
Université Grenoble Alpes, Master 1 Physique. Frédéric Faure.

Statistical physics exam, duration 3h. One handwritten sheet and calculator allowed. Frame
your results.

1 Melting temperature
In the model of a solid where each atom is identified with an independent classical harmonic
oscillator and d is the interatomic distance, Lindemann (1910) suggested that the solid must
melt when the average displacement of the atoms x0 reaches a certain material-independent
fraction r = x0

d
. We will study this hypothesis.

Let us consider a classical particle of mass m with one degree of freedom, i.e. whose state
is characterised by its position x ∈ R and its momentum p ∈ R. Its energy is assumed to be
given by

E =
1

2m
p2 +

1

2
Kx2,

with K > 0.
The particle is in an environment at temperature T . We will note NA the Avogadro number

and R = NAk = 8.31 J/K

1. Express the Boltzmann law that gives the probability measure P (x, p) dxdp. Deduce the
probability P (x) dx for x ∈ [x, x+ dx], as a function of kT,K. Help:

∫
R e

−X2
dX =

√
π

and
∫
R X

2e−X2
dX =

√
π
2

.

2. Deduce the mean values ⟨x⟩ , ⟨x2⟩ as a function of kT,K.

3. Note the atomic mass M = NAm, the Einstein temperature Θ = ℏω
k

with ω =
√

K
m

and
the distance between neighbouring atoms d. Calculate the mean vibration amplitude
x0 := ⟨x2⟩1/2 as a function of Θ, T,M,R, ℏ, NA.

4. From the following data for different metals, x0

d
is calculated at the melting temperature:

Mg Al Cu Zn Ag Pb
M (g/mole) 24.3 27.0 63.5 65.4 107.9 207.2

TF (K) 924 933 1356 692 1234 601
Θ (K) 340 400 320 230 220 92

d
(
Å
)

3.19 2.86 2.55 2.66 2.88 3.49
x0/d 0.04 0.036 0.039 0.037 0.037 0.037

Is Lindemann’s hypothesis valid? What formula can you propose in general to express Θ
from the melting temperature?
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2 Ionisation rate of a plasma
Hydrogen is the most abundant element in the universe, present in the atomic form H if the
proton p+ and electron e− are bound, or in the ionised form, also called plasma if p+ and e− are
separated. It is assumed that the particles p+, e− always have the same average density thus
guaranteeing electrical neutrality. We will treat H, p+, e− as point particles without mutual
interaction, i.e. as perfect gases. Let us note ϵ = 13.6 eV the internal binding energy of
each hydrogen atom.

1. The general model of a perfect gas is first studied. We consider N indistinguishable point
particles of mass m, each possibly possessing an internal energy ϵ ≥ 0, free in a volume
V , and of total energy E.

(a) Calculate the expression for the entropy S (E, V,N). Aids: apply Weyl’s state
counting formula. Divide the number of configurations by N ! to account for in-
distinguishability. The volume of the ball of radius R in Rd is V = CdR

d with
ln (Cd) =

d
2
ln
(
2πe
d

)
+ o (d) and ln (d!) = d ln

(
d
e

)
+ o (d) if d ≫ 1 .

(b) Recall the definitions of T, P, µ (temperature, pressure, chemical potential) and de-
duce the three relations

E +Nϵ = N
3

2
kT, P = nkT, e

µ+ϵ
kT = nλ3

with density n = N
V

and λ :=
(

2πℏ2
mkT

)1/2

called «de Broglie thermal length».

2. The perfect gas model is now applied to each type of co-existing H, p+, e− particles.
Explain why at equilibrium the temperatures of each gas are equal and the following
relationship called mass action law

µH = µp + µe

3. Deduce the following relationship for plasma called Saha equation (1920)]
nenp

nH

= λ−3
e e−

ϵ
kT

with λe :=
(

2πℏ2
mekT

)1/2

and electron mass me.

