} \left(\hat{p}_s^2 + \hat{p}_f^2 \right) + \hat{V} \left(\hat{p}_s + \sqrt{\hbar_{\text{eff}}}, \hat{p}_f; X_s, X_f + \sqrt{\hbar_{\text{eff}}}, X_f \right) \]

Remark that \(\hat{H}(X_s, X_f) \) is bi-periodic w.r.t. \(X_s = (x_s, p_s) \).
We write now:
\[\hbar = \hbar_{\text{eff}} \]

6.2.2 Band Spectrum and Topological Chern Indices

Translation operators in \(L^2(\mathbb{R}_{\text{slow}}) \):
\[(\hat{T}_x \psi)(x) = \psi(x + 1) \]
\[(\hat{T}_p \psi)(p) = \psi(p + 1) : \text{ (Fourier)} \]
\[\hat{T}_x = \exp(i\hat{p}_s/\hbar), \quad \hat{T}_p = \exp(i\hat{x}_s/\hbar). \]

From periodicity of \(\hat{H} \):
\[[\hat{H}, \hat{T}_x] = [\hat{H}, \hat{T}_p] = 0, \]
but:
\[\hat{T}_s \hat{T}_p = e^{i\hbar_{\text{eff}}}, \hat{T}_s \]

So if
\[N = \frac{1}{2\hbar_{\text{eff}}} \in \mathbb{N}^*, \]
6.2. Band Spectrum and Topology for the Quantum Hamiltonian

then

\[[\hat{T}_x, \hat{T}_y] = 0 ; \quad \text{Hypothesis} \]

Remark:

\[N = \frac{1}{2\pi} \rightarrow \infty ; \quad \text{Semi-classical limit (and adiabatic limit)} \]

(If \(\frac{1}{2\pi} \in \mathbb{Q} \), consider \(\hat{T}_s = \exp\left(-iB\hat{p}_s/\hbar\right) \), then \([\hat{T}_x, \hat{T}_y] = 0 \).

6.2.3 Decomposition of \(L^2(\mathbb{R}_{slow}) \) in eigenspaces of \(\hat{T}_x \) and \(\hat{T}_y \):

\[\mathcal{H}_{slow}(\theta_1, \theta_2) = \left\{ \psi > \begin{matrix} \text{such that} \\ \nu^{-1} \hat{T}_x \psi = \exp\left(i\theta_1\psi\right) \\ \nu^{-1} \hat{T}_y \psi = \exp\left(i\theta_2\psi\right) \end{matrix} \right\} , L^2(\mathbb{R}_{slow}) = \int \mathcal{H}_{slow}(\theta_1, \theta_2) d\theta_1 d\theta_2 \]

\(\hat{\theta} = (\theta_1, \theta_2) \in \mathcal{T}_0 \) are Bloch Parameters

\(\hat{\psi}(p) \) is 1-periodique so \(\psi(x) \) is \((\hbar = 1/N)^* \)-discrete, and also 1-periodic,

\[\theta_2/(2\pi N) \]

\[\begin{array}{ccccccc}
-1 & 0 & 1 & \ldots & 1/N & 1 \\
\end{array} \]

A basis of \(\mathcal{H}_{slow}(\theta_1, \theta_2) \) is then:

\[|j, \hat{\theta}\rangle = \Psi_{j\hat{\theta}N}(x) = \frac{1}{\sqrt{N}} \sum_{n \in \mathbb{Z}} \exp\left(-in\theta_1\right) \delta(x - qjN - n), \quad j = 1, \ldots, N \]

with \(qjN = \frac{1}{2\pi} \left(j + \frac{\theta_2}{2\pi}\right) \).

So

\[\dim \mathcal{H}_{slow}(\theta_1, \theta_2) = N. \]

Band spectrum of \(\hat{H} \) in \(\mathcal{H}_{slow}(\theta_1, \theta_2) \otimes L^2(\mathbb{R}_{fast}) \):

\[\hat{H}|\varphi_n(\theta_1, \theta_2)\rangle = E_n(\theta_1, \theta_2)|\varphi_n(\theta_1, \theta_2)\rangle, \quad n \in \mathbb{N}, \]

6.2.4 Topological indices of the bands

Suppose that \(E_n(\theta_1, \theta_2) \) is isolated eigenvalue \(\forall \theta, \) (true for generic \(\hat{H} \)).

The eigenspaces define Complex line bundles:

\[F_n \rightarrow \mathcal{T}_0 \]

With topology characterized by Chern index:

\[C_n \in \mathbb{Z} : \] Chern index of band \(n \)

(Formula to compute \(C_n \) below).

