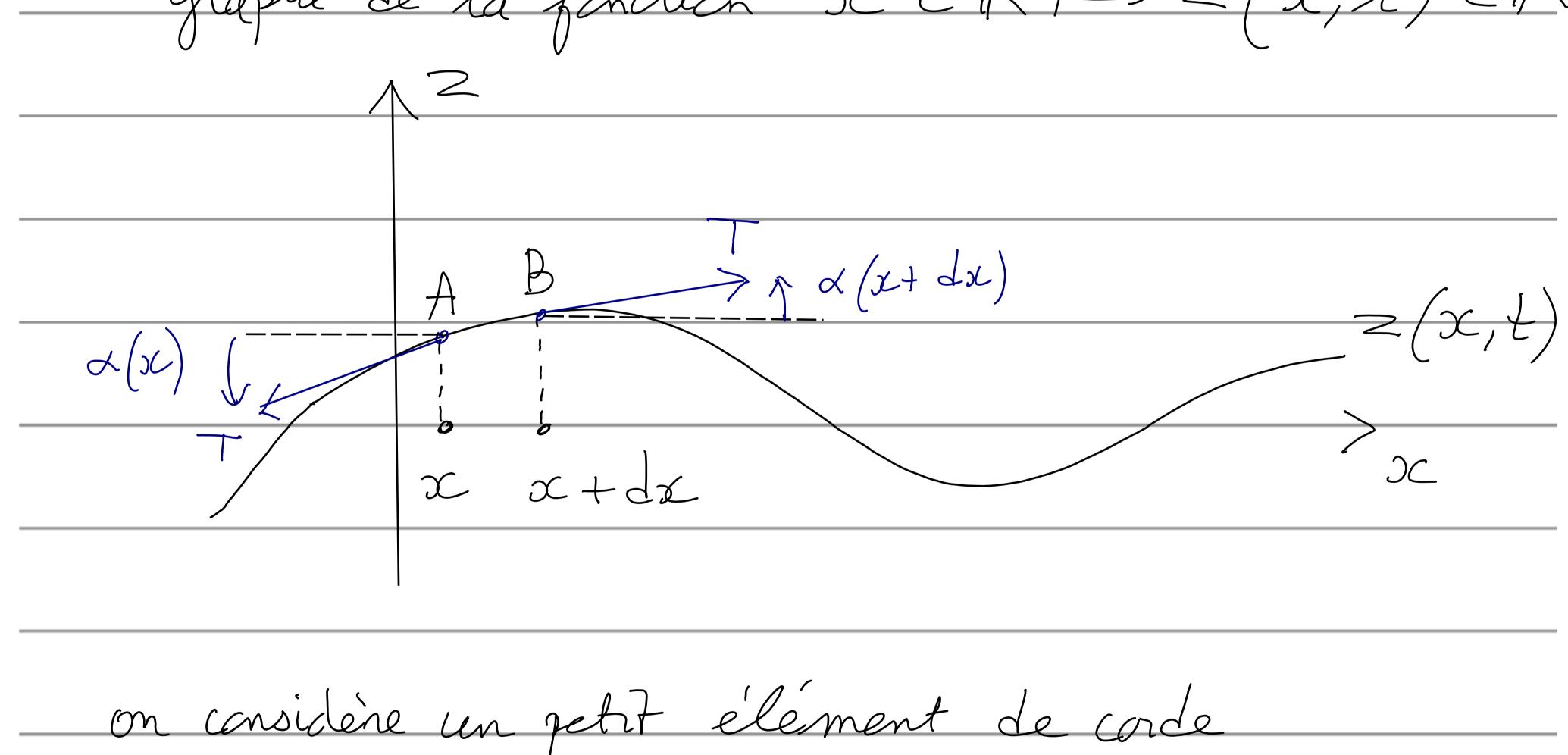
Propagation de Son

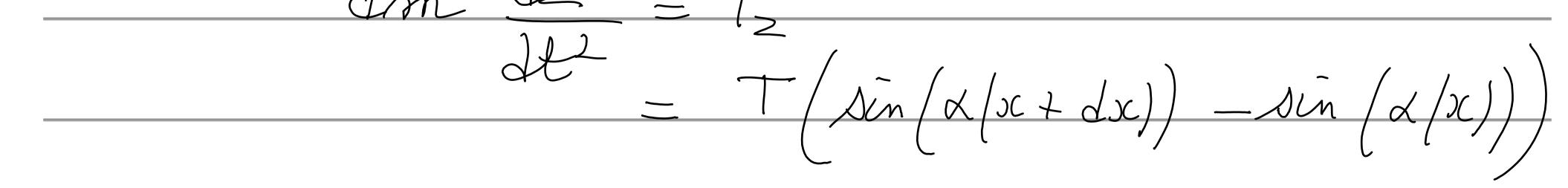
Vibration d'une corde

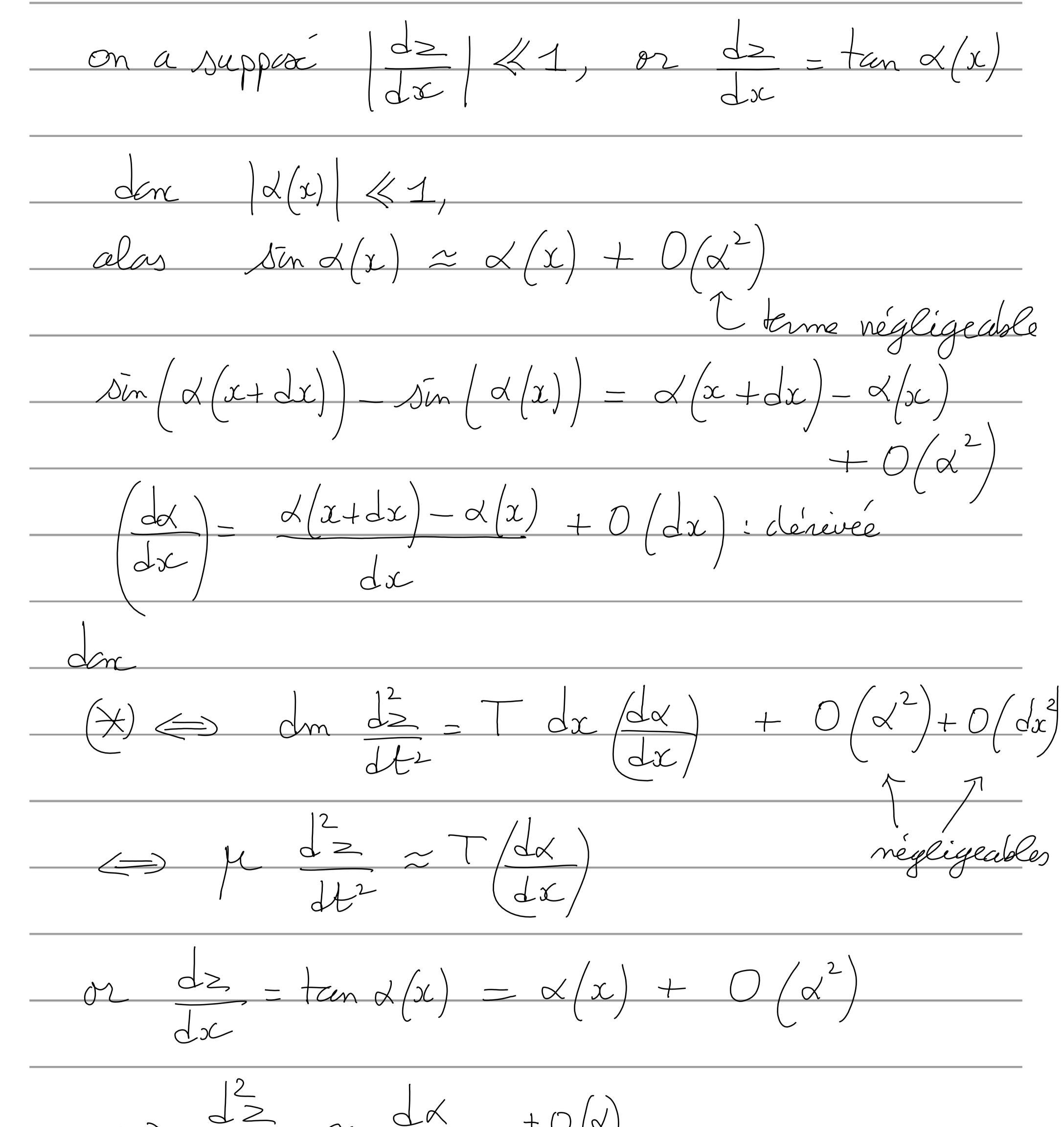
On considére une corde dans un plan. Sa position à la date t'est donnée par le graphe de la fonction oc ER+>> 2(x,t) ER