4. Let n := nH + np. Use plasma neutrality and express the ionisation rate r := np

n
∈ [0, 1]

as a function of α := 1
n
λ−3
e e−

ϵ
kT . Discuss the limiting cases α ≫ 1 and α ≪ 1. Numerical

application: calculate r for the photosphere of the sun where T = 6000K,n = 1023m−3

giving α = 410−8 and calculate r for a nebula where T = 104K,n = 1012m−3, α = 3108.

5. Comment on the physical meaning of α and this observation: in the universe, matter is
in a plasma state in most cases, because either (a) the temperature is too high (e.g. star)
or (b) the density is too low (e.g. gas in nebulae).
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3 Simple gas-liquid transition model

Λ

= +1
= 0

We will study a very simplified model of condensation of a gas of particles into
a liquid (Lee-Yang model 1952). This model is discrete and uses a finite (but large) size Λ
network where each cell is either empty or contains a particle. Each site is denoted x and has a
variable nx ∈ {0, 1} which is the presence or absence of a particle at that site. A configuration
(or microstate)

n : x ∈ Λ → nx ∈ {0, 1}

is a choice nx ∈ {0, 1} for each point x ∈ Λ of the network.
Let µ ∈ R be given which is the chemical potential (imposed by an external environment).

Denote x ∼ y if the x, y sites are close neighbours. The energy of configuration n is

Egaz (n) :=
∑
x∼y

(−nxny) (3.1)

where the sum relates to all pairs of neighbouring sites. For a given configuration n, we
denote N (n) the total number of particles,

EGC (n) := Egaz (n)− µN (n)

the canonical grand energy and

ρ (n) :=
1

|Λ|
N (n)

the density of particles, where |Λ| the number of sites on the lattice. According to Boltzmann’s
law, the probability that a configuration n appears is

pT (n) =
1

Z
exp

(
− 1

kT
EGC (n)

)
,

where T is the temperature and k the Boltzmann constant. The objective of the problem is to
study the mean density

⟨ρ⟩ :=
∑
n

pT (n) ρ (n)

as a function of the temperature T and the chemical potential µ (i.e. phase diagram). For that
we will use the known results of the Ising model.

We recall that in the Ising model, on the same lattice Λ, we note fx ∈ {−1,+1} the
magnetization at the site x and

x ∈ Λ → fx ∈ {−1, 1}

a configuration. The energy is

EIsing (f) :=
∑
x∼y

(−fxfy)−B
∑
x∈Λ

fx

where B ∈ R is the external magnetic field. The magnetisation is

M (f) :=
1

|Λ|
∑
x∈Λ

fx.
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1. For a given configuration n, express the total number of particles N (n).

It will be shown that the Lee-Yang gas model can be matched to the Ising model.

2. A configuration n : x : x ∈ Λ → nx ∈ {0, 1} corresponds to a configuration f : x : x ∈
Λ → fx ∈ {−1, 1} . For each x ∈ Λ, express fx ∈ {−1, 1} from nx ∈ {0, 1} by a simple
formula?

3. With this correspondence, we write 1
kTgaz

EGC (n) = 1
kTIsing

EIsing (f) + C where C is a
constant. Express Tgaz from TIsing and express µ from B.

4. Express the density ρ (n) from the magnetisation M (f) and similarly for the mean density
⟨ρ⟩ from the mean magnetisation ⟨M⟩.

We recall some known results for the Ising model in a square two-dimensional lattice:
There is a phase transition temperature kTc =

(
1
2
ln
(
1 +

√
2
))−1

and a phase diagram of
the following form (where B = 0± means 0 < ±B ≪ 1)

T T

B< M >

Tc

< M >=?

< M >=?

si B = 0+

si B = 0−

Tc

< M >=?

< M >=?

< M >=?

0 0

5. Complete this phase diagram by replacing the "?" signs with precise values for the Ising
model.

6. Derive the analogous phase diagram for the gas model by replacing the axes, quantities
and values with the appropriate ones. Comment.
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