Transitions de phase en supraconductivcé Modèle BCS

2 Gaz d'électrons libres

Pour un électron de opin $\frac{1}{2}$ position $x \in$ volume V inpulaion $p=t k \in \mathbb{R}^{3}$
l'énergie et $\imath_{\text {vectend'onde }}$

$$
H(x, k)=\frac{(p)^{2}}{2 m}=\frac{\left.\hbar^{2} k\right|^{2}}{2 m}
$$

D'ápiès la lai de Wayl, le nombre N d'ètats d'énergie inféricure à μ et le volume conespandant dans l'espace des phases (x, k), rencrmalisé par $(2 \pi)^{d} \nwarrow d=3$:nombe de degrés de liberté.
On remarque que la condition $H(x, k) \leqslant \mu$ $\Leftrightarrow\left\{\begin{array}{l}x \in \text { damaine de volueme } V\end{array}\right.$

$$
\left\{\begin{array}{l}
x \in \text { domaine }(k N)^{1 / 2}: \quad b \in \text { Boule de rayan } R \\
\left\lvert\, k R=\frac{1}{\hbar}(2 m\right.
\end{array}\right.
$$

Cela donne (car2état de sinn)

$$
\begin{aligned}
& N=\frac{2^{k}}{(2 \pi)^{3}} \operatorname{Vol}\{(x, k)+\cdot q H(x, k) \leqslant \mu\}
\end{aligned}
$$

$$
\begin{aligned}
& N=\frac{V}{3 \pi^{2}-}\left(\frac{2 m \mu}{t^{2}}\right)^{3 / 2} \\
& \Leftrightarrow \mu=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} \frac{N}{V}\right)^{2 / 3}
\end{aligned}
$$

3 Base de l'espace de Fock Fermionique
(1)

Chramp quantique $\mid \bar{N}(\cdot\| \rangle$	$a_{1}^{+}\|N(\cdot)\rangle$	$a_{1}\|N(\cdot)\rangle$	$a_{2} a_{1}^{+}\|N(\cdot)\rangle$	$a_{1}^{+} a_{1}+a_{2}^{+} a_{2} \mid N(\cdot\| \rangle$
$\|0,1\rangle$	$\|1,1\rangle$	0	$\|1,0\rangle$	$1 \times\|0,1\rangle$
$\|1,0\rangle$	0	$\|0,0\rangle$	0	$1 \times\|1,0\rangle$
$\|0,0\rangle$	$\|1,0\rangle$	0	0	0
$\|1,1\rangle$	0	$\|0,1\rangle$	0	$2 \times\|1,1\rangle$

rem: par explíquer la dernicie colonne, par exemple

$$
\begin{aligned}
& a_{1}^{+} a_{1}|0,1\rangle=0, \quad a_{2}^{+} a_{2}|0,1\rangle=a_{2}^{+}|0,0\rangle=|0,1\rangle \\
& \operatorname{danc}\left(a_{1}^{+} a_{1}+a_{2}^{+} a_{2}\right)|0,1\rangle=0+|0,1\rangle=|0,1\rangle
\end{aligned}
$$

On obseve que $\left.a_{p}^{+} a_{p} / N(\cdot)\right\rangle=N(p)|N(\cdot)\rangle$ avec $N(P) \in\{0,1\}$: nambe de paiticule dans e'etat p.
Ainsi l'opénceteur àp a_{p} "compte le nambe de partícules dans l'etat p ".
(2) Il sufft de le monter sur un seul ètat à une particule, de base $|0\rangle,|1\rangle$.

On considère butes les posibilités:

$$
\begin{aligned}
& \left\langle 0 \mid a^{+} 1\right\rangle=0, \quad\left\langle 0 \mid a^{+} 0\right\rangle=\langle 0 \mid 1\rangle=0 \\
& \left\langle 1 \mid a^{+} 0\right\rangle=\langle 1 \mid 1\rangle=1, \quad\left\langle 1 \mid a^{+} 1\right\rangle=0
\end{aligned}
$$

et $\langle a 0 \mid 1\rangle=0, \quad\left\langle a_{0} \mid 0\right\rangle=0$

$$
\left\langle a_{1} \mid 0\right\rangle=\langle 0 \mid 0\rangle=1, \quad\left\langle a_{1} \mid 1\right\rangle=\langle 0 \mid 1\rangle=0
$$

danc daus les léstes cidersus on doseve que

$$
\left\langle N \mid a^{+} N^{\prime}\right\rangle=\left\langle a N / N^{\prime}\right\rangle, \quad \forall N, N^{\prime} \in\{0,1\}
$$

