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The Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electroni-

cally controlled mechanical oscillator are experimentally measured. Experimental results reveal

that the resonant frequencies can be fairly obtained by means of probing the variation of the effec-

tive impedance of the exciter with and without the thin plate. The influence of the extra mass from

the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the pres-

ent system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive

the response function as a function of the driving wave number for reconstructing experimental

Chladni patterns. The resonant wave numbers are theoretically identified with the maximum cou-

pling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant

wave numbers into the derived response function, all experimental Chladni patterns can be excel-

lently reconstructed. More importantly, the dispersion relationship for the flexural wave of the

vibrating plate can be determined with the experimental resonant frequencies and the theoretical

resonant wave numbers. The determined dispersion relationship is confirmed to agree very well

with the formula of the Kirchhoff–Love plate theory. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4916704]

[KML] Pages: 2113–2123

I. INTRODUCTION

Experimental resonant states in driven oscillation sys-

tems are of great importance in probing eigenstates of theo-

retical counterparts in various scientific fields including

macroscopic as well as microscopic worlds.1,2 The mathe-

matical similarity for the wave equation enables us to

acquire deep insights into the quantum world via exploring

the paradigmatic systems of the classical world.3–5 The

vibrating plate which has been systematically studied and

popularized by Chladni6 is one of the most historical and

classical two-dimensional (2D) wave systems. The Chladni

experiment has acted as a precursor for various fields of

research, such as seismology,7 musical instruments,8 quan-

tum billiards,9 and nano-mechanics.10,11 Chladni nodal line

patterns are formed by the sand particles that stop at the

nodes of the resonant modes on a vibrating plate. Nowadays,

the Chladni experiment is performed by using an electroni-

cally controlled mechanical oscillator to locally drive the

plate with variable frequency. It is worthwhile to note that

when the sizes of sand particles are less than 0.1 mm, the

grains may migrate to the antinodes to form the so-called

inverse Chladni patterns.12 Although experiments on inverse

Chladni patterns are a new area of research, Chladni nodal

line patterns have been widely demonstrated in popular

science.13

Rayleigh originally proposed to analyze the standard

Chladni patterns by exploiting the Helmholtz equation

instead of the bi-harmonic equation.14,15 Although Rayleigh’s

approach greatly reduces the mathematical complexity, ex-

perimental Chladni patterns cannot be directly reconstructed

with the eigenmodes of the Helmholtz equations.16,17 The

discrepancy between experimental resonant modes and theo-

retical eigenmodes mainly comes from the fact that the

vibrating plate is an open system strongly coupled to the driv-

ing exciter. It has been experimentally observed18–20 that the

strong coupling between the oscillation system and the driv-

ing source may cause the resonant frequencies to be signifi-

cantly different from the eigenfrequencies, i.e., the so-called

resonant frequency shifts.21–23 Due to the shifts of resonant

frequencies, the resonant mode is generally formed by a

superposition of numerous degenerate eigenmodes or nearly

degenerate eigenmodes, i.e., the so-called mode-mixing

effect.24–27 So far the principle for determining resonant fre-

quencies has not been disclosed. Consequently, experimental

Chladni patterns generated by a continuous oscillating source

have not been well explained and reconstructed theoretically.

In this work, the resonant vibration of the thin plate is

experimentally and theoretically explored. In the experimental

a)Author to whom correspondence should be addressed. Electronic mail:
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aspect, an automatic scanning system is utilized to measure

resonant frequencies and Chladni patterns of thin plates with

square and equilateral triangle shapes. The resonant frequen-

cies are fairly acquired with probing the variation of the effec-

tive impedance of the exciter with and without the thin plate.

