Université Grenoble Alpes, Master 1 Physique. Frédéric Faure.

Statistical physics exam, duration 3h. One handwritten sheet and calculator allowed. Frame
your results.

1 Melting temperature

In the model of a solid where each atom is identified with an independent classical harmonic
oscillator and d is the interatomic distance, Lindemann (1910) suggested that the solid must
melt when the average displacement of the atoms x( reaches a certain material-independent
fraction r = 2. We will study this hypothesis.

Let us consider a classical particle of mass m with one degree of freedom, i.e. whose state
is characterised by its position € R and its momentum p € R. Its energy is assumed to be
given by

E = ip2 + leQ
2m 2 ’
with K > 0.
The particle is in an environment at temperature 7. We will note N4 the Avogadro number

and R = Nak =831J/K
1. Express the Boltzmann law that gives the probability measure P (z,p) dzdp. Deduce the
probability P (z) dx for x € [z, + dz], as a function of kT, K. Help: [, e XdX = /1
and fR X2e XX = ‘/77?
2. Deduce the mean values (z), (z?) as a function of kT, K.
3. Note the atomic mass M = Nym, the Einstein temperature © = % with w = \/g and

the distance between neighbouring atoms d. Calculate the mean vibration amplitude
1o 1= <.T2>1/2 as a function of ©, T, M, R, h, N4.

4. From the following data for different metals, % is calculated at the melting temperature:

Mg | Al Cu Zn Ag Pb
M (g/mole) [ 24.3 | 27.0 | 63.5 | 65.4 | 107.9 [ 207.2
Trp (K) 924 ] 933 | 1356 | 692 | 1234 | 601
0 (K) 340 | 400 | 320 | 230 | 220 | 92
d (A) 319 2.86 | 2.55 [ 2.66 | 2.88 | 3.49
o /d 0.04 | 0.036 | 0.039 | 0.037 | 0.037 | 0.037

Is Lindemann’s hypothesis valid? What formula can you propose in general to express ©
from the melting temperature?
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2 lIonisation rate of a plasma

Hydrogen is the most abundant element in the universe, present in the atomic form H if the
proton p* and electron e~ are bound, or in the ionised form, also called plasma if p* and e~ are
separated. It is assumed that the particles p*, e~ always have the same average density thus
guaranteeing electrical neutrality. We will treat H,p*,e~ as point particles without mutual
interaction, i.e. as perfect gases. Let us note ¢ = 13.6eV the internal binding energy of
each hydrogen atom.

1. The general model of a perfect gas is first studied. We consider N indistinguishable point
particles of mass m, each possibly possessing an internal energy € > 0, free in a volume
V', and of total energy FE.

(a) Calculate the expression for the entropy S (E,V,N). Aids: apply Weyl’s state
counting formula. Divide the number of configurations by N! to account for in-
distinguishability. The volume of the ball of radius R in R? is V = C,;R? with
In(Cy) = 4In (££) + 0(d) and In (d!) = dIn (%) + o(d) if d > 1.

(b) Recall the definitions of T', P, i (temperature, pressure, chemical potential) and de-
duce the three relations

pte

E—l—Ne:Nng, P =nkT, e*r

= n\3

S\ 1/2
with density n = % and \ := (%) called «de Broglie thermal length».

2. The perfect gas model is now applied to each type of co-existing H,p™t, e~ particles.
Explain why at equilibrium the temperatures of each gas are equal and the following
relationship called mass action law

PH = Hp + [le
3. Deduce the following relationship for plasma called Saha equation (1920)]

Nnen _a _ e
p = )\8 36 kT

ng

1/2

. 2

with A\, := (:f@) and electron mass m,.
€

4. Let n := nyg + n,. Use plasma neutrality and express the ionisation rate r := % € [0,1]
as a function of o := %)\6_36_%. Discuss the limiting cases o > 1 and o < 1. Numerical
application: calculate r for the photosphere of the sun where 7' = 6000K,n = 10%m =3
giving a = 41078 and calculate r for a nebula where T' = 10*K,n = 10?>m =3, a = 3108,

5. Comment on the physical meaning of o and this observation: in the universe, matter is
in a plasma state in most cases, because either (a) the temperature is too high (e.g. star)
or (b) the density is too low (e.g. gas in nebulae).




3 Simple gas-liquid transition model

o— +1
o=0

A

We will study a very simplified model of condensation of a gas of particles into
a liquid (Lee-Yang model 1952). This model is discrete and uses a finite (but large) size A
network where each cell is either empty or contains a particle. Each site is denoted x and has a
variable n, € {0, 1} which is the presence or absence of a particle at that site. A configuration
(or microstate)
n:xeN—mn, €{0,1}

is a choice n, € {0,1} for each point € A of the network.
Let o € R be given which is the chemical potential (imposed by an external environment).
Denote x ~ y if the x, y sites are close neighbours. The energy of configuration n is

By (n) ==Y _ (—ngny) (3.1)

where the sum relates to all pairs of neighbouring sites. For a given configuration n, we
denote N (n) the total number of particles,

Egc (n) := Ega, (n) — pN (n)
the canonical grand energy and
p(n) i= N (n)
Al

the density of particles, where |A| the number of sites on the lattice. According to Boltzmann’s
law, the probability that a configuration n appears is

pr () = e (- Fac )

where T is the temperature and k£ the Boltzmann constant. The objective of the problem is to
study the mean density
= ZPT (n)p(n)

as a function of the temperature 7" and the chemical potential u (i.e. phase diagram). For that
we will use the known results of the Ising model.
We recall that in the Ising model, on the same lattice A, we note f, € {—1,+1} the
magnetization at the site x and
relN— f,e{-11}

a configuration. The energy is

B (f) =Y _(=fofy)) = B> _fe

T~y r€eA
where B € R is the external magnetic field. The magnetisation is

|A|fo

zEA



. For a given configuration n, express the total number of particles N (n).

It will be shown that the Lee-Yang gas model can be matched to the Ising model.

. A configuration n : x : * € A — n, € {0,1} corresponds to a configuration f : z : x €
A — f, € {-1,1} . For each z € A, express f, € {—1,1} from n, € {0,1} by a simple
formula?

. With this correspondence, we write ﬁEGC (n) = ﬁEISing (f) + C where C is a
az sing

constant. Express T}y, from Tine and express p from B.

. Express the density p (n) from the magnetisation M (f) and similarly for the mean density
(p) from the mean magnetisation (M).

We recall some known results for the Ising model in a square two-dimensional lattice:

There is a phase transition temperature k7, = (% In (1 + \/5))_1 and a phase diagram of
the following form (where B = 0¥ means 0 < +B < 1)

< M > B
< M >="?
= < M >=?
N—>
T T

. Complete this phase diagram by replacing the "?" signs with precise values for the Ising
model.

. Derive the analogous phase diagram for the gas model by replacing the axes, quantities
and values with the appropriate ones. Comment.
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