cela est équivalent ((or 10$), 11$) est une base)
à $\forall u, v \in \mathcal{F}\left\langle u \mid a^{+} v\right\rangle=\langle a u / v\rangle$, dan a est l'opérateen adjaint de a et récipoquement $\left(\left(a^{+}\right)^{+}=a\right)$
(3) Posons $\hat{A}:=\int_{\mathbb{R}^{3}} E_{c_{n}}(p) a_{p}^{+} a_{p} d_{p}^{3}$ On veut manter que $\hat{H}_{\text {in }}=\hat{A}$: égalité d'ópénaténs
Pou sela, il sufft de verífir quìs ent la mème action sur les vecteus de bceses $\mid N()$.$) .$
D'ure pact $\tilde{H}_{\text {in }}|N(0)\rangle=E_{N(.)}|N(\cdot)\rangle$ c'est à dié que $\mid N(\cdot)$ est vecteer propre, avec la valeer prope $E_{r(\cdot)}=\int_{R^{3}} N(p) E_{\text {in }}(p) d_{p}^{3}$

D'autre pact $\quad a_{p}^{+} a_{p}|N(\cdot)\rangle=N(p) / N(\cdot)$ d'apres la question 1.
Donc

$$
\begin{gathered}
\left.\hat{A}|N(\cdot)\rangle=\int_{R^{3}} E_{\operatorname{in}}(p) N(p) / N(\cdot)\right\rangle d^{3} p \\
\\
=E_{r(\cdot)}|N(\cdot)\rangle
\end{gathered}
$$

$\operatorname{denc} \quad \hat{A}=\hat{H}_{i n}$

De même on mante que

$$
\begin{aligned}
& \hat{N}=\int_{R^{3}} a_{p}^{+} a_{p} d_{p}^{3} \\
& \hat{H_{G C}}=\int_{\mathbb{R}^{3}} \varepsilon^{\prime}(p) a_{p}^{+} a_{p} d_{p}^{3}
\end{aligned}
$$

(4) L'état fondamental de $\hat{H}_{G c}$ est un état de base de la farme $|N(\cdot)\rangle$ (chcempsqueanicee) avec le chcemps classique $N(\cdot): p \longmapsto N(p)$ qui minimise la valeur prope $\varepsilon_{N(.)}^{\prime}$ $\operatorname{de} \quad \hat{H}_{\sigma C}|N(\cdot)\rangle=\varepsilon_{N(\cdot)}^{\prime} \mid N(\cdot 1\rangle$ avec $\varepsilon_{N(\cdot)}^{\prime}=\int_{\mathbb{R}^{3}} \varepsilon^{\prime}(p) N(p) d^{3} p$.
Posons $\left|\psi_{\text {fond }}\right\rangle=|N(1)\rangle$ ètat fordamental quic minimise $\varepsilon_{N()}^{\prime}$.

Pour cela il fant:

- si $\varepsilon^{\prime}(p) \leqslant 0 \Leftrightarrow E_{\text {in }}(p) \leqslant \mu \Leftrightarrow p \in$ pheres de Fermi il faut $N(p)=1$: ètat occupé
. si $\varepsilon^{\prime}(p)>0 \Leftrightarrow E_{\text {in }}(p)>\mu \Leftrightarrow p \notin$ sphère de il faut $N(P)=0$: état inoccupé
Rem: comme déjà vu en A, l'ètat fondamental conespand à un champs où sculs les états dans la sphère de Fermi sont ocuépés.
- Comme pour un $p \in \mathbb{R}^{3}$ fixé, $|1\rangle=a_{p}^{+}|0\rangle$, On pect écire:

$$
\begin{aligned}
& \begin{aligned}
\left|\psi_{\text {fand }}\right\rangle=|N(\cdot)=(\underbrace{1,1,1 \ldots, 1,0, \ldots 0}_{\substack{\text { pountousess } \\
p+q \operatorname{Ein}^{(p)}\langle\mu}} \underbrace{0}_{\dot{A}_{\operatorname{Ein}}(p)>\mu})\rangle
\end{aligned} \\
& =\left(\begin{array}{ll}
\prod_{p+q} & a_{p}^{+}
\end{array}\right)(\underbrace{0,0, \ldots}_{-\infty} 0) \\
& \operatorname{Ein}(p) \leqslant \mu \quad \text { etat du vide }
\end{aligned}
$$

(5). Pau des forming, $N(p)=0$ an 1 .

$$
\begin{array}{ll}
a_{p}|0\rangle=0, & a_{p}|1\rangle=|0\rangle \\
a_{p}^{+}|0\rangle=|1\rangle, & a_{p}^{+}|1\rangle=0
\end{array}
$$

dane $\quad a_{p} a_{p}^{+}+a_{p}^{+} a_{p}|0\rangle=a_{p}|1\rangle+0$

$$
=|0\rangle=\operatorname{Id}|0\rangle
$$

$$
\begin{gathered}
a_{p} a_{p}^{+}+a_{p}^{+} a_{p}|1\rangle=0+a_{p}^{+}|0\rangle \\
=|1\rangle=I d|1\rangle
\end{gathered}
$$

done $a_{p} a_{p}^{+}+a_{p}^{+} a_{p}=I d$
car us opérateues ont la mäne action
sur les vectenus de base.