It is further experimentally confirmed that the Chladni reso-

nant patterns are not affected by the ambient air and remain

almost undisturbed as long as the extra masses are placed at

the nodal lines or at the central excitation point. In the theoreti-

cal analysis, the inhomogeneous Helmholtz equation is

exploited to derive the response function as a function of the

driving wave number for exploring the vibrating wave on the

thin plate. With the derived response function, the resonant

wave numbers are theoretically identified with the maximum

coupling efficiency as well as the maximum entropy princi-

ple.28–31 Substituting the theoretical resonant wave numbers

into the derived response function, it is numerically confirmed

that the derived response function can be successfully used to

reconstruct all experimental Chladni patterns. With the perfect

reconstruction, the experimental resonant frequencies and the

theoretical resonant wave numbers can be linked to obtain the

dispersion relationships for the flexural wave of the vibrating

plate. The determined dispersion relationship is confirmed to

be in good agreement with the formula of the Kirchhoff–Love

plate theory.

II. EXPERIMENTAL MEASUREMENT OF RESONANT
CHLADNI PATTERNS

Figure 1 shows the experimental setup for measuring

the spectrum of resonant frequencies and Chladni patterns.

In experiment, we prepared a square plate with a side length

of a¼ 240 mm and an equilateral triangle plate with a side

length of a¼ 289 mm. Both thin plates were made of alumi-

num sheets with a thickness of d¼ 1 mm. The center of the

thin plate was fixed with a screw supporter that was driven

with an electronically controlled mechanical oscillator with

sinusoidal wave of variable frequency.

For acquiring the resonant frequencies, we developed an

auto-scanning system with 0.1-Hz resolution to measure the

variation of the effective impedance of the mechanical oscil-

lator without and with the thin plate.32 When the mechanical

oscillator was driven with an amplified sinusoidal voltage

source, a digital galvanometer was connected in series with

the mechanical oscillator to probe the effective current am-

plitude. As a consequence, the frequency response of the

effective impedance of the mechanical oscillator could be

accurately measured. Figure 2 shows experimental results

for the frequency response of the effective impedance of the

mechanical oscillator without (dashed line) and with (solid

line) the thin plate. It can be seen that the frequency response

of the effective impedance of the mechanical oscillator with-

out the thin plate displays a monotonically increasing

FIG. 1. (Color online) Experimental

setup for measuring the spectrum of

resonant frequencies and Chladni

patterns.

FIG. 2. (Color online) The measured effective impedances of the mechani-

cal oscillator without (dashed line) and with (solid line) the (a) square and

(b) equilateral triangle thin plates.
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function, whereas there are numerous sharp peaks caused by

the resonance to appear in the frequency spectrum with the

thin plate. The resonant frequencies could be fairly acquired

from the frequency response of the net impedance that was

calculated by subtracting the effective impedance without

the thin plate from that with the thin plate. Note that the

influence of the extra mass effect from the central exciter on

the measurement will be discussed later. Figures 3(a) and

4(a) show experimental results for the net impedances of the

square and equilateral triangle vibrating plates, respectively.

At each resonant frequency, 0.3-mm silica grains were used

to manifest the so-called standard Chladni nodal line pattern.

Figures 3(b) and 4(b) show experimental nodal line patterns

captured with a camera at the resonant frequencies specified

in Figs. 3(a) and 4(a), respectively. It is clear that all the

Chladni patterns display the morphologies of wandering line

structures that are conspicuously different from the regular

nodal structures of eigenmodes.

To explore the influence of the ambient air on the reso-

nant frequencies and Chladni patterns, the experiment of the

vibrating plate, as shown in Fig. 5(a), was performed in a

chamber with the air pressure reduced down to 10�1 Torr. It

was found that the resonant frequency spectrum was nearly

unchanged in comparison with the result obtained at the

standard atmospheric pressure, as seen in Fig. 5(b). Besides,

the resonant nodal line patterns were almost the same as

those experimental results obtained at the standard atmos-

pheric pressure.