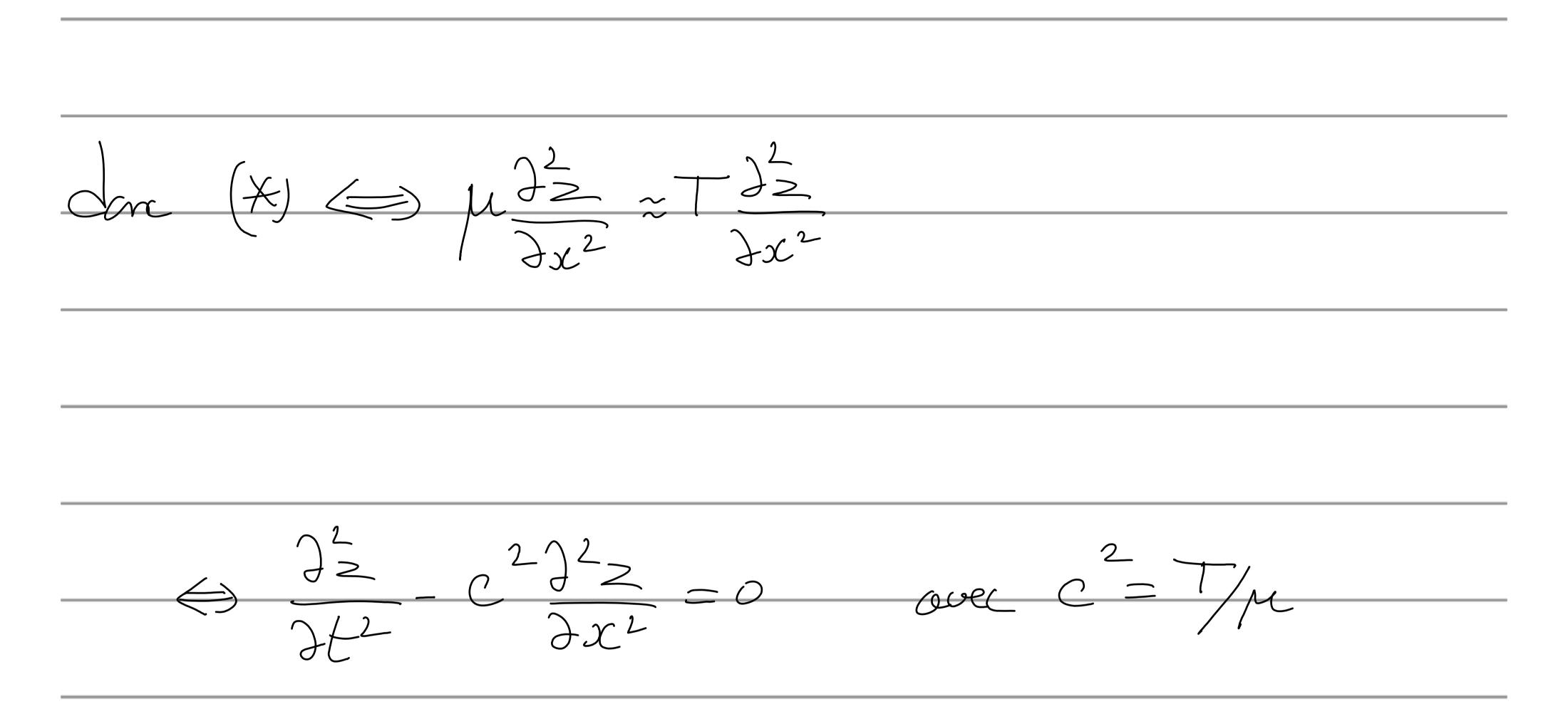


entre les parts A = [x, z(x)]et B = (x + dx, z(x + dz))· La masse par unité de langueur est µ = dm ⇒ dm = µ dx : mæne de Joc l'élément

on note d(x) l'angle entre la tangente à la voube et l'axe horizontal et T l'intensité de la forse de tension qui est tangente à la combe. . L'élément de largueur subit une tension à gaulie et une tension à châte dont les composantes verticales sont (en vert) $F_{2} = -T \sin(\alpha(su) + T \sin(\alpha(su)))$ $\frac{1}{\sqrt{x+dx}}$ L () L'équation de mouvement de Neceton selon l'axe > s'écut donc: Im de F

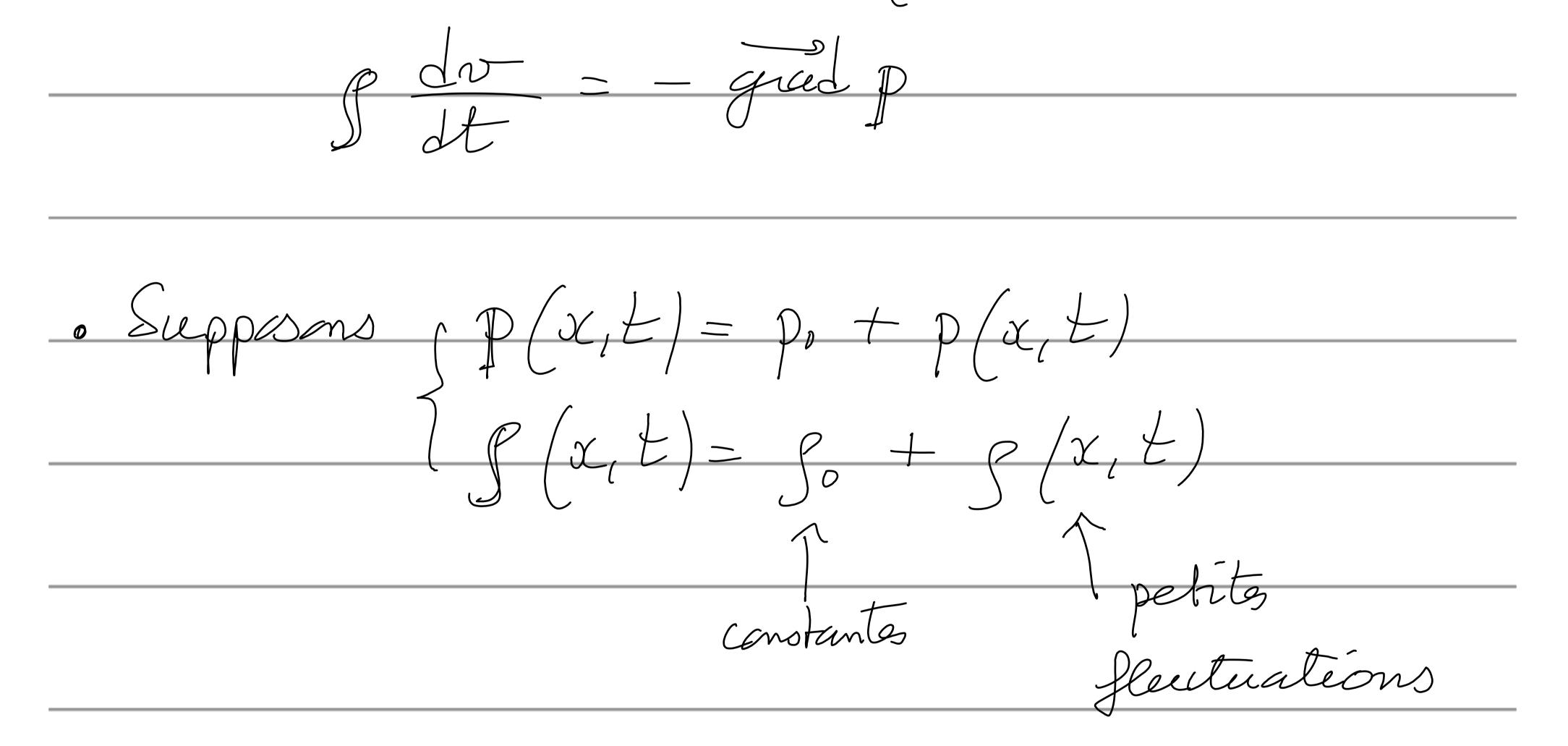




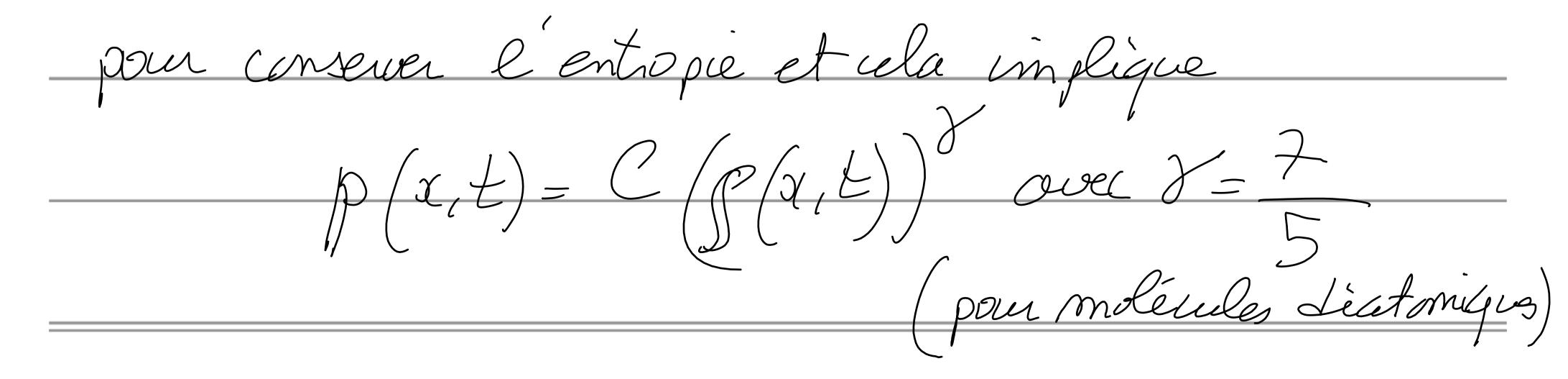


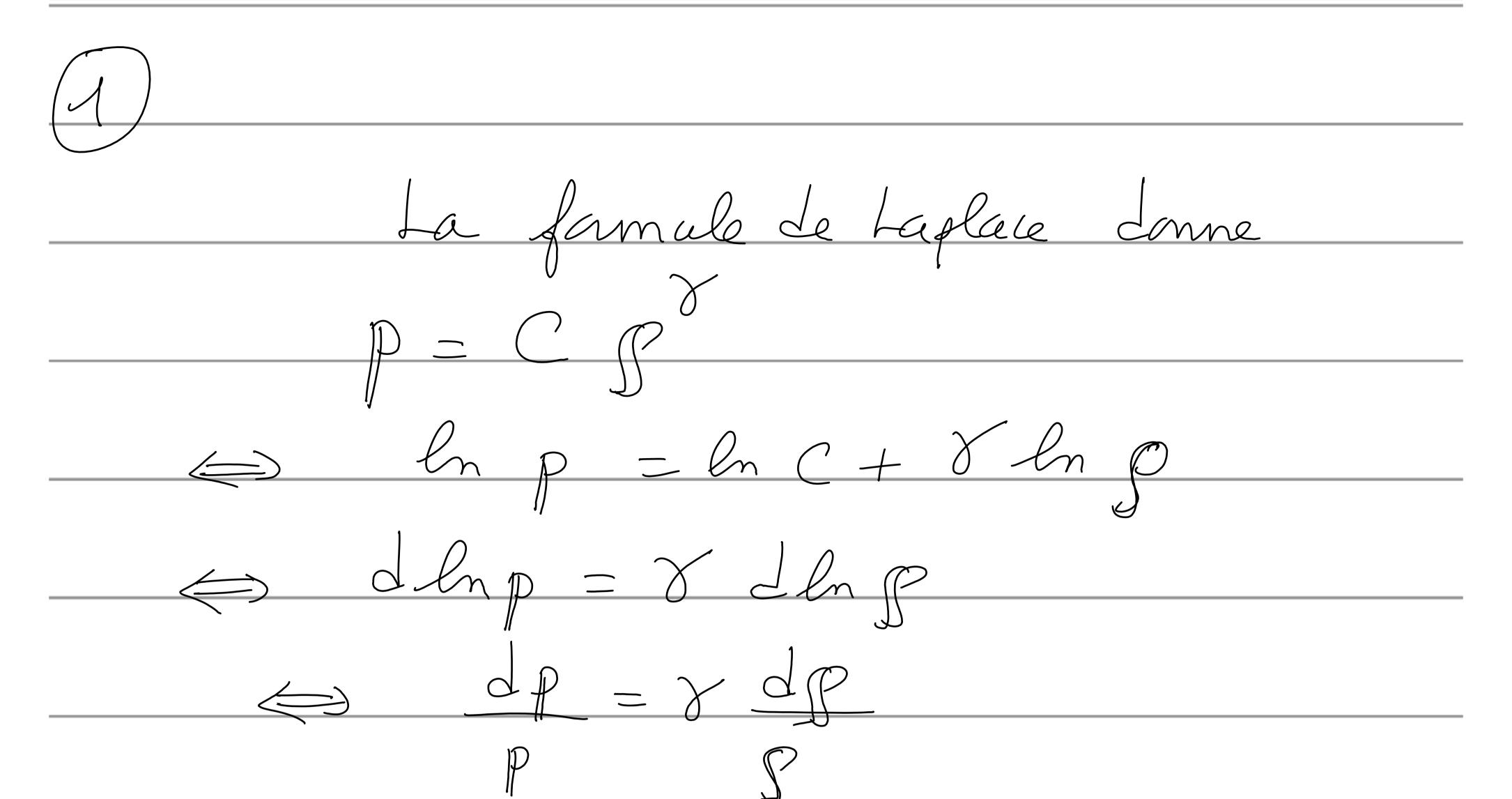
equation des ondes!

Equation des ondes sonnes · Considérans un fluide libre (pas de faie de perenteu, ni viscosté) Son movement est donc décet par l'équation de movement de Euler (ie Neuten):

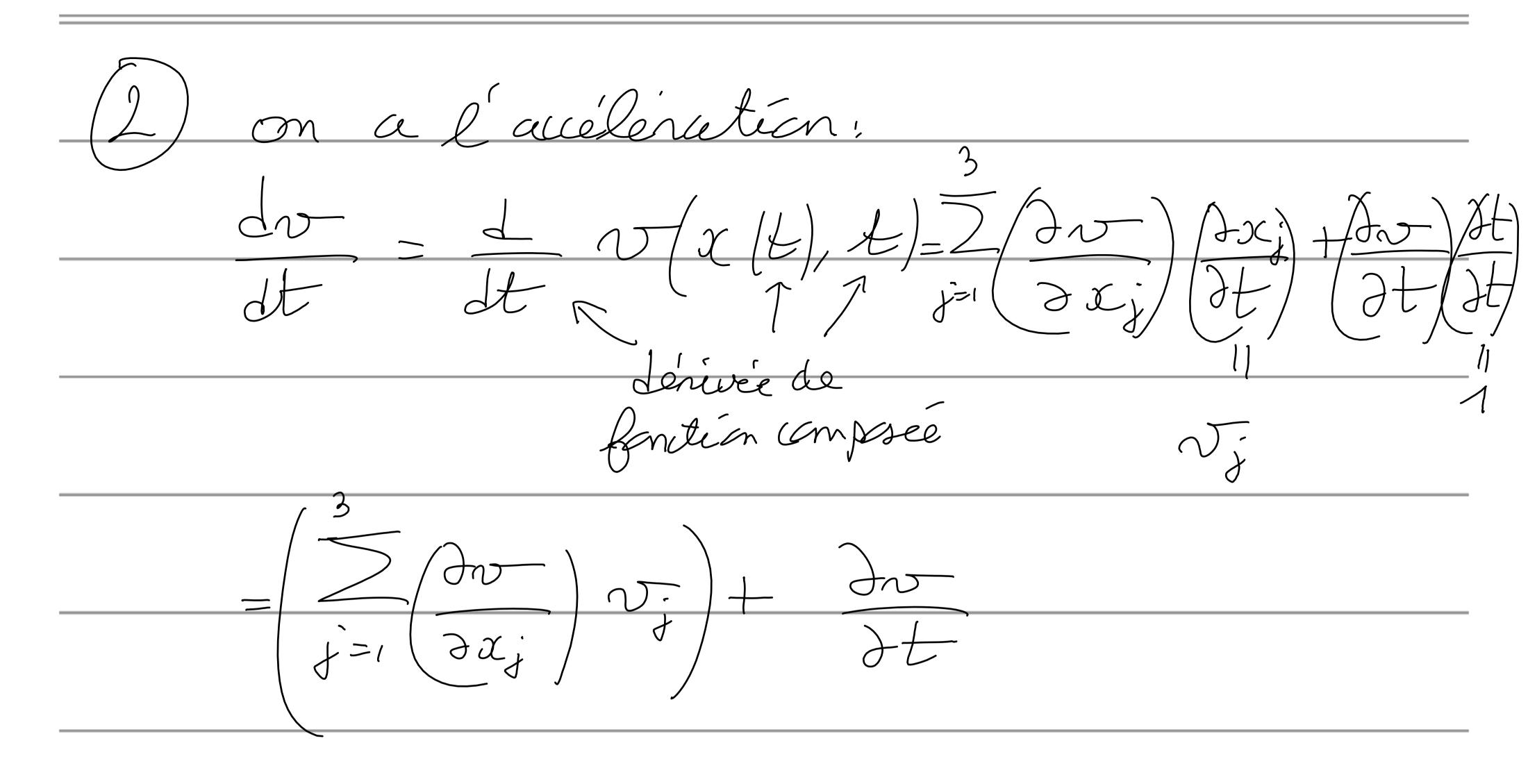


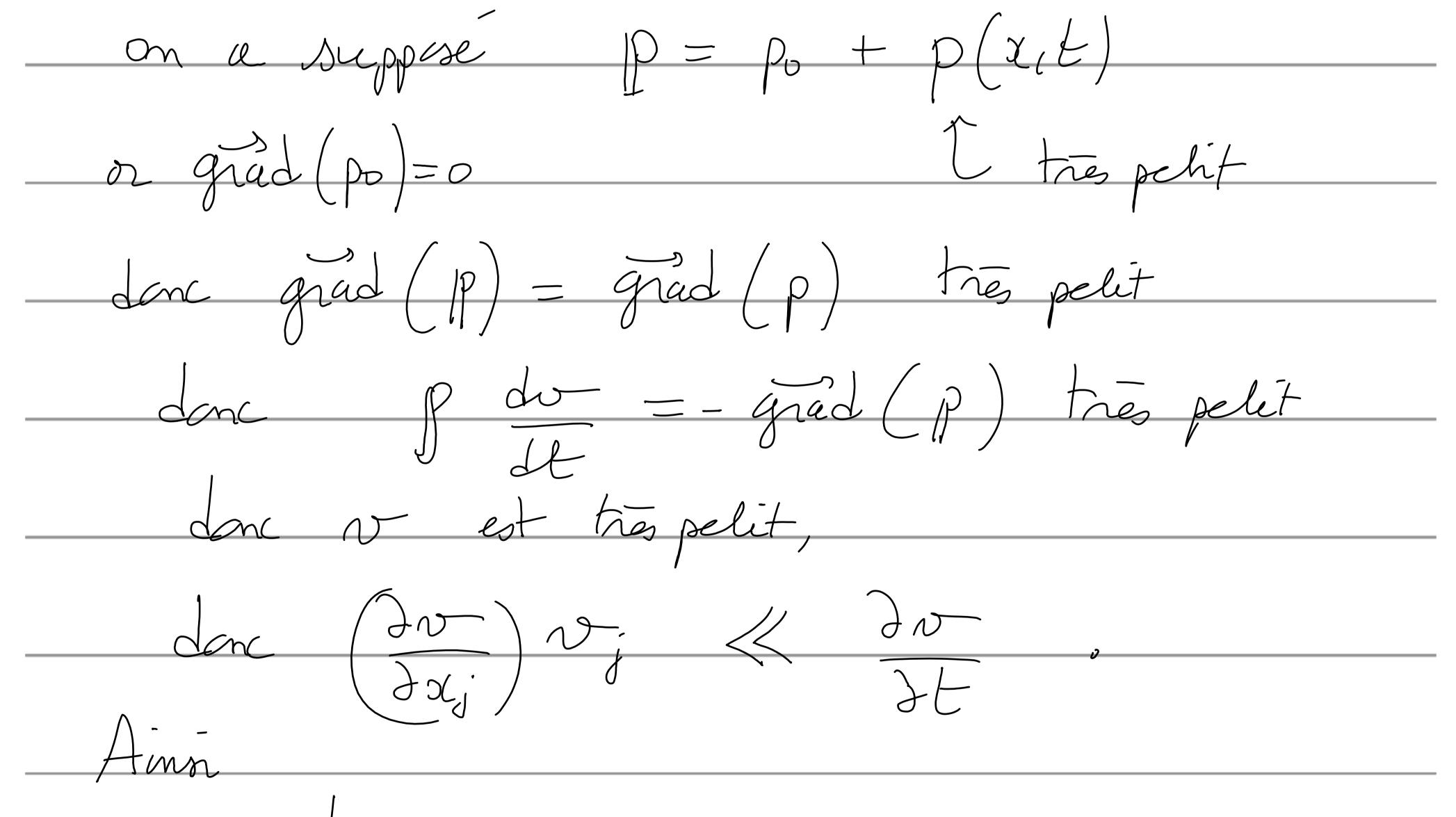
On admet que le movement est suffisement lent

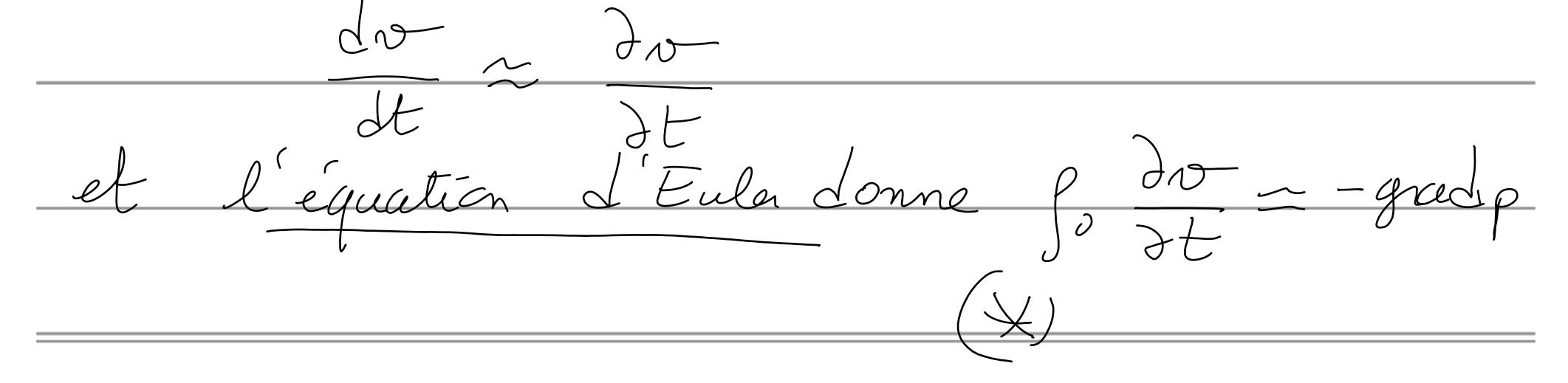


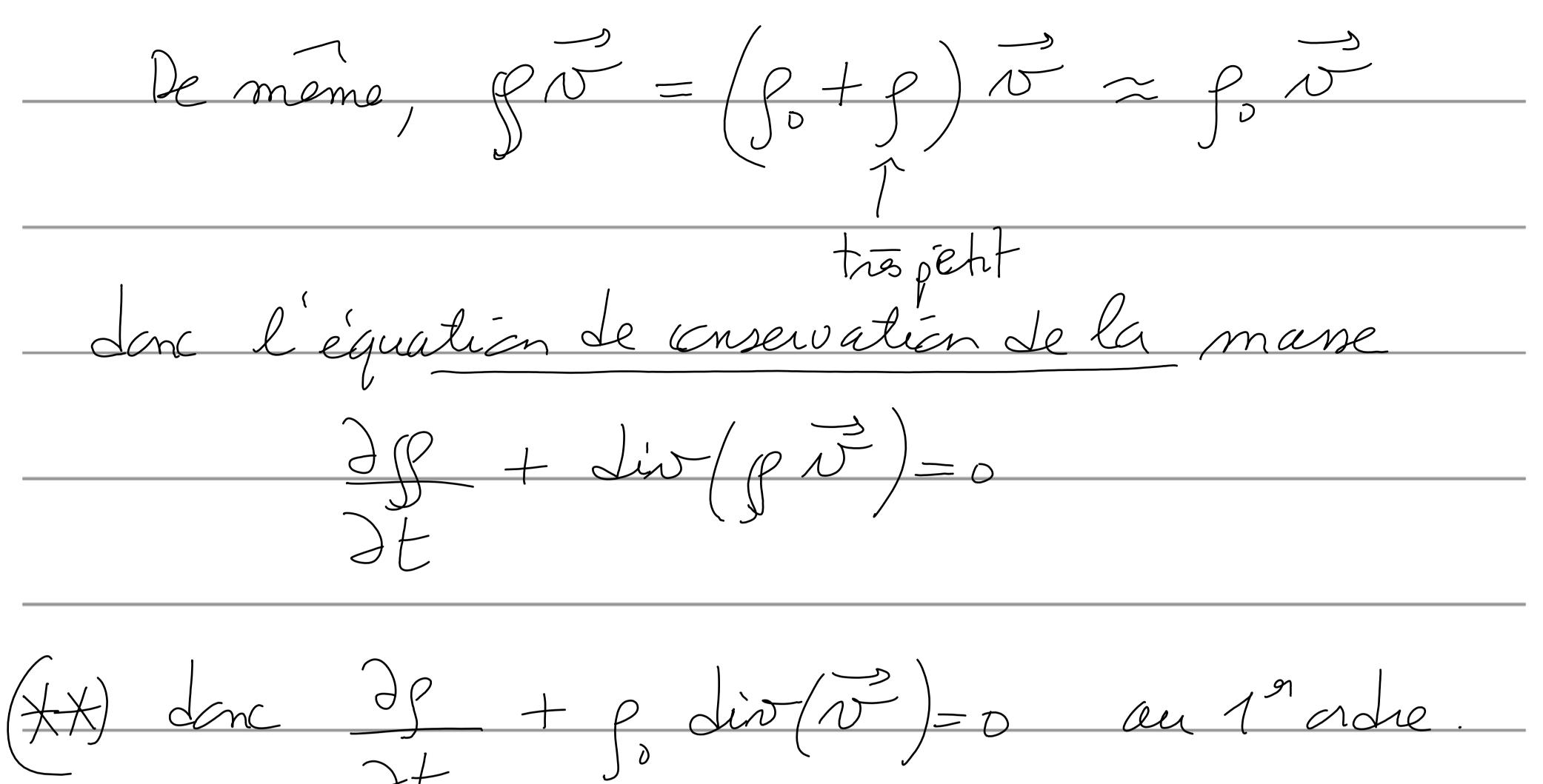


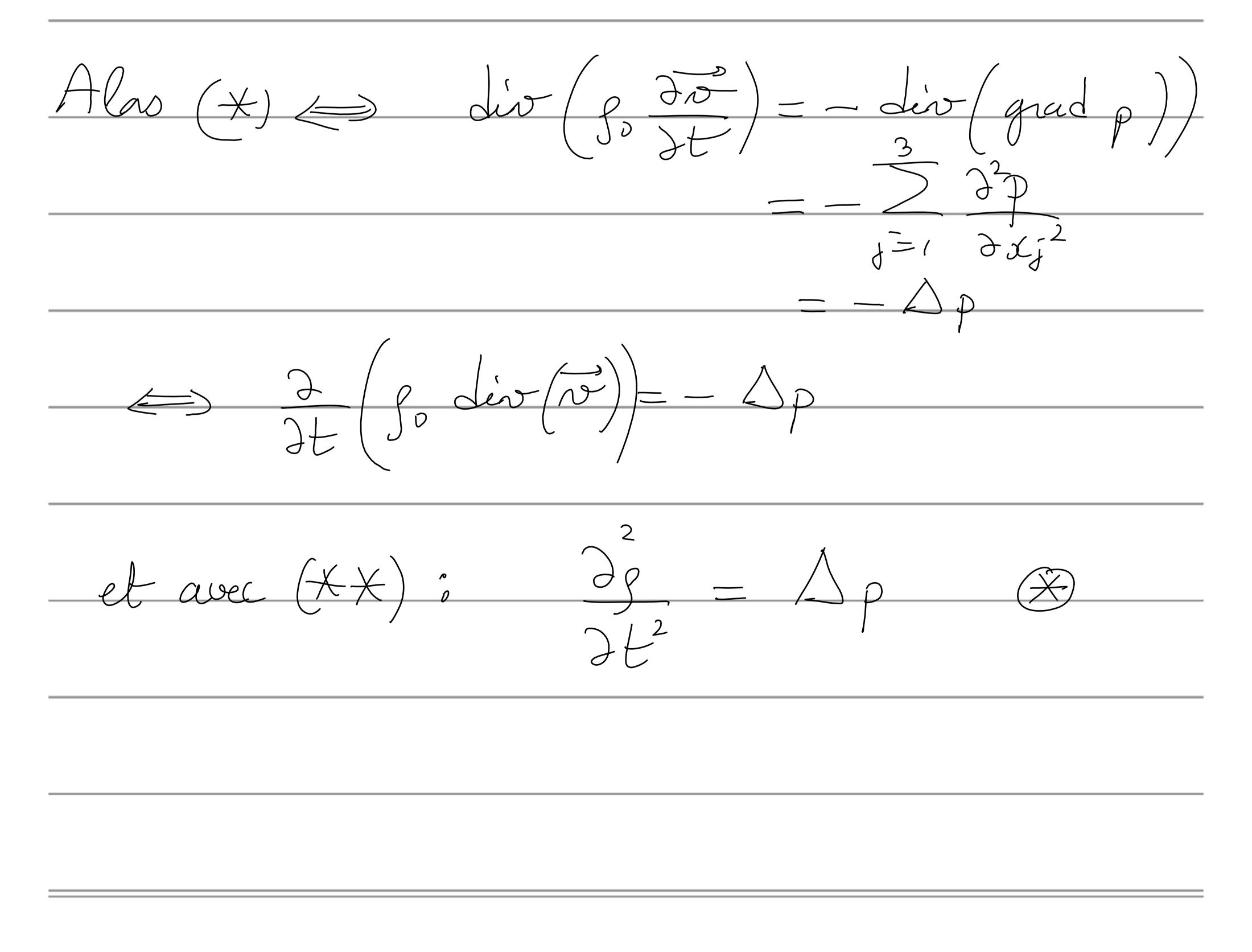
 $\stackrel{\frown}{=} \stackrel{\frown}{=} \stackrel{\rightarrow$: au 1ª none : relie les fluctuations Le densité aux fluct. Le promin $= \int_{Po}^{Po} P$

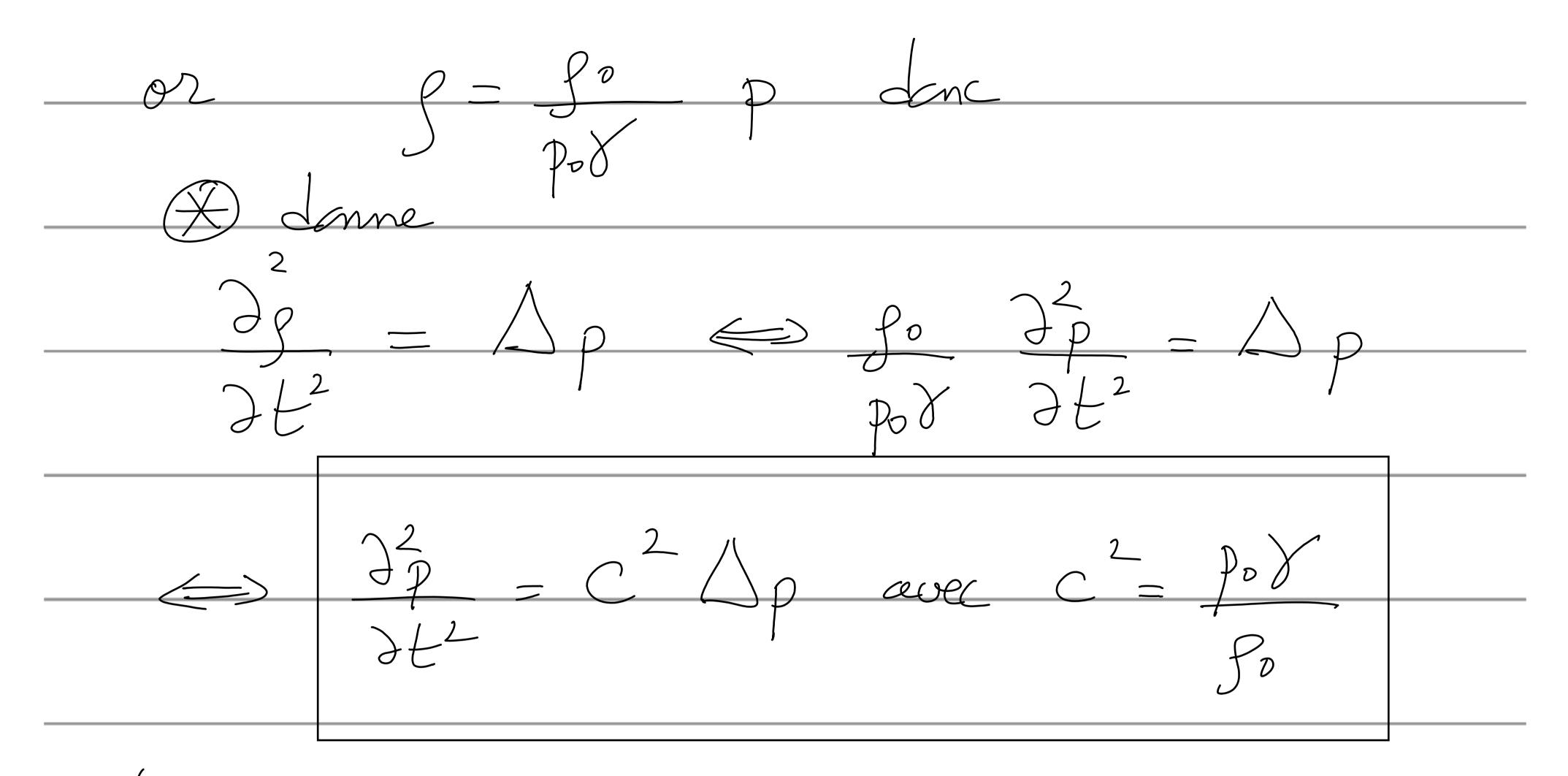