- Pour les bosons, $N(P)=0$ ar $1,2,3 \ldots$
pan $n \in \mathbb{N}, \quad a_{p}|N\rangle=\sqrt{N}|N-1\rangle$

$$
a_{p}^{+}|N\rangle=\sqrt{N+1}|N+1\rangle
$$

done $a_{p} a_{p}^{+}-a_{p}^{+} a_{p}|N\rangle=a_{p} \sqrt{N+1} \mid N+\lambda$

$$
\begin{aligned}
& -a_{p}^{+} \sqrt{N}|N-1\rangle=(\sqrt{N+1})^{2}|N\rangle-(\sqrt{N})^{2}|N\rangle \\
= & ((N+1)-N)|N\rangle=|N\rangle=I d|N\rangle
\end{aligned}
$$

4 Interactions entre les électrons et Hamietonien B.C.S.
(1) avant apes collision

$$
0=p_{1}+p_{2}=p_{1}^{\prime}+p_{2}^{\prime}
$$

impulsicntotale consevation de nuele l'impulsion totale
$\Leftrightarrow\left\{\begin{array}{l}p_{2}=-p_{1}: \text { pacie }\left(p_{1}-p\right) \text { avec } p=p_{1} \\ p_{2}^{\prime}=-p_{1}^{\prime}: \text { parie }\left(p^{\prime},-p^{\prime}\right) \text { avec } p^{\prime}=p_{1}^{\prime}\end{array}\right.$

(5) Approtimation du champs moyen méthode vaiutiónnelle
(1) $\hat{H}_{B C S}^{\text {appox }}=\hat{H}_{\text {cin }}-\mu \hat{N}+\hat{H}_{\text {mita }}^{\text {appox }}$

$$
\begin{aligned}
& \text { or } \hat{H}_{\text {inter }}^{\text {appox }}=-V_{0} \int_{p, p \in D} b_{p^{\prime}}^{+}\left\langle b_{p}\right\rangle+\underbrace{\left\langle b_{p}^{+}\right\rangle}_{\left\langle b_{p}^{\prime}\right\rangle} b_{p}-\left\langle b_{p^{\prime}}^{\prime}\right\rangle b_{p}\rangle \\
& =\int_{p \in D}\left[-V_{0} \int_{p^{\prime}}\left\langle b_{p}^{\prime}\right\rangle d p^{\prime}\right] b_{p}^{+} d p \quad\left(\begin{array}{l}
\text { :on a échangé } \\
\text { les motations } \\
p \leftrightarrow p^{\prime}
\end{array}\right) \\
& +\int_{p \in D}^{p \in D}\left[V_{0}^{p} \int_{p^{\prime}}^{p} \overline{\left\langle b_{p}\right\rangle^{\prime}} d p_{p}^{\prime}\right] b_{p} d p \\
& -V_{0}\left(\left(\overline{p^{\prime}} \overline{\left\langle b_{p^{\prime}}\right.}\right\rangle d p^{\prime}\right)\left(\int\left\langle b_{p}\right\rangle d p\right) I d
\end{aligned}
$$

danc

$$
\widehat{H}_{\text {inter }}^{\text {appox }}=\int_{p \in D}\left(\Lambda b_{p}^{+}+\bar{\Delta} b_{p}\right) d p-\frac{1}{V_{0}}|\Delta|^{2} I d
$$

ave $\Delta:=-V_{0} \int_{p \in D}\left\langle b_{p}\right\rangle d p$

$$
\begin{aligned}
& \text { et } \hat{H}_{c m}-\mu \hat{N} \\
& \text { (on ignue lese } \\
& \text { has dele coude s) } \\
& \begin{array}{l}
=\int_{p \in S} \varepsilon_{p}^{\prime} a_{p}^{+} a_{p}+\varepsilon_{-p}^{\prime} a_{-p}^{+} a_{p} d p \\
=\int_{p \in D} \varepsilon_{p}^{\prime}\left(a_{p}^{+} a_{p}+a_{-p}^{+} a_{-p}\right) d p
\end{array}
\end{aligned}
$$

dane

$$
\begin{gathered}
H_{B C S}^{\text {approx }}=\int_{p \in S} \varepsilon_{p}^{\prime}\left(a_{p}^{+} a_{p}+a_{i+p}^{+} a_{q}\right)+\Delta b_{p}^{+}+\bar{\Delta} b_{p} d_{p} \\
\\
+C I d
\end{gathered}
$$

ave $C=-\frac{1}{V_{0}}|\Delta|^{2}$
Par $p \in S$ fivé, on pose

$$
\begin{aligned}
H_{B C S}^{a q p b x}(p) & =\varepsilon_{p}^{\prime}\left(a_{p}^{+} a_{p}+a_{-p}^{+} a_{-p}\right) \\
& +\Delta b_{p}^{+}+\bar{\Delta} b_{p}
\end{aligned}
$$

