Etude d'un gaz d'électrons relativistes
(1) On considìre un électron dans un volume V.

En mécanique classique, son ètat est caractéisé par sa position $\vec{q} \in$ Volume $V \subset R^{3}$
et son impulsion $\vec{p} \in \mathbb{R}^{3}$
c'est à due un pönt (\vec{q}, \vec{p}) de l'copace des pheres

Sat $p \geqslant 0$ donné.

p_{2}

D'apès la farmule do Weyl (ucir TDn ${ }^{\circ} 2$), le nambe d'états quantiques dans la zone $|\vec{p}| \leqslant p$ est: car rétats de spin

$$
\begin{aligned}
& \text { est: } n(p)=\frac{2 \times \operatorname{Vol}((\vec{q}, \vec{p})+q|\vec{p}| \leq p)}{\text { Voleape }(2 \pi t)^{3}} \\
& n(p)=\frac{2 V \cdot\left(\frac{4}{3} \pi p^{3}\right)}{(2 \pi t)^{3}}=a p^{3} \text { avec } a=\frac{V}{3 \pi^{2} t^{3}}
\end{aligned}
$$

(2) D'apres la dístrubution de Ferni- Dinac, (TD 8

À T=ok, les N électrons occupent les N étruto à 1 paiticules d'énergie les plus bases.

done on a
$N=n\left(P_{F}\right)$ inamine d'élections

$$
\begin{gathered}
=\frac{V}{3 \pi^{2} t^{3}} P_{F}^{3} \\
\Leftrightarrow V=\frac{3 \pi^{2} N t^{3}}{\rho_{F}^{3}}=\frac{3 \pi^{2} N t^{3}}{m_{e}^{3} c^{3} \alpha_{f}^{3}} \\
\Leftrightarrow \\
\Leftrightarrow \alpha_{F}^{3}=\left(\frac{3 \pi^{2} t^{3}}{m_{e}^{3} c^{3}}\right)\left(\frac{N}{V}\right)
\end{gathered}
$$

τ denoité
(3)

1

$$
\begin{aligned}
& \text { évegie } \\
& \text { noune de l'impelsían } \\
& p=\|\vec{p}\| \\
& \varepsilon^{2}-(p c)^{2}=\left(m C^{2}\right)^{2} \\
& \begin{aligned}
\Longleftrightarrow \varepsilon & =\left(\left(m c^{4}\right)^{2}+(p c)^{2}\right)^{1 / 2} \\
& =m c^{2}\left(1+\frac{(p c)^{2}}{\left(m c^{2}\right)^{2}}\right)^{1 / 2}=m c^{2}\left(1+\alpha^{2}\right)^{1 / 2}
\end{aligned}
\end{aligned}
$$

$\operatorname{avec} \alpha=\frac{p c}{m c^{2}} \Longleftrightarrow p=m c \alpha$

- Rappel: si $\alpha \ll 1 \quad p \ll m c$,
alas d'aprés le developpement limíté

$$
\begin{gathered}
(1+x)^{1 / 2}=1+\frac{1}{2} x+0(x) \\
1 \text { si } x \ll 1
\end{gathered}
$$

on a

$$
\begin{aligned}
& \varepsilon \approx m c^{2}\left(1+\frac{1}{2} \alpha^{2}+\cdots\right) \\
& \text { énergie }=m c^{2}+\frac{1}{2} m c^{2} \frac{p^{2}}{m^{2} c^{2}}+\cdots=m_{\uparrow} c^{2}+\frac{p^{2}}{2 m}+\cdots \\
& \text { relaliviste } \\
& \text { énergié } \\
& \text { relaténste } \\
& \text { ceu repos } \\
& \text { énergie cinètique } \\
& \text { de Neciton }
\end{aligned}
$$

Propiélé
le "quadivedeèr inpulsion" est trengent à la lígne d'cenivees de la pacícuele, (démontré i dessous).

vitene \equiv pente du quaduivectear
ona $\frac{v}{c}=\frac{\Delta x}{c \Delta t}=\frac{p c}{\varepsilon}=\frac{m c^{2} \alpha}{m c^{2}\left(1+\alpha^{2}\right)^{1 / 2}}=\frac{\alpha}{\left(1+\alpha^{2}\right)^{1 / 2}}$

- Le facteur de Lorentz eot

$$
\gamma=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}} \geqslant 1
$$

$\operatorname{denc} \gamma=\left(1-\frac{\alpha^{2}}{1+\alpha^{2}}\right)^{-1 / 2}=\left(1+\alpha^{2}\right)^{1 / 2}$
l'apmoximentién nen relchuiste est salchle se $\gamma \approx 1$,

$$
\Leftrightarrow \quad \alpha \ll 1
$$

- Prauve de la propièté cidessus: $\vec{V}=\frac{C^{2}}{\varepsilon} \vec{p}$ rappelons que la relatéon de diopersion" cidessus:

$$
\varepsilon^{2}-(p c)^{2}=\left(m c^{2}\right)^{2}
$$

s'obtient comme conséquence de l’équatión
ondulatàre de Klien-Gordon:

$$
(\mathbb{E} G) \quad \frac{\partial^{2} \psi}{c^{2} \partial t^{2}}-\sum_{i} \frac{\partial \psi}{\partial x_{j}^{2}}=-\frac{m^{2} c^{2}}{t_{i}^{2}} \psi
$$

(quie eot une version relaténiste de l’équatéon deselno"dcriger) et en ramplagant $\psi(\vec{x}, t)=e^{i(\omega t-\vec{b} \cdot \vec{x})}$ dans $(k G)$ on obbient la relation de disperion:
$(R D)$

$$
-\frac{\omega^{2}}{c^{2}}+\|\vec{k}\|^{2}=-m^{2} C^{2}
$$

et en posant: $\varepsilon:=t \omega, \vec{p}:=h \vec{k}$ (chergarent d'echelle) on dotient l'équation $\varepsilon^{2}-(\|P\| c)^{2}=\left(m c^{2}\right)^{2}$ cidessus.

- La relation de dispasion peunet d'obtenir la trajèctaíe cles paqueets d’andes (ov paricules) L'apies les équ. dettermictor: $\left.\vec{v}=\frac{d \vec{x}}{d t}=\frac{\partial \omega}{\partial k_{j}}\right\}$ ou on considire la fanction w (\vec{x}, \vec{k}) $\left.\frac{d \vec{k}}{d t}=-\frac{\partial \omega_{j}}{\partial x_{j}}\right\}$ donnée per (RD), ice independante de \vec{x}.
- Dans ce cus présent (RD) donne (en différensicent):

$$
\begin{aligned}
& -\frac{\omega d \omega}{c^{2}}+\sum_{j} k_{j} \cdot d k_{j}=0 \\
& \Leftrightarrow d \omega=\sum_{j} \frac{c^{2} k_{j}}{\omega} \cdot k_{j}
\end{aligned}
$$

dan

$$
\begin{aligned}
& (\vec{v})_{j}=\left(\frac{d \vec{x}}{d t}\right)_{j}=\left(\frac{\partial \omega}{\partial k_{j}}\right)_{j}=\frac{c^{2} k_{j}}{\omega} \\
& \Longleftrightarrow \vec{v}=\frac{c^{2}}{\omega} \overrightarrow{b^{2}}=\frac{c^{2}}{\varepsilon} \vec{P}
\end{aligned}
$$

Rem: en méccenéque non relcelivite, à la place de l’équ. ($\pi \sigma$) on a l'équatèón de scho"driger:

$$
i \hbar \frac{\partial \psi}{\partial t}=-t^{2} \frac{\Delta}{2 m} \psi
$$

qui donne la $(R D): H=E=\frac{\|\vec{p}\|^{2}}{2 m}$ et les équ. de Hainition donnent:

$$
\vec{v}=\left(\frac{\partial H}{\partial p_{j}}\right)_{j}=\frac{\vec{p}}{m}
$$

C'est bien idenique à la formule cidesses, $\operatorname{avec} l^{\prime}$ appox: $\varepsilon \approx m c^{2} \Rightarrow \vec{v}=\frac{c^{2}}{\varepsilon} \vec{p} \approx \frac{\vec{p}}{m}$
(4)

$$
\begin{aligned}
& U=\int_{0}^{N} \varepsilon d n=\int_{0}^{\alpha_{F}} \varepsilon\left(\frac{d m}{d p}\right)\left(\frac{d p}{d \alpha}\right) d \alpha \\
& \underset{(3-1)}{=} \int_{\alpha_{F}}^{\alpha_{F}} m c^{2}\left(1+\alpha^{2}\right)^{1 / 2}\left(3 a p^{2}\right)(m c) d \alpha \\
& =m c^{2}\left(\frac{3 V}{3 \pi^{2} t^{3}}\right)(m c)^{3} \int_{0}^{\alpha F}\left(1+\alpha^{2}\right)^{1 / 2} \alpha^{2} d \alpha \\
& U=\frac{m^{4} c^{5} V}{\pi^{2} \hbar^{3}}\left(\int_{0}^{\alpha_{f}} "\right) \\
& =\frac{m^{4} c^{5} 3 \pi^{2} N t^{3}}{\pi^{2} t^{3} m^{3} c^{3} \alpha_{F}^{3}}\left(\int_{0}^{\alpha_{F}} \prime\right) \\
& =m c^{2} 3 N \quad H\left(\alpha_{F}\right)
\end{aligned}
$$