6.3 Interpretation of the Topological Chern Indices: the Quantized Hall conductivity

The usual proof of

\[\sigma_{xy} = \frac{\hbar}{4\pi} \sum_{\text{closed bands}} C_n \]

uses Kubo formula.

We present an equivalent but more “dynamical” proof, which relates \(C_n \) with the adiabatic transport of a wave packet.

6.3.1 Delocalized Bloch waves and Localized Wannier waves

In a fixed band \(n \), consider a \(C^\infty \) section \(|\psi\rangle \) of the vector bundle \(F_n \rightarrow \mathcal{T}_0 \):

\[|\psi\rangle = \int d\theta_1 d\theta_2 |\psi(\theta_1, \theta_2)\rangle, \quad |\psi(\theta_1, \theta_2)\rangle \in \mathcal{H}_{slow}(\theta) \]

Each state \(|\psi(\theta)\rangle \in \mathcal{H}_{slow}(\theta) \) is a delocalized Bloch wave, but \(|\psi\rangle \in L^2(\mathbb{R}) \) is a localized Wannier wave.
6.3. INTERPRETATION OF THE TOPOLOGICAL CHERN INDICES: THE QUANTIZED HALL EFFECT

Wave packet motion

Consider the translated localized Wannier state

\[|\psi_{n_1, n_2} \rangle = T_{n_1} T_{n_2} |\psi \rangle = \int d\theta_1 d\theta_2 e^{i n_1 \theta_1 + i n_2 \theta_2} |\psi(\theta_1, \theta_2) \rangle. \]

Conversely:

\[|\psi(\theta_1, \theta_2) \rangle = \sum_{n_1, n_2 \in \mathbb{Z}} e^{i n_1 \theta_1 + i n_2 \theta_2} |\psi_{n_1, n_2} \rangle. \]

Generalization: if

\[|\phi \rangle = \int \int d\theta_1 d\theta_2 e^{i f(\theta_1, \theta_2)} |\psi(\theta_1, \theta_2) \rangle, \]

with any function \(f \) such that:

\[f(\theta_1 + 2\pi, \theta_2) = f(\theta_1, \theta_2) + N_1 2\pi, \]

\[f(\theta_1, \theta_2 + 2\pi) = f(\theta_1, \theta_2) + N_2 2\pi, \]

(integers \(N_1, N_2 \in \mathbb{Z} \) characterize the homotopy type of \(f \))

Define the mean position of \(|\phi \rangle \) on the plane by:

\[< n_1 >= \sum_{n_1, n_2} n_1 |< \psi_{n_1, n_2} |\phi >|^2 \]

\[< n_2 >= \sum_{n_1, n_2} n_2 |< \psi_{n_1, n_2} |\phi >|^2, \]

Then:

\[< n_1 >= N_1, \quad < n_2 >= N_2, \]

So the mean position of \(|\phi \rangle \) is “quantized”.

(This is a simple property of Fourier Series: if \(g(\theta) = \sum c_n e^{in\theta} = e^{if(\theta)} \) with \(f(2\pi) = f(0) + N 2\pi \) then \(\sum |c_n|^2 = < |\phi| |\phi > = < \int_0^{2\pi} f(\theta) d\theta = N, \) with contour operator \(\oint = \int_0^{2\pi} f(\theta) d\theta \).

84 CHAPTER 6. TOPOLOGICAL CHERN INDICES AND THE INTEGER QUANTUM HALL EFFECT

6.3.2 Physical consequence on temporal evolution

\[|\psi(t) \rangle = e^{-i \mathcal{H} t/\hbar} |\psi_0 \rangle = \int \int d\theta_1 d\theta_2 e^{-iE(\theta_1, \theta_2) t/\hbar} |\psi(\theta_1, \theta_2) \rangle, \]

has a “dynamical” phase \(f(\theta_1, \theta_2) = -\theta E(\theta_1, \theta_2) t/\hbar \) with homotopy type \(N_1 = N_2 = 0 \).

So \(|\psi(t) \rangle \) spreads on the plane, but its mean position \(< n_1 >, < n_2 > \) is zero.

6.3.3 Addition of a weak external electric field \(\mathbf{E} = \partial U/\partial y = E_y \mathbf{u}_y \)

Potential energy \(\mathcal{E} = -eU(r) \), gives a slow motion of the quasi-impulsion \(\tilde{k}(t) = \hbar \mathbf{\hat{\theta}}(t)/X \):

\[\frac{d\tilde{k}}{dt} = -\frac{\partial \mathcal{E}}{\partial \mathbf{r}} = e\mathbf{E} = eE_y \mathbf{u}_y \]

gives

\[\theta_1(t) = \theta_1(0) \]

\[\theta_2(t) = -\omega t \]

with \(\omega = eE_y X / \hbar \)

Then each Bloch state \(|\psi(\tilde{\theta}(t)) \rangle \) follows Berry’s connection plus Dynamical phase in the fibers.