Ces opénateun $\hat{H}_{B C S}^{\text {aprox }}(P)$ agit dans l'espace de Fock $F_{(-p, p)}$ d'une pacie de looper $(p,-p)$, de base $\left|N_{p}, N_{-p}\right\rangle$
On salcule avec $N_{p}, N_{-p} \in\left\{0_{1} 1\right\}$.

$$
\begin{aligned}
H_{B C S}^{\text {apmox }}(p)|1,0\rangle & =\varepsilon_{p}^{\prime}|1,0\rangle \\
\hat{H}_{B C S}^{\text {appox }}(p)|0,1\rangle & =\varepsilon_{p}^{\prime}|0,1\rangle \\
\hat{H}_{B C S}^{\text {appox }}(p)|0,0\rangle & =\Delta b_{p}^{+}|0,0\rangle \\
& =\Delta|1,1\rangle \\
\hat{H}_{\text {apmox }}^{\text {apCS }}(p)|1,1\rangle & =2 \varepsilon_{p}^{\prime}|1,1\rangle+\bar{\Delta}|0,0\rangle
\end{aligned}
$$

Donc dams la base $(1,0),(0,1),(0,0),(1,1)$

$$
H_{B C S}^{\text {appox }}(p) \equiv\left(\begin{array}{cc|cc}
\varepsilon_{p}^{\prime} & 0 & 0 & 0 \\
0 & \varepsilon_{p}^{\prime} & 0 & 0 \\
\hline 0 & 0 & 0 & \bar{\Delta} \\
0 & 0 & \Delta & 2 \varepsilon_{p}^{\prime}
\end{array}\right)
$$

(2) La matuice pécédente est conotiticée d'une pactie diagenale avec 2 vecterns popes.

$$
\begin{aligned}
& \left.H_{B C S}^{\text {appox }}(p) \mid 1,0\right)=\varepsilon_{p}^{\prime}|1,0\rangle \\
& \hat{H}_{B C S}^{\text {appox }}(p)|0,1\rangle=\varepsilon_{p}^{\prime}(0,1\rangle
\end{aligned}
$$

et d'une matuice $2 \times \alpha: M=\left(\begin{array}{cc}0 & \bar{\Delta} \\ \Delta & 2 \varepsilon_{p}^{\prime}\end{array}\right)$ dans la base $|0,0\rangle,|1,1\rangle$,
dont on chache maintenant les valeues propes $E \pm(p)$

Polegnome coracténishique: $z \in C \rightarrow P(z)=\operatorname{det}(z-M)$

$$
P(z)=\operatorname{det}\left(\begin{array}{cc}
z & -\bar{\Delta} \\
-\Delta & z-2 \varepsilon_{p}^{\prime}
\end{array}\right)=z^{2}-z 2 \varepsilon_{p}^{\prime}-\left(\left.\Delta\right|^{2}\right.
$$

- Les valeus nopes $E_{ \pm}(1)$ sont les zénos de $P(2)$:

$$
\begin{aligned}
& E_{ \pm}(p)=\frac{2 \varepsilon_{p}^{\prime} \pm \sqrt{D}}{2}, D=4 \varepsilon_{p}^{2^{2}}+4|\Delta|^{2} \\
& E_{ \pm}(p)=\varepsilon_{p}^{\prime} \pm \underbrace{\left(\varepsilon_{p}^{\prime 2}+|\Delta|^{2}\right)^{1 / 2}}_{\delta_{p}}
\end{aligned}
$$

- nem: pour $\Delta=0$,
on a si $\varepsilon_{p}^{\prime}>0, \quad\left\{\begin{array}{l}E_{+}(p)=2 \varepsilon_{p} \\ E_{-}(p)=0\end{array}\right.$

$$
\text { si } \varepsilon_{p}^{\prime}<0, \quad\left\{\begin{array}{l}
E_{+}(p)=0 \\
E_{-}(p)=2 \varepsilon_{p}^{\prime}
\end{array}\right.
$$

comme attendu par éexpression de $M=\left(\begin{array}{cc}0 & 0 \\ 0 & 2 \varepsilon_{p}^{\prime}\end{array}\right)$

si $\varepsilon_{p}^{\prime}>0 \Leftrightarrow E_{c_{n}}(p)>\mu$

- L'ètat fondamental a l'énergie $E-(p), p \in S$.

