Nombre de photons par metre cubes et "photons forsiles"
(1) Rappels: pour établir la là de Plencla,

1) on considère les modes clariques dee champs électromagnètique: $\vec{E}(\vec{x}, t)=\vec{E}_{0} e^{i(\vec{k} \vec{x}-\cot)}$ avec $\omega=c\|\vec{k}\| \in \mathbb{R}, \quad \vec{k} \in \mathbb{R}^{3}$
2) Dans l^{\prime} espace des phase (\vec{x}, \vec{k}) chaque élément de volume $\frac{1}{(2 \pi)^{3}} d^{3} \vec{x} d^{3} \vec{k}$ conespond à un mode, d'apies la là de Wagl,
3) Pour chaque classique est asocié une base $0 . \mathrm{m}$. d'états quentiques $\varphi_{c o, N}$ avec $N \in \mathbb{N}^{\prime \prime}$ rombere de phatans, d'énergie $E_{\omega, N}=\hbar \omega\left(N+\frac{1}{2}\right)$
4) D'apès la là de Boltemann, à l'équiclike Hermique aver température T, l^{\prime} état $\varphi_{c o n}$, apparait avec la probalilité $P\left(\varphi_{\infty, \omega}\right)=\frac{1}{2_{\omega}} e^{-E_{\omega, \omega}}$ Achema:

$$
\rightarrow \vec{x}, \vec{k}
$$

Pendant l'expansion de l'ieniexs, cette destsibucuion a été pésewrée. Le seul chongement es l'étioment de l'espace par un factioer $f>0$,
qui a changé la longueeer d'ande de chaque mode:

$$
\underset{\rightarrow 0}{\lambda} \longmapsto \lambda f=\lambda^{\prime}
$$

or $\|\vec{k}\|=\frac{2 \pi}{\lambda}, \omega=c\|\vec{k}\|$
$\left.\operatorname{dan} \quad\|\vec{k}\| \longmapsto \frac{1}{b} \right\rvert\, \vec{k} \|$
$\omega \longrightarrow \omega^{\prime}=\frac{1}{b} \omega$
D'apès la formale de llenck, le changement $\omega=f \omega^{\prime}$ donne

$$
\begin{aligned}
& =f^{4} v_{T^{\prime}}\left(w^{\prime}\right) d w^{\prime} \\
& e^{-\frac{t \omega^{\prime}}{f \pi}}, T^{\prime}=\frac{T}{6}
\end{aligned}
$$

\uparrow màme formule de Planck
avec $T^{\prime}=\frac{T}{b} \Longleftrightarrow f=\frac{T}{T^{\prime}}=\frac{3000}{2,7}=1111$
(2) On rappelle que pour un mode donné, l'énagie de N photons est

$$
\begin{aligned}
& E_{N}-E_{0}=N \text { h } \omega \\
& \Leftrightarrow \quad N=\frac{1}{t_{1} \omega}\left(E_{N}-E_{0}\right)
\end{aligned}
$$

On dédiut dax la densité de photorspar unité de voleeme à partir de la densité d'énergue de Plancla:

$$
\begin{aligned}
n(\omega) d \omega & =\frac{1}{t_{1} \omega} v_{T}(\omega) d \omega \\
& =\frac{\omega^{2} d \omega}{\pi^{2} c^{3}\left(e^{\text {tro/RT}}-1\right)}
\end{aligned}
$$

Le nombe de plistans par mètie cube est dan:

$$
\begin{aligned}
n & =\int_{0}^{\infty} n(\omega) d \omega=\frac{1}{\pi^{2} c^{3}} \int_{0}^{\infty} \frac{\omega^{2} d \omega}{e^{k c o / h T}-1}, \quad \text { posons } \\
& =\left(\frac{k T}{\hbar}\right)^{3} \frac{1}{\pi^{2} c^{3}}\left(\int_{0}^{\infty} \frac{x^{2} d x}{e^{x}-1}\right) \quad I=2,40 \\
& =\frac{I k^{3} T}{t^{3} \pi^{2} c^{3}} T^{3}=\frac{2,40 \cdot\left(1,38 \cdot 10^{-23}\right)^{3} T^{3}}{\left(6,62 \cdot 10^{-34}\right)^{3} \pi^{2}\left(3 \cdot 10^{8}\right)^{3} \pi^{-3} m^{-3}} \\
& =8 \cdot 10^{4} T^{3} \pi^{-3} m^{-3} .
\end{aligned}
$$

Si $T=2,7 K$, cela danne

$$
\begin{aligned}
n & =8 \cdot 10^{4}(2,7)^{3} \mathrm{~m}^{-3}=1,6 \cdot 10^{6} \mathrm{~m}^{-3} \\
& =1,6 \text { plotans } / \mathrm{cm}^{3}
\end{aligned}
$$

