Statistical physics exam, duration 3h. One handwritten sheet and calculator allowed. Frame your results.

1 Melting temperature

In the model of a solid where each atom is identified with an independent classical harmonic oscillator and d is the interatomic distance, Lindemann (1910) suggested that the solid must melt when the average displacement of the atoms x_0 reaches a certain material-independent fraction $r = \frac{x_0}{d}$. We will study this hypothesis.

Let us consider a classical particle of mass m with one degree of freedom, i.e. whose state is characterised by its position $x \in \mathbb{R}$ and its momentum $p \in \mathbb{R}$. Its energy is assumed to be given by

$$E = \frac{1}{2m}p^2 + \frac{1}{2}Kx^2,$$

with K > 0.

The particle is in an environment at temperature T. We will note N_A the Avogadro number and $R = N_A k = 8.31 J/K$

- 1. Express the Boltzmann law that gives the probability measure P(x, p) dxdp. Deduce the probability P(x) dx for $x \in [x, x + dx]$, as a function of kT, K. Help: $\int_{\mathbb{R}} e^{-X^2} dX = \sqrt{\pi}$ and $\int_{\mathbb{R}} X^2 e^{-X^2} dX = \frac{\sqrt{\pi}}{2}$.
- 2. Deduce the mean values $\langle x \rangle$, $\langle x^2 \rangle$ as a function of kT, K.
- 3. Note the atomic mass $M = N_A m$, the Einstein temperature $\Theta = \frac{\hbar \omega}{k}$ with $\omega = \sqrt{\frac{K}{m}}$ and the distance between neighbouring atoms d. Calculate the mean vibration amplitude $x_0 := \langle x^2 \rangle^{1/2}$ as a function of $\Theta, T, M, R, \hbar, N_A$.
- 4. From the following data for different metals, $\frac{x_0}{d}$ is calculated at the melting temperature:

	Mg	Al	Cu	Zn	Ag	Pb
M (g/mole)	24.3	27.0	63.5	65.4	107.9	207.2
$T_F(K)$	924	933	1356	692	1234	601
Θ (K)	340	400	320	230	220	92
d (Å)	3.19	2.86	2.55	2.66	2.88	3.49
x_0/d	0.04	0.036	0.039	0.037	0.037	0.037

Is Lindemann's hypothesis valid? What formula can you propose in general to express Θ from the melting temperature?

2 Ionisation rate of a plasma

Hydrogen is the most abundant element in the universe, present in the atomic form H if the proton p^+ and electron e^- are bound, or in the ionised form, also called **plasma** if p^+ and e^- are separated. It is assumed that the particles p^+, e^- always have the same average density thus guaranteeing electrical neutrality. We will treat H, p^+, e^- as point particles without mutual interaction, i.e. as **perfect gases**. Let us note $\epsilon = 13.6 \text{ eV}$ the internal **binding energy** of each hydrogen atom.

- 1. The general model of a perfect gas is first studied. We consider N indistinguishable point particles of mass m, each possibly possessing an internal energy $\epsilon \ge 0$, free in a volume V, and of total energy E.
 - (a) Calculate the expression for the entropy S(E, V, N). Aids: apply Weyl's state counting formula. Divide the number of configurations by N! to account for indistinguishability. The volume of the ball of radius R in \mathbb{R}^d is $V = C_d R^d$ with $\ln(C_d) = \frac{d}{2} \ln(\frac{2\pi e}{d}) + o(d)$ and $\ln(d!) = d \ln(\frac{d}{e}) + o(d)$ if $d \gg 1$.
 - (b) Recall the definitions of T,P,μ (temperature, pressure, chemical potential) and deduce the three relations

$$E + N\epsilon = N\frac{3}{2}kT, \quad P = nkT, \quad e^{\frac{\mu+\epsilon}{kT}} = n\lambda^3$$

with density $n = \frac{N}{V}$ and $\lambda := \left(\frac{2\pi\hbar^2}{mkT}\right)^{1/2}$ called «de Broglie thermal length».

2. The perfect gas model is now applied to each type of co-existing H, p^+, e^- particles. Explain why at equilibrium the temperatures of each gas are equal and the following relationship called **mass action law**

$$\mu_H = \mu_p + \mu_e$$

3. Deduce the following relationship for plasma called Saha equation (1920)]

$$\frac{n_e n_p}{n_H} = \lambda_e^{-3} e^{-\frac{\epsilon}{kT}}$$

with
$$\lambda_e := \left(\frac{2\pi\hbar^2}{m_e kT}\right)^{1/2}$$
 and electron mass m_e .

- 4. Let $n := n_H + n_p$. Use plasma neutrality and express the ionisation rate $r := \frac{n_p}{n} \in [0, 1]$ as a function of $\alpha := \frac{1}{n} \lambda_e^{-3} e^{-\frac{\epsilon}{kT}}$. Discuss the limiting cases $\alpha \gg 1$ and $\alpha \ll 1$. Numerical application: calculate r for the photosphere of the sun where T = 6000K, $n = 10^{23}m^{-3}$ giving $\alpha = 4 \, 10^{-8}$ and calculate r for a nebula where $T = 10^4 K$, $n = 10^{12}m^{-3}$, $\alpha = 3 \, 10^8$.
- 5. Comment on the physical meaning of α and this observation: in the universe, matter is in a plasma state in most cases, because either (a) the temperature is too high (e.g. star) or (b) the density is too low (e.g. gas in nebulae).

3 Simple gas-liquid transition model

We will study a **very simplified model of condensation of a gas of particles into a liquid** (Lee-Yang model 1952). This model is discrete and uses a finite (but large) size Λ network where each cell is either empty or contains a particle. Each site is denoted x and has a variable $n_x \in \{0, 1\}$ which is the presence or absence of a particle at that site. A **configuration** (or microstate)

$$n: x \in \Lambda \to n_x \in \{0, 1\}$$

is a choice $n_x \in \{0, 1\}$ for each point $x \in \Lambda$ of the network.

Let $\mu \in \mathbb{R}$ be given which is the chemical potential (imposed by an external environment). Denote $x \sim y$ if the x, y sites are close neighbours. The energy of configuration n is

$$E_{\text{gaz}}(n) := \sum_{x \sim y} \left(-n_x n_y \right) \tag{3.1}$$

where the sum relates to all pairs of neighbouring sites. For a given configuration n, we denote N(n) the total number of particles,

$$E_{GC}(n) := E_{gaz}(n) - \mu N(n)$$

the canonical grand energy and

$$\rho\left(n\right) := \frac{1}{\left|\Lambda\right|} N\left(n\right)$$

the density of particles, where $|\Lambda|$ the number of sites on the lattice. According to Boltzmann's law, the probability that a configuration n appears is

$$p_T(n) = \frac{1}{Z} \exp\left(-\frac{1}{kT} E_{GC}(n)\right),\,$$

where T is the temperature and k the Boltzmann constant. The objective of the problem is to study the mean density

$$\langle \rho \rangle := \sum_{n} p_T(n) \rho(n)$$

as a function of the temperature T and the chemical potential μ (i.e. phase diagram). For that we will use the known results of the Ising model.

We recall that in the **Ising model**, on the same lattice Λ , we note $f_x \in \{-1, +1\}$ the magnetization at the site x and

$$x \in \Lambda \to f_x \in \{-1, 1\}$$

a configuration. The energy is

$$E_{\text{Ising}}(f) := \sum_{x \sim y} \left(-f_x f_y\right) - B \sum_{x \in \Lambda} f_x$$

where $B \in \mathbb{R}$ is the external magnetic field. The magnetisation is

$$M(f) := \frac{1}{|\Lambda|} \sum_{x \in \Lambda} f_x.$$

1. For a given configuration n, express the total number of particles N(n).

It will be shown that the Lee-Yang gas model can be matched to the Ising model.

- 2. A configuration $n : x : x \in \Lambda \to n_x \in \{0, 1\}$ corresponds to a configuration $f : x : x \in \Lambda \to f_x \in \{-1, 1\}$. For each $x \in \Lambda$, express $f_x \in \{-1, 1\}$ from $n_x \in \{0, 1\}$ by a simple formula?
- 3. With this correspondence, we write $\frac{1}{kT_{\text{gaz}}}E_{GC}(n) = \frac{1}{kT_{\text{Ising}}}E_{\text{Ising}}(f) + C$ where C is a constant. Express T_{gaz} from T_{Ising} and express μ from B.
- 4. Express the density $\rho(n)$ from the magnetisation M(f) and similarly for the mean density $\langle \rho \rangle$ from the mean magnetisation $\langle M \rangle$.

We recall some known results for the Ising model in a square two-dimensional lattice: There is a phase transition temperature $kT_c = \left(\frac{1}{2}\ln\left(1+\sqrt{2}\right)\right)^{-1}$ and a phase diagram of the following form (where $B = 0^{\pm}$ means $0 < \pm B \ll 1$)

- 5. Complete this phase diagram by replacing the "?" signs with precise values for the Ising model.
- 6. Derive the analogous phase diagram for the gas model by replacing the axes, quantities and values with the appropriate ones. Comment.