Par définition, le gap spectial es e'évergie quie fant pour passen au promiar ètat exceté supérieen. D'apés la figure, a serciet ε_{p}^{\prime}, mais en fait, il n'y a pas de tranoition posible ente $E-(\rho)$ qui poséde un nombe pair de paiticules $(\mid 0,0)$ av $|1,1\rangle)$ vers les etals intermédiceres $(0,1), 11,0)$ à nambe impaci de particules, d'apès la régle de consevatión du Mambe de pacticules. Donc seule la trausition $E_{-}(\rho) \rightarrow E_{+}(\rho)$ est pasible,
donnant un gap spectial:

$$
\begin{array}{r}
E_{+}(p)-E_{-}(p)=2 \delta_{p}=2\left(|\Delta|^{2}+\varepsilon_{p}^{\prime 2}\right)^{1 / 2} \\
E_{+}(p)-E_{-(p)} \geqslant 2|\Delta|
\end{array} \quad \tau_{\varepsilon_{p}^{\prime 2} \geqslant}
$$

gap spectiol gldoal cad indejendant de p
(3) Supposons que \hat{A} est une dosecoable,
$\hat{A} \psi_{j}=a_{j} \psi_{j}, \quad j=1,2, \ldots$
${ }_{\text {val. popes }}$ 个vectecues popes

Si $\varphi \in \mathcal{H}_{\hat{\tau}}$ est an état quantique quelconque τ espace de Hiebect,
alas d'ásés le principe de la mesue, la probalilité d'observer a_{j} apas une mesure de \hat{A} sur φ est:

$$
P_{\varphi}(j)=\frac{1}{\left\|\psi_{j}\right\|^{2}\|\varphi\|^{2}}\left|\left\langle\psi_{j} \mid \varphi\right\rangle\right|^{2}
$$

Donc la volaur moyenne quantíque" at

$$
\langle A\rangle_{\varphi}:=\sum_{j \geqslant 1} p_{\uparrow_{\varphi}(j) a_{j}}^{\tau_{\text {probalilité }}}
$$

- nem: ukilisant la relatión de fermeteue
$I d=\sum_{j} \frac{\left|\psi_{j}\right\rangle\left\langle\psi_{j} \mid \cdot\right\rangle}{\left\|\psi_{j}\right\|^{2}}$, on vérifieque

$$
\sum_{j} p_{\varphi}(j)=\frac{1}{\|\varphi\|^{2}} \sum_{j} \frac{\left\langle\varphi \mid \psi_{j}\right\rangle\left\langle\psi_{j} \mid \varphi\right\rangle}{\left\|\psi_{j}\right\|^{2}}=1
$$

- Mantras que $\langle A\rangle_{\varphi}=\frac{1}{\|\varphi\|^{2}}\langle\varphi \mid \hat{A} \varphi\rangle$
(formole très ulilisée en mécanique quantique).
- en effet $\hat{A}=\sum_{j} a_{j} \frac{\left|\psi_{j}\right\rangle\left\langle\psi_{j} \mid \cdot\right\rangle}{\left\|\psi_{j}\right\|^{2}}$ - décompcotion spectiale de Â donc

$$
\begin{aligned}
\langle A\rangle_{\varphi} & =\sum_{j} P_{\varphi}(j) a_{j}=\frac{1}{\|\varphi\|^{2}} \sum a_{j} \frac{\left\langle\varphi \mid \psi_{j}\right\rangle\left\langle\psi_{j} \mid \varphi\right\rangle}{\left\|\psi_{j}\right\|^{2}} \\
& =\frac{1}{\|\varphi\|^{2}}\langle\varphi \mid \hat{A} \varphi\rangle .
\end{aligned}
$$

- Ensuté, on suppose que le système est cooplé à un thermostat à la tempénutere $T, \beta=\frac{1}{b T}$ On note

$$
H_{\varphi_{j}}=E_{j} \varphi_{j} \quad: \text { nevecun d'ehergei }
$$

D'apees la là de Botimann, la probalilité que le syptéme sair dans l'etat φ_{j} d'ehergie E_{j} sot $\quad P_{B C}(j)=\frac{1}{2} e^{-\beta E_{j}}$ avec la constante de namaliscteion

$$
Z=\sum_{j} e^{-\beta E_{j}}
$$

or dans é ctat φ_{j}; on a déjà une valeun moyenne quaritique pour la grandeun A qui at $\langle A\rangle$
Dunc la valeur moyeune globiele (quantique et statisicue) C'est à díe dì cest flectuations queentiques et aux flectualións stratestiques es par défínition

$$
\left.\langle A\rangle_{P_{B G}}:=\sum_{j} P_{B \sigma}(j)<A\right\rangle_{\varphi_{j}}
$$

On va mantier que $\langle A\rangle_{\rho_{B O}}=\frac{1}{2}$ Ir $\left(\hat{A} e^{-\beta \hat{H}}\right)$ avec $Z=T_{r}\left(e^{-\beta \tilde{H}}\right)$.