After one period \(T = 2\pi/\omega \),

\[e^{-i \mathcal{H} T/\hbar} |\psi(\theta_1, \theta_2) \rangle = \exp \{ i\phi_B(\theta_1, \theta_2) + i\phi_D(\theta_1, \theta_2) \} |\psi(\theta_1, \theta_2) \rangle, \]

with dynamical phase \(\phi_D(\theta_1, \theta_2) \) with homotopy \(N_1 = N_2 = 0 \)

and Berry’s phase \(\phi_B(\theta_1, \theta_2) \) of the path \(\theta_2(t) \), which is homotopic to \(\phi_B(\theta_1) \equiv 2\pi C \theta_1 \)

so \(N_1 = C, N_2 = 0 \).

(Exponentially small “Landau-Zener” corrections).

Consequence:

After one period \(T \), the mean position has shifted by integer number of cells

\[\delta < n_1 > = C, \quad \delta < n_2 > = 0 \]

The mean velocity of the electron is then:

\[V_x = \frac{\delta < n_1 > X}{T} = \frac{CX}{T} \]

If the band is filled by electrons, the density is one electron per cell: \(\rho = 1/X^2 \).

The current density is then

\[j_x = e\rho V_x = \frac{e^2}{h} C E_y \]
6.4. BORN-OPPENHEIMER APPROXIMATION WITH STRONG MAGNETIC FIELD; EFFECTIVE Hamiltonian

So

\[\sigma_{xy} = \frac{j_x}{E_y} = \frac{e^2}{\hbar} C \]

6.4 Born-Oppenheimer Approximation with Strong Magnetic Field; Effective dynamics in a Landau Level

- With no hypothesis on \(B \), the dynamics of electrons has **two** degrees of freedom; not integrable.
- Suppose now the adiabatic limit:

\[\hbar \omega_C = \frac{\hbar c}{eB} \ll 1 \]

Then the classical electron has a fast cyclotron rotation, and a slower precession of these circles.

![Cyclotron Motion](image)

Born-Oppenheimer description:
We treat \(X_{\text{slow}} = (x, p_x) \) as fixed classical parameters, \(X_{\text{fast}} = (\tilde{x}, \tilde{p}_x) \) as quantum operators, and consider the spectrum of:

\[X_x \to \hat{H}_x = H \left(X_x, X_{\text{fast}} \right) \]

It gives a discrete spectrum (fast motion):

\[E_1(X_m), \ldots, E_m(X_m), \ldots : \text{Landau Levels} \]

The slow dynamics (precession of circles) in Landau Level \(m \) is described by the effective bi-periodic Hamiltonian:

\[H_{\text{eff}}(x, p_x) = E_m(x, p_x), \quad X_{\text{slow}} = (x, p_x) \in \mathbb{T}^2_{\text{slow}} \]

Below, we consider a fixed Landau Level, and write:

\[H(q, p) = H_{\text{eff}}(q, p), \quad m \text{ fixed} \]

which is an effective **bi-periodic** Hamiltonian on \(\mathbb{T}^2 \):

\[H(q, p) - H(q + 1, p) = H(q, p + 1) \approx V(q, p) \]

Remark: no degeneracies between Landau Bands: \(E_m(X_m) < E_{m+1}(X_m) \).

So the quantized operator \(H' - H(q, p) \) acts in a space \(H_N(\theta) \) with dimension \(N \).

The Landau Level \(m \) has \(N \) subbands, \(n = 1 \to N \), which Chern indices \(C_n \),

![Landau Levels](image)

6.4.1 Formula for Chern indices \(C_n \):

1) Integral curvature:

\[C_n = \pm \frac{1}{i} \int_{\mathbb{T}^2} \text{Tr} \left(\frac{\partial H}{\partial \phi_n} \right) d\theta_1 d\theta_2 , \quad \phi_n = \langle \psi_n(\theta) | \psi_n(\theta) \rangle \]

2) From the zeros of a global section \(P_n|z_0\rangle = |\psi_n(\theta)\rangle|z_0\rangle \), with a fixed coherent state \(|z_0\rangle \), \(z_0 \in \mathbb{T}^2 \).