Furthermore, the influence of the extra mass on meas-

uring the resonant frequencies33 and resonant nodal line pat-

terns was also explored. At first, the mung beans which have

significantly larger grain sizes and heavier masses in com-

parison with the silica sands were used as the granular

media. Experimental results revealed that there are no no-

ticeable differences between the resonant Chladni figures

manifested by the mung beans and by the silica grains, as

shown in Fig. 6(a). In this case, since the mung beans were

finally located at the position of nodal lines where the vibra-

tional amplitudes are very close to zero, the extra mass effect

was minimal and the resonant frequencies were nearly

unchanged. To examine the extra mass effect at the driving

point where the vibrational amplitude is high, a concentrated

mass Madd was deliberately added on the central screw sup-

porter to remain the symmetry of the system. Figure 6(b)

shows the resonant frequency spectra for the square plate

measured under the cases with different Madd. Though some

resonant peaks below 2000 Hz will shift to lower frequencies

as Madd increases, it was confirmed that the small amount of

drop in resonant frequencies will scarcely affect the resonant

Chladni patterns. Since the mass of the screw supporter and

the moving part of the exciter were estimated to be smaller

than the used Madd, the extra mass effect from the central ex-

citer on measuring the resonant frequencies and resonant

Chladni patterns can be thus neglected in the present work.

To be brief, the resonant frequencies measured by the pro-

posed method were good approximations to the exact values.

FIG. 3. (Color online) (a) Experimental

frequency spectrum given by the net

impedance of the square plate. (b)

Experimental nodal line patterns at the

resonance frequencies fi depicted in (a).
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III. THEORETICAL MODEL FOR RESONANT WAVE
NUMBERS AND CHLADNI PATTERNS

Since Chladni’s experiment is a driven oscillation system,

we use the 2D inhomogeneous Helmholtz equation with the

approach of Green’s function to derive the response function

of the thin plate. Note that the aspect ratio of the thickness to

the lateral dimension for the studied plate is generally less

than 0.02. As a result, the vibrating eigenmodes can be

approximated with the 2D Helmholtz equation.34 Considering

a thin plate driven by a time-harmonic source Fðr0Þ, the

response function Wðr; r0; ~kÞ of the vibrating plate can be

solved with the inhomogeneous Helmholtz equation

ðr2 þ ~k
2ÞWðr; r0; ~kÞ ¼ Fðr0Þ; (1)

where ~k ¼ k þ ic, k is the driving wave number, and c is the

damping coefficient of the vibrating system. From the

Kirchhoff–Love plate theory, the dispersion relation between

the driving frequency and the driving wave number for the

flexural wave is given by13

f ðkÞ ¼ C � k2 (2)

with

C ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ed2

12q 1� �2ð Þ

s
; (3)

where E is the Young’s modulus, � is the Poisson ratio, q is

the mass density, and d is the thickness of plate. Since there

are some uncertainties for the Young’s modulus and the

Poisson ratio, the precise value for the coefficient C in Eq.

(3) is usually difficult to evaluate for real materials.

Therefore, one of the most important aims in this work is to

determine the coefficient C from the experimental resonant

frequencies and the theoretical resonant wave numbers.

Due to the free edge of the vibrating plate, the vibrating

wave function at the boundary @X must satisfy the

Neumann-type boundary condition of @W=@nj@X ¼ 0 at the

boundary @X of the thin plate. When the driving source is an

ideal point source at r ¼ r0, the response function in Eq. (1)

is the so-called Green’s function Gðr; r0; ~kÞ. In terms of the

Green’s function, the response function excited by any gen-

eral source Fð r0Þ can be given by

Wðr; r0; ~kÞ ¼
ð

V

Gðr; r0; ~kÞFð r0Þd3r0: (4)

For the system with c� k, the Green’s function can be

expanded with the eigenmodes as

G r; r0; ~k
� �

¼
X

n

U�n r0ð Þ � Un rð Þ
k2 � kn

2ð Þ þ 2ick
; (5)

where UnðrÞ and kn are the eigenmodes and eigenvalues,

respectively. Substituting Eq. (5) into Eq. (4), the normalized

response function Wðr; r0; ~kÞ is then given by

Wðr; r0; ~kÞ ¼
X

n

anð r0; ~kÞUnðrÞ; (6)

FIG. 4. (Color online) (a) Experimental

frequency spectrum given by the net

impedance of the equilateral triangle

plate. (b) Experimental nodal line pat-

terns at the resonance frequencies fi
depicted in (a).
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FIG. 5. (Color online) (a) The experi-

mental system for exploring the influ-

ence of the ambient air on the resonant

frequencies and Chladni patterns. The

nodal line pattern shown in the photo

is measured at the resonance frequency

marked by the arrow in (b). (b) The net

impedances of the square plate meas-

ured under different air pressures.