On rappele que si $\left(\varphi_{j}\right)_{j}$ est une base orthoganale de \hat{H} et \hat{A} un opératèu alas,

$$
T_{\Omega}(\hat{A}):=\sum_{j}^{1} \frac{1}{\left\|\varphi_{j}\right\|^{2}}\left\langle\varphi_{j} \mid \hat{A} \varphi_{j}\right\rangle .
$$

Pon manter cela,
oon culuule $\operatorname{tr}\left(e^{-\beta \hat{H}}\right)=\sum_{j} \frac{1}{\left\|\varphi_{j}\right\|^{2}}\left\langle\varphi_{j} \mid e^{-\beta \hat{H}} \varphi_{j}\right\rangle$

$$
=\sum_{j} e^{-\beta E_{j}}=Z
$$

-on caluule

$$
\begin{aligned}
& \frac{1}{2} \operatorname{Tr}\left(\hat{A} e^{-\beta \hat{H}}\right)=\frac{1}{2} \sum_{j} \frac{1}{\left\|\varphi_{j}\right\|^{\prime}}\left\langle\varphi_{j} \mid \hat{A} e^{-\beta \hat{H}} \varphi_{j}\right\rangle \\
& =\frac{1}{2} \sum_{j} \frac{1}{\left\|\varphi_{j}\right\|^{2}}\left\langle\varphi_{j} \mid \hat{A} \varphi_{j}\right\rangle e^{-\beta E_{j}} \\
& =\sum_{j} P_{B G}(j)\langle A\rangle_{\varphi_{j}}=\langle A\rangle_{P_{B G}}
\end{aligned}
$$

(4) On a les pacemètes libes jisqui à pésent $\left\langle b_{p}\right\rangle \in \mathbb{C}$.
On impose que:
. nem: $\left\langle b_{p}^{+}\right\rangle_{p_{B \sigma}}=\overline{\left\langle b_{p}\right\rangle_{p_{B G}}}=\overline{\left\langle b_{p}\right\rangle}$ comme dejà vae. opérateen adjaint de bp
. On a $\left\langle b_{p}\right\rangle_{P_{B O}}=\frac{1}{2} T_{r}\left(b_{p} e^{-\beta H_{B C S}^{2}}\right)$

$$
\begin{aligned}
\text { avec } \left.\begin{array}{rl}
Z & =\operatorname{Ir}\left(e^{-\beta H_{B C S}^{a p p}}\right)=\operatorname{Ir}\left(e^{-\beta\left(\int_{S} H_{B C S}^{a p p}(p) d p+C I_{d}\right)}\right) \\
& =\operatorname{Ir}\left(e^{-\beta C} I_{d}\right) \prod_{p \in S} \operatorname{Ir}_{2}\left(e^{\left.-\beta H_{B C S}^{a p(}(p)\right)}\right)
\end{array}\right) .
\end{aligned}
$$

Or Tr(.) ne dépend pas de la bese, on peut danc utiliser les valeuns propes de $H_{B C S}^{a p p}(p)$ pour calcula:

De meme,

$$
\operatorname{Ir}_{r}\left(b_{p} e^{-\beta H_{B C S}^{a p p}}\right)=\prod_{p^{\prime} \in S}^{T_{r}}\left(e^{-\beta c} I_{\alpha}\right) I_{p}\left(b_{p} e^{-\beta H_{B C S}^{a p p}\left(\rho^{\prime}\right)}\right)
$$

où l'opénater b_{p}
agit comme Id dans l'espace $F\left(p^{\prime},-p\right)$ sip' $\neq p$.
Donc il rate seulement

$$
\left\langle b_{p}\right\rangle_{P_{B G}}=\frac{\overline{T_{r}}\left(b_{p} e^{-\beta \tilde{H}_{B C S}^{a p p}}(p)\right)}{\bar{T}_{r}\left(e^{-\beta \hat{H}_{B C S}^{a p p}}(p)\right)}
$$

On va calculer chaum de les termes.

$$
\begin{aligned}
& \operatorname{Ir}\left(e^{-\beta H_{\beta C S}^{(\alpha p)}(p)}\right)=2 e^{-\beta \varepsilon_{p}^{\prime}}+e^{-\beta E_{+}(p)}+e^{-\beta E_{-}(p)} \\
& =2 e^{-\beta \varepsilon_{p}^{\prime}}+e^{-\beta \varepsilon_{p}^{\prime}} e^{-\beta \delta_{p}}+e^{-\beta \varepsilon_{p}^{\prime}} e^{\beta \delta_{p}} \\
& =e^{-\beta \varepsilon_{p}^{\prime}}\left(2+e^{-\beta \delta_{p}}+e^{\beta \delta_{p}}\right) \\
& =e^{-\beta \varepsilon_{p}^{\prime}}\left(e^{\frac{\beta}{2} \delta_{p}}+e^{-\frac{\beta}{2} \delta_{p}}\right)^{2} \\
& =4 e^{-\beta \varepsilon_{p}^{\prime}} \cosh ^{2}\left(\frac{\beta}{2} \delta_{p}\right)
\end{aligned}
$$

Parr le numérateur, on observe que

$$
\begin{aligned}
& \begin{aligned}
b_{p} e^{-\beta \hat{H}_{B C S}^{\text {app }}(p)}= & \left(\frac{1}{-\beta}\right) \frac{\partial}{\partial \bar{\Delta}}\left(e^{-\beta H_{B C S}^{a p p}(p)}\right) \\
& \operatorname{Han}_{B C S}^{\text {app }}(p)=\varepsilon\left(a_{p}^{+} a_{p}+a_{-p}^{+} a_{-p}\right)
\end{aligned} \\
& +\Delta b_{p}^{+}+\Delta b_{p}
\end{aligned}
$$

done

$$
\begin{aligned}
& \text { done }\left(b_{p} e^{-\beta \hat{H}_{B C S}^{\text {app }}(p)}\right)=-\frac{1}{\beta} \frac{\partial}{\partial \bar{\Delta}} \operatorname{Tr}_{2}\left(e^{-\beta H_{\beta c s}^{\text {app }}(\rho)}\right) \\
& =-\frac{1}{\beta} \frac{\partial}{\partial \bar{\Delta}}\left(4 e^{-\beta \varepsilon_{p}^{\prime}} \cosh ^{2}\left(\frac{\beta}{2} \delta_{p}\right)\right) L_{h} \delta_{p} \text { depend de } \bar{\Delta}
\end{aligned}
$$

$$
\begin{aligned}
&=-\frac{1}{\beta} 4 e^{-\beta \varepsilon_{p}^{\prime}} \frac{\partial}{\partial \delta_{p}}\left(\cosh ^{2}\left(\frac{p}{2} \delta_{p}\right)\right) \frac{\partial}{\partial \bar{\Delta}}\left(\delta_{p}\right) \\
& \delta_{p}=\left(\varepsilon_{p}^{\prime 2}+\Delta \bar{\Delta}\right)^{1 / 2} \\
&=-\frac{4 e^{-\beta \varepsilon_{p}^{\prime}}}{\beta}\left(2 \frac{\beta}{2} \cosh \left(\frac{\beta}{2} \delta_{p}\right) \sinh \left(\frac{\beta}{2} \delta_{p}\right)\right) \\
& \times \frac{\Delta}{2 \delta_{p}} \\
&=-\frac{2 e^{-\beta \varepsilon_{p}^{\prime} \Delta}}{\delta_{p}} \cosh \left(\frac{\beta}{2} \delta_{p}\right) \sinh \left(\frac{\beta}{2} \delta_{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle b_{p}\right\rangle_{\rho_{B G}}=\frac{\overline{T_{r}}\left(b_{p} e^{-\beta \hat{H}_{B C S}^{a p p}(p)}\right)}{\nabla_{r}\left(e^{-\beta \hat{H}_{C C S}^{a p p}}(p)\right)} \\
& =-\frac{2 e^{-\beta \varepsilon_{p}^{\prime}} \Delta \cosh \left(\frac{\beta}{2} \delta_{p}\right) \sinh \left(\frac{\beta}{2} \delta_{p}\right)}{\delta_{p} 4 e^{-\beta \varepsilon_{p}} \cosh ^{2}\left(\frac{\beta}{2} \delta_{p}\right)} \\
& =-\frac{\Delta}{2 \delta_{p}} \tanh \left(\frac{\beta}{2} \delta_{p}\right)
\end{aligned}
$$

On déduit
(*) $\Delta=-V_{0} \int_{p \in S}\left\langle b_{p}\right\rangle d p=\frac{V_{0} \Delta}{2} \int_{p \in S} \frac{1}{\delta_{p}} \tanh \left(\frac{\beta}{2} \delta_{p}\right) d p$
${ }^{2}$ avec $\quad \delta_{p}=\left(\varepsilon_{p}^{\prime 2}+|\Delta|^{2}\right)^{1 / 2}$
Dès le début dp est la mesure de Weyl qui compte de nombe d'efats.
On note g la densité d'états en énergie. Anoi

$$
\begin{aligned}
(*) \Leftrightarrow \Delta & =\frac{V_{0} \Delta g}{2} \int_{-E_{0}}^{+E_{0}} \frac{1}{\delta_{p}} \tanh \left(\frac{\beta}{2} \delta_{p}\right) d \varepsilon^{\prime} \\
& =V_{0} \Delta g \int_{0}^{E_{D}} \frac{1}{\delta_{p}} \tanh \left(\frac{\beta}{12} \delta_{p}\right) d \varepsilon^{\prime}
\end{aligned}
$$

Sait $\Delta=0$, soit c 'est "l’équation du gap":
$4 \quad \frac{1}{V_{0} g}=\int_{0}^{E_{D}} \frac{1}{\delta_{p}} \tanh \left(\frac{\beta}{2} \delta_{p}\right) d \varepsilon^{\prime}, \quad \delta_{p}=\left(\varepsilon_{p}^{\prime 2}+\Delta^{2}\right)^{1 / 2}$
(5) Dans l'équation du gap, $p=\frac{1}{k T}$ et connu, et encherche \triangle. On ne peut pas résoude cette équation sons adimateur (un petit pogremme python par exemple) mais on pent calcular Δ dans certaines limits. Par exemple $T \rightarrow 0$.
2 Supposons $0<T \ll 1 \Leftrightarrow \beta=\frac{1}{k T} \gg 1$

3 an a $\lim _{x \rightarrow+\infty} \tanh (x)=1$, donc l'équation der gae danne:

$$
\begin{aligned}
& 4-\frac{1}{V_{0} g} \approx \int_{0}^{E_{D}} \frac{d \varepsilon^{\prime}}{\left(\varepsilon^{\prime 2}+\Delta^{2}\right)^{1 / 2}}=\int_{0}^{E_{0}} \frac{d\left(\varepsilon^{\prime} / \Delta\right)}{\left(\left(\frac{\varepsilon^{\prime}}{\Delta}\right)^{2}+1\right)^{1 / 2}} \\
& =\int_{0}^{E_{D} / \Delta} \frac{d x}{\left(x^{2}+1\right)^{1 / 2} \quad \text { avec } x=\frac{\varepsilon^{\prime}}{\Delta}} \\
& \quad \approx \ln \left(2 \frac{E_{D}}{\Delta}\right): \text { on scepposent } E_{D / \Delta} \gg 1
\end{aligned}
$$

(6) On souhaite monter l'allure sxivante de la fonction $\Delta: T \longmapsto \Delta(T)$

Rem: dans (27-3), on a la solution $\Delta=0$. on ount monter que ilya cene certereolution $\Delta(T)>0$ par $T<T_{c}$ et une certaine valuer $T_{c}>0$, applée tempénatere vítique que l'on recheche.
On pose $\beta=\frac{1}{k T}, \quad \beta_{c}=\frac{1}{k T_{c}}$.
On cheache T_{c} telque $\Delta\left(T_{c}\right)=0$, solution de $(27-4)$.

- Pour $\Delta=0, \beta=\beta_{c},(27-4)$ danne $\delta=\left(\varepsilon^{\prime 2}+\Delta^{2^{1 / 2}}\right)^{\prime 2}\left|\varepsilon^{\prime}\right|$

$$
\begin{aligned}
\frac{1}{V_{0} g} & =\int_{0}^{E_{D}} \frac{1}{\delta_{p}} \tanh \left(\frac{\beta}{2} \delta_{p}\right) d \varepsilon^{\prime} \\
& =\int_{0}^{E_{D}} \frac{1}{\varepsilon^{\prime}} \tanh \left(\frac{\beta c}{2} \varepsilon^{\prime}\right) d \varepsilon^{\prime}
\end{aligned}
$$

$$
=\int_{0}^{\frac{\beta_{C} E_{D}}{2}} \frac{1}{x} \tanh (x) d x
$$

Vàci l’allure de la fonction $F: y \mapsto \int_{0} \frac{1}{x} \tanh (x) d x$ obtenue avec le logicicl gratuit en ligne
x casfroltiml et les commandes

$$
\begin{aligned}
& F:=\operatorname{int}(\tanh (x) / x, x=\phi \ldots y) \\
& \operatorname{plot}(F, y=\phi .1 \phi)
\end{aligned}
$$

2 On admet que pau $C \gg 1, F^{-1}(C)=\frac{\pi}{4 e^{\gamma}} e^{C}$
$3 \operatorname{Donc}(30-1) \Longleftrightarrow \frac{1}{V_{0} g}=F\left(\frac{\beta_{c} E_{D}}{2}\right)$
4 et si $\frac{1}{V_{0} g} \gg 1 \quad\left(\Leftrightarrow\right.$ si $\Delta \ll E_{0} \frac{\left.\operatorname{digapes}_{(28-6)}^{(28}\right)}{}$ alas

$$
5-\frac{\beta_{C} E_{D}}{2}=F^{-1}\left(\frac{1}{V_{0} g}\right) \approx \frac{\pi}{(3-2)} \frac{\pi e^{\gamma}}{} e^{\frac{1}{V_{0} g}}
$$

$$
\Leftrightarrow{ }_{6} T_{c} \approx \frac{2 e^{\gamma}}{\pi} E_{D} e^{-\frac{1}{V_{0} g}}
$$

(7) Dans les derrices résuetats, on ne conncut pas les paramétes E_{D}, V_{0}, g de modile, mais il est remarquable que l^{\prime} an dèdent le reppat univesel:
gas spectial

$$
\frac{2 \Delta(0)^{k}}{k_{c} T_{c}^{(31-0)}(28-6)} \frac{4 E_{D} e^{-\frac{1}{v_{0 g}}}}{E_{D} \frac{2 e^{\gamma}}{\pi} e^{-\frac{1}{v_{0 g}}}}=\frac{2 \pi}{e^{\gamma}} \approx 3.53
$$

confarme oux expériences.