So from the zeros of Bargmann or Husimi functions \(b_{\psi(\theta)}(z_0) = \langle z_0 | \psi(\theta) \rangle \):

\[C_n = \sum_{\theta \in \mathbb{T}^2 \, \text{zeros of } b_{\psi(\theta)}} \pm 1 \]

with sign \(\pm 1 \) depending on orientation of the zero.

6.4.2 Sum of Chern indices in a Landau Level

\[\sum_{n=1}^{N} C_n = \epsilon_1(F_1 \oplus \ldots \oplus F_N) = \epsilon_1(H_{\text{pre}}) = +1 \]

Which means that the rank \(N \) vector bundle \(H_{\text{pre}} \to \mathbb{T}^2 \) is non-trivial.
6.5. **Semi-classical calculation of Chern indices in a Landau level**

This formula gives the classical Hall conductivity in the semi-classical limit.

Five different proofs:

Proof 1: We saw a basis of \(\mathcal{H}_\text{per}(\theta)\), with states \(|j, \theta\rangle\), \(j - 1 \to N\).

This gives a trivialization of the bundle \(\mathcal{H}_\text{per} \to T_\theta\) over \(\theta \in [0, 2\pi]\), \(\theta_0 \in [0, 2\pi]\), with transition function at \(\theta_2 = 0\):

\[
T(\theta_2) = \begin{pmatrix}
0 & 1 & 0 \\
0 & \ddots & 1 \\
e^{i\theta_2} & \ddots & 0
\end{pmatrix}
\]

Remark that \(c_t(\mathcal{H}_\text{per}) = c_t(\text{det}(\mathcal{H}_\text{per}))\), (from \(c_t(L_1 \oplus \ldots \oplus L_N) = c_t(L_1 \oplus \ldots \oplus L_N)\)), and the line bundle \(\text{det}(\mathcal{H}_\text{per})\) has transition function \(\text{det}(T(\theta_t)) = e^{i\theta_2}\).

We deduce that \(c_t(\mathcal{H}_\text{per}) = c_t(\text{det}(\mathcal{H}_\text{per})) = +1\).

Proof 2: Consider \(E = \text{Vec}([0, \ldots, N] \subset \mathcal{H}_\text{per}\) a fixed space of dimension \(N + 1\), spanned by \(N + 1\) first states of Harmonic oscillator. Consider the orthogonal projection:

\(P_0 : \mathcal{H}_\text{per}(\theta) \to E\).

One shows that \(P_0\) is into, so the rank \(N\) vector bundle \(\mathcal{H}_\text{per}(\theta) \to T_\theta\) is realized as a subbundle of the rank \(N + 1\) trivial bundle: \(E \to T_\theta\).

Its orthogonal is a rank \(1\) bundle \(L \to T_\theta\) (i.e., \(L_\theta \oplus \mathcal{H}_\text{per}(\theta) = E\)), and we calculate its Chern index with the zeroes of a global section. One finds \(c_t(L) = -1\). So \(c_t(\mathcal{H}_\text{per}) = c_t(L) = c_t(L) = 0 + 1 = -1\).

Proof 3: There is a more standard presentation of \(\mathcal{H}_\text{per}(\theta)\) as the space of Holomorphic sections of a line bundle over \(T_\theta\). The space \(T_\theta\) is the Jacobi variety and it results from the Abel inversion theorem.

Proof 4: By computation, from integral curvature formula.

Proof 5: By semi-classical analysis, from the topology of the classical Reeb Graph, see below.

6.5 **Semi-classical calculation of Chern indices in a Landau Level**

(Generalization of the TKN, calculation)

\(H(q, p)\) is \(2\pi\)-periodic on \((q, p) \in \mathbb{R}^2\):

\[
H(q, p) = \sum_{n_1, n_2 \in \mathbb{Z}} c_{n_1, n_2} \exp(i2\pi n q) \exp(i2\pi n_2 p),
\]

\(c_{n_1, n_2} = c, \quad (n_1, n_2) \in \mathbb{Z} : \text{Fourier coefficient}

Hilbert space of the plane:

\[
\mathcal{H}_{\text{per}} = L^2(\mathbb{R}_\text{per}),
\]

Quantization of \(H(q, p)\):

\[
\hat{H} = \sum_{n_1, n_2 \in \mathbb{Z}} \frac{1}{2} \pi n_1, n_2 \exp(i2\pi n q) \exp(i2\pi n_2 p) + \text{hermitian conjugate}
\]

6.5.1 **Classical Hamiltonian and trajectories of \(H(q, p)\)**

Example:

\[
H(q, p) = H_0(q, p) + H_1(q, p), \quad H_0(q, p) = \cos(2\pi q) + 0.1 \cos(2\pi p), \quad H_1(q, p) = P \left[\exp(-100(q - q_0)^2 - 10(p - p_0)^2)\right], \quad q_0 = 0.45, \quad p_0 = 0.5
\]

(operator \(P\) makes periodic on the plane).

Question: Understand the values of Chern indices \(C_n\) from the classical trajectories.

Solution:
the classical dynamics is integrable, so **stationary states are approximated by quasi-modes** (WKB approach):

\[|\tilde{\psi}_n(\theta_1, \theta_2)| \approx |\varphi_n(\theta_1, \theta_2)|\]

We just have to study the dependence of the quasi-modes with \((\theta_1, \theta_2)\).

6.5.2 Quasi-modes: Quasi-mode on a contractible trajectory of type \((0, 0)\):

\[\begin{tikzpicture}
 \draw[->] (-1,0) -- (1,0) node[right] {q};
 \draw[->] (0,-1) -- (0,1) node[above] {p};
 \draw (0,0) circle (0.5);
 \draw (0,0) circle (0.2);
 \node at (0,0) {Γ};
\end{tikzpicture}\]

Energy \(\tilde{E}\):

\[S(\tilde{E}) = (k + 1/2)h + o(h), \quad k \in \mathbb{Z}\]

with \(S(\tilde{E})\): enclosed surface

Remark: \(\tilde{E}\) does not depend on \((\theta_1, \theta_2)\).

**Quasi-mode on a non-contractible trajectory of type \((0, \pm 1)\):

\[\begin{tikzpicture}
 \draw[->] (-1,0) -- (1,0) node[right] {q};
 \draw[->] (0,-1) -- (0,1) node[above] {p};
 \draw (0,0) circle (0.5);
 \draw (0,0) circle (0.2);
 \node at (0,0) {Γ};
\end{tikzpicture}\]

Energy \(\tilde{E}(\theta_2)\):

\[S(\tilde{E}) = (k - \theta_2/2\pi)h + o(h), \quad k \in \mathbb{Z}, \quad \text{with } S(\tilde{E}) : \text{right side surface}\]
proof:

after one period on trajectory $q(t), p(t)$ the phase is $\varphi = -\int_{\Gamma} q dp / \hbar = S / \hbar$, and periodicity condition is $\varphi = \theta_2, 2\pi$.

Remark: $\tilde{E}(\theta_2)$ and the support $\Gamma(\theta_2)$ depend on θ_2.

6.5.3 Semi-classical spectrum and tunnelling effect:

Numerical spectrum:

Above example, with $N = 11$, band $n = 6$:

$|\psi_1 \rangle, |\psi_2 \rangle, |\psi_3 \rangle, |\psi_4 \rangle, |\psi_5 \rangle, |\psi_6 \rangle, |\psi_7 \rangle, |\psi_8 \rangle, |\psi_9 \rangle, |\psi_{10} \rangle, |\psi_{11} \rangle$

<table>
<thead>
<tr>
<th>$C_1 \rightarrow 4$</th>
<th>C_5</th>
<th>C_6</th>
<th>C_7</th>
<th>$C_8 \rightarrow 11$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>0</td>
</tr>
</tbody>
</table>

6.5.4 General result:

Consider the support of the quasi-mode of band \(n \):

\[
S_n : \quad \theta_2 \in \mathbb{R} \rightarrow \text{Supp} \left(|\psi_n(\theta_2)\rangle \right).
\]

With homotopy \(I_n = I(S_n) \in \mathbb{Z} \):

\[
T_Q^{I_n} \left[\text{Supp} \left(|\psi_n(0)\rangle \right) \right] = \text{Supp} \left(|\psi_n(2\pi)\rangle \right).
\]

Theorem:

\[
C_n = I(S_n)
\]

proof: uses zeros of Husimi function.

Practical computation from the Reeb graph:

6.5.5 Total Chern index:

In order to recover:

\[
\sum_{n=1}^{N} C_n = +1
\]

First define \((S_n + S_{n+1}) \) by removing the jumps (does not change the homotopy):
Then
\[
\sum_{n=1}^{N} C_n = \sum_{n=1}^{N} I(S_n) = I \left(\sum_{n=1}^{N} S_n \right) = +1.
\]

6.5.6 The Chern indices for a chaotic dynamics:

There are no more nice WKB quasi-modes.
Numerical results, in the Kicked Harper model: (time-dependent model, parameter γ)
Poincaré sections:
6.6 References:

Integer Hall Effect:

Chern indices in Integer Hall Effect:

Semi-classical Computation of Chern indices:
- Y. Colin de Verdière, “Fibrés en droites et valeurs propes multiples”, Séminaire de