FIG. 6. (Color online) (a) Some reso-

nant Chladni figures manifested by the

mung beans as the granular media. (b)

The resonant frequencies spectra meas-

ured under the cases with different

added mass Madd at the central driving

point.
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with the coefficient

an r0; ~k
� �

¼ An r0; ~k
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

jAn r0; ~k
� �

j2
r ; (7)

An r0; ~k
� �

¼

ð
U�n r0ð ÞF r0ð Þ d3r0

k2 � k2
n

� �
þ 2 i c k

: (8)

The denominator in the right-hand side of Eq. (8) indicates

that the vibrating wave function is mainly formed by the

eigenmodes UnðrÞ with eigenvalues kn close to the driving

wavenumber k. It is worthwhile to mention that the mathe-

matical form in the denominator of Eq. (8) is similar to the

Breit-Wigner formula for expressing the resonant states in

quantum systems.35 The numerator in the right-hand side of

Eq. (8) also reveals that the overlap integral between the

eigenmode Unðr0Þ and the source Fðr0Þ plays an important

role in the vibrating wave function.

Since there was no theoretical model to determine the

resonant wave numbers in past investigations, the recon-

struction for Chladni figures was unsolved so far. To explore

a fundamental principle for determining the resonant wave

numbers in the Chladni experiment, we consider the cou-

pling efficiency of the power transfer from the external

source to the plate system. According to theoretical acous-

tics,36 the power transferred from the driving source to the

mechanical vibrating system is proportional to the absolute

square of the time-derivative of the response mode, i.e.,

g / j@W=@tj2. Under a time-harmonic condition, the effec-

tive coupling efficiency of the normalized power transferred

from the point source to the vibrating plate can be given by

gðr0; ~kÞ ¼
X

n

kn
2 � anðr0; ~kÞ � Unðr0Þ

�����
�����
2

: (9)

Here we have used the quadratic dispersion relation of the

plate and omit the common constants that will not affect the

relative results. From another point of view, the coupling

strength between the thin plate and the driving source can be

evaluated with the number of effective participated eigenmo-

des.37,38 Entropy is a logarithmic measure of the number of

eigenmodes with significant participated probability. The in-

formation entropy of the response function in Eq. (6) can be

calculated as a function of the driving wave number. From

the Shannon theory29 and in term of the coefficient in Eq.

(7), the information entropy of the response function

Wðr; r0; ~kÞ is given by

Sðr0; ~kÞ ¼ �
X

n

pnðr0; ~kÞ ln½pnðr0; ~kÞ�; (10)

where pnðr0; ~kÞ ¼ janðr0; ~kÞj2 represents the probability of

the eigenmode UnðrÞ in the response function Wðr; r0; ~kÞ.
Considering a mixed state that is superposed by N eigenmo-

des with equal probabilities, i.e., pn ¼ 1=N, the formula in

Eq. (10) can be used to obtain S ¼ ln N. Therefore, the expo-

nential form of exp½Sðr0; ~kÞ� can be practically used to

evaluate the effective number of participated eigenmodes

Neff in the response function. In Sec. IV, it is verified that the

maximum entropy principle can be exploited to obtain the

resonant wave numbers in a direct way.

IV. NUMERICAL VERIFICATION AND DETERMINATION
OF DISPERSION RELATIONS

Now considering a square-shape plate with the region in

0 � x; y � a, the eigenmodes are given by

Un1;n2
x; yð Þ ¼

2

a
cos

n1p
a

x

� �
cos

n2p
a

y

� �
; (11)

where n1 ¼ 0; 1; 2; 3; … and n2 ¼ 0; 1; 2; 3; …. The

eigenvalues corresponding to the eigenmodes Un1;n2
ðx; yÞ are

given by

kn1;n2
¼ p

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
2

q
: (12)

With a point source at the center, the driving function can be

expressed as

Fðr0Þ ¼ Fo dðx0 � a=2Þdðy0 � a=2Þ; (13)

where Fo is the amplitude of the driving source. Substituting

Eqs. (11)–(13) into Eq. (6), the normalized wave function is

given by

Wðx; y; ~kÞ ¼
X
n1;n2

an1;n2
ð~kÞUn1;n2

ðx; yÞ; (14)

with the coefficient

an1;n2
~kð Þ ¼ An1;n2

~kð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n1;n2

jAn1;n2
~kð Þj2

r ; (15)

An1;n2
~kð Þ ¼ Fo

Un1;n2
a=2; a=2ð Þ

k2 � k2
n1;n2

� �
þ 2 i c k

: (16)

Note that since the point source is located at the center of the

square, the numerator in the right-hand side of Eq. (15)

allows only eigenmodes with both even indices of n1; n2 in

the superposition. With Eqs. (14)–(16), the wave patterns

jWðx; y; ~kÞj2 can be calculated by inputting different values

of the driving wave number and a fixed damping factor.

From the width of the resonance peaks, the value of the

damping factor c was found to be approximately 0.02 a�1.

Note that the value of the amplitude of the driving source Fo

will not affect the morphology of a wave pattern in the cal-

culation. Substituting Eqs. (15) and (16) into Eq. (10) and

with c ¼ 0:02 a�1, the information entropy for the square

plate with the central driving can be numerically computed

as a function of the driving wave number. On the other hand,

substituting Eqs. (15) and (16) into Eq. (9), the power trans-

ferred efficiency gðr0; ~kÞ for the square plate can be numeri-

cally calculated as a function of the driving wave number.

Figures 7(a) and 7(b) show the calculated results versus

the driving wave number for the entropy distribution
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exp½Sðr0; ~kÞ� and power transferred efficiency gðr0; ~kÞ,
respectively. It can be seen that the peak positions of gðr0; ~kÞ
are utterly consistent with those of entropy distribution

exp½Sðr0; ~kÞ�. The driving wave numbers k corresponding to

the peak positions are the theoretical resonant wave num-

bers and are denoted as Kn with n ¼ 1; 2; 3; :::, as shown in

Fig. 7(a).

Substituting ~k ¼ Kn þ ic into Eqs. (14)–(16), the wave

patterns jWðx; y; ~kj2 corresponding to the resonant modes

can be calculated to make a comparison with experimental

Chladni patterns shown in Fig. 3(b). Figure 8(a) shows the

numerical nodal line patterns calculated with ~k ¼ Kn þ ic
and Eqs. (14)–(16). Note that the theoretical nodal line

patterns are plotted by the inverse of the wave patterns

jWðx; y; ~kÞj2 for manifestation. It is clear that the theoretical

nodal line patterns are in good agreement with the experi-

mental Chladni patterns shown in Fig. 3(b) for all cases. The

perfect agreement indicates that the spectrum of resonant

wave numbers can be accurately determined by the driving

wave numbers to lead to the local maxima in the entropy dis-

tribution exp½Sðr0; ~kÞ�. To be brief, experimental Chladni pat-

terns can be theoretically reconstructed by using the

response function Wðr; r0; ~kÞ in Eq. (6) with the driving

wave numbers at the local maxima of the entropy distribu-

tion exp½Sðr0; ~kÞ� from Eq. (10). Figure 8(b) shows a compar-

ison between the theoretical resonant wave numbers Kn and

FIG. 7. (Color online) Calculated

results of the (a) entropy distribution

eSðr0 ;~kÞ and (b) power transferred effi-

ciency gðr0; ~kÞ as a function of the

driving wave number for the square

plate.

FIG. 8. (Color online) (a) Numerically

reconstructed nodal line patterns corre-

sponding to the experimental Chladni

figures shown in Fig. 3(b). (b) A com-

parison between the resonant wave

numbers Kn and the eigenvalues kn1 ;n2
.
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the eigenvalues kn1;n2
. The Kn spectrum is conspicuously dif-

ferent from the distribution of eigenvalues kn1;n2
. This result

indicates that the effect of resonant frequency shifts21–23 is

extremely significant in the resonant vibration of thin plates

for the Chladni experiment under the continuous excitation.

The same procedure was employed to analyze experi-

mental results obtained with the equilateral triangle thin

plate. The eigenmodes of an equilateral triangle vibrating

plate can be categorized into two types of degenerate modes

with odd and even symmetries.39 Considering the plate with

vertices at ð0; 0Þ, ða=2;
ffiffiffi
3
p

a=2Þ, and ð�a=2;
ffiffiffi
3
p

a=2Þ, the

eigenmodes can be expressed as

U oð Þ
n1;n2

x; yð Þ
U eð Þ

n1;n2
x; yð Þ

8<
:
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

a23
ffiffiffi
3
p

s
sin

cos

2p
3a

2n1 � n2ð Þx
� 	

cos
2pffiffiffi
3
p

a
n2y

� �(

þ
sin

cos

2p
3a

2n2 � n1ð Þx
� 	

cos
2pffiffiffi
3
p

a
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� �

þ
sin

cos
� 2p

3a
n1 þ n2ð Þx

� 	
cos

2pffiffiffi
3
p

a
n1 � n2ð Þy

� 	)
;

(17)

FIG. 9. (Color online) Calculated results

of the (a) entropy distribution eSðr0 ;~kÞ and

(b) power transferred efficiency gðr0; ~kÞ
as a function of the driving wave number

for the equilateral triangle plate.

FIG. 10. (Color online) (a) Numerically

reconstructed nodal line patterns corre-

sponding to the experimental Chladni

figures shown in Fig. 4(b). (b) A com-

parison between the resonant wave

numbers Kn and the eigenvalues kn1 ;n2
.
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where n1 ¼ 0; 1; 2; 3;…, n2 ¼ 0; 1; 2; 3;…, and the odd

and even symmetries are denoted by the superscripts (o) and

(e), respectively. The eigenvalues for the eigenmodes

UðoÞn1;n2
ðx; yÞ and UðeÞn1;n2

ðx; yÞ are given by

kn1;n2
¼ 4p

3a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
2 � n1n2

q
: (18)

With a point source at the center of the thin plate, the source

function can be expressed as

Fðr0Þ ¼ Fo dðx0Þdðy0 � a=
ffiffiffi
3
p
Þ; (19)

where Fo is the amplitude of the driving source. Substituting

Eqs. (17)–(19) into Eq. (6), the normalized response function

of the thin plate is given by

Wðx; y; ~kÞ ¼
X
n1;n2

an1;n2
ð~kÞU eð Þ

n1;n2
ðx; yÞ; (20)

with the coefficient

an1;n2
~kð Þ ¼ An1;n2

~kð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n1;n2

jAn1;n2
~kð Þj2

r ; (21)

An1;n2
~kð Þ ¼ Fo

U eð Þ
n1;n2

0; a=
ffiffiffi
3
p� �

k2 � k2
n1;n2

� �
þ 2 i c k

: (22)

Note that only eigenmodes with even symmetry have contri-

butions in the response function of Eqs. (20) and (22) due to

the symmetry of the source function in Eq. (19).

Substituting Eqs. (21) and (22) into Eqs. (9) and (10)

and using c ¼ 0:02a�1, the power transferred efficiency

gðr0; ~kÞ and the entropy distribution exp½Sðr0; ~kÞ� for the

equilateral triangle plate can be calculated with the driving

wave number as a variable. Figures 9(a) and 9(b) show the

calculated results versus the driving wave number for the en-

tropy distribution exp½Sðr0; ~kÞ� and power transferred effi-

ciency gðr0; ~kÞ, respectively. Again, the variation of the

power transferred efficiency gðr0; ~kÞ completely resembles

that of the entropy distribution exp½Sðr0; ~kÞ�. The theoretical

resonant wave numbers Kn with n ¼ 1; 2; 3;… are similarly

identified with the peak positions, as shown in Fig. 9(a).

Figure 10(a) shows the numerical nodal line patterns

calculated with ~k ¼ Kn þ ic and Eqs. (20)–(22) to make a

comparison with experimental Chladni patterns shown in

Fig. 4(b). Once again, it is clear that the theoretical nodal

line patterns agree very well with the experimental Chladni

patterns shown in Fig. 4(b) for all cases. Figure 10(b) shows

a comparison between the theoretical resonant wave num-

bers Kn and the eigenvalues kn1;n2
. As expected, the spectrum

of resonant wave numbers Kn is considerably different from

the distribution of eigenvalues kn1;n2
.

Finally, it is useful to discuss that the dispersion rela-

tionship for the flexural wave of the vibrating plate can be

precisely determined with the experimental resonant fre-

quencies and the theoretical resonant wave numbers. Figure

11(a) shows the dispersion curve determined by the experi-

mental resonant frequencies and the theoretical resonant

wave numbers for the square plate with d¼ 1 mm. With the

FIG. 12. (Color online) Comparison between the fitting coefficient C and

the theoretical formula in Eq. (3) for the plates with different ratios of d=a.

FIG. 11. (Color online) The dispersion curves determined by the experimen-

tal resonant frequencies and theoretical resonant wave numbers of the square

aluminum plates with the thickness d of (a) 1 mm, (b) 2 mm, and (c) 5 mm.
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formula in Eq. (2) for the best fitting to the determined

results, the coefficient C is found to be approximately 0.222.

It is intriguing that the value of C ¼ 0:222 is quite close to

the theoretical value of 0.246 calculated by Eq. (3) with the

material parameters for the aluminum plate: E¼ 69 GPa,

�¼ 0.33, q¼ 2700 kg/m3, and d¼ 1 mm. With the same

approach, the dispersion relationship for the square plates

with d¼ 2 mm and d¼ 5 mm are also determined, as shown

in Figs. 11(b) and 11(c). The values of the best fitting coeffi-

cient C are approximately 0.551 and 1.083 for d¼ 2 mm and

d¼ 5 mm, respectively. Figure 12 shows a comparison

between the fitting coefficient C and the theoretical formula

in Eq. (3) for the plate with different ratios of d=a. It can be

seen that the trend of the determined coefficient C agrees

very well with the theoretical calculation. The good agree-

ment further confirms the validity of the present theoretical

model for analyzing the flexural wave in the vibrating thin

plate and determining the dispersion relationship.

V. CONCLUSIONS

The Chladni nodal line patterns and resonant frequen-

cies for a thin plate excited by an electronically controlled

mechanical oscillator have been experimentally measured.

The resonant frequencies were fairly attained by means of

probing the difference between the effective impedances of

the exciter with and without the thin plate. Furthermore, it

has been experimentally confirmed that the Chladni resonant

patterns are almost not affected by the ambient air and

remain almost undisturbed as long as the extra masses are

placed at the nodal lines or at the central excitation point. In

the theoretical aspect, the inhomogeneous Helmholtz equa-

tion has been employed to derive the response function for

the vibrating wave on the thin plate as a function of the driv-

ing wave number. From the viewpoint of the maximum cou-

pling efficiency as well as the maximum entropy principle,

the derived response function is directly used to theoretically

identify the resonant wave numbers. It has been evidenced

that the derived response function with the theoretically

resonant wave numbers can excellently reconstruct all exper-

imental Chladni patterns. The experimental resonant fre-

quencies and the theoretical resonant wave numbers were

further combined to deduce the dispersion relationships for

the flexural wave of the vibrating plate. Finally, the deter-

mined dispersion relationship has been confirmed to be

nicely consistent with the formula of the Kirchhoff–Love

plate theory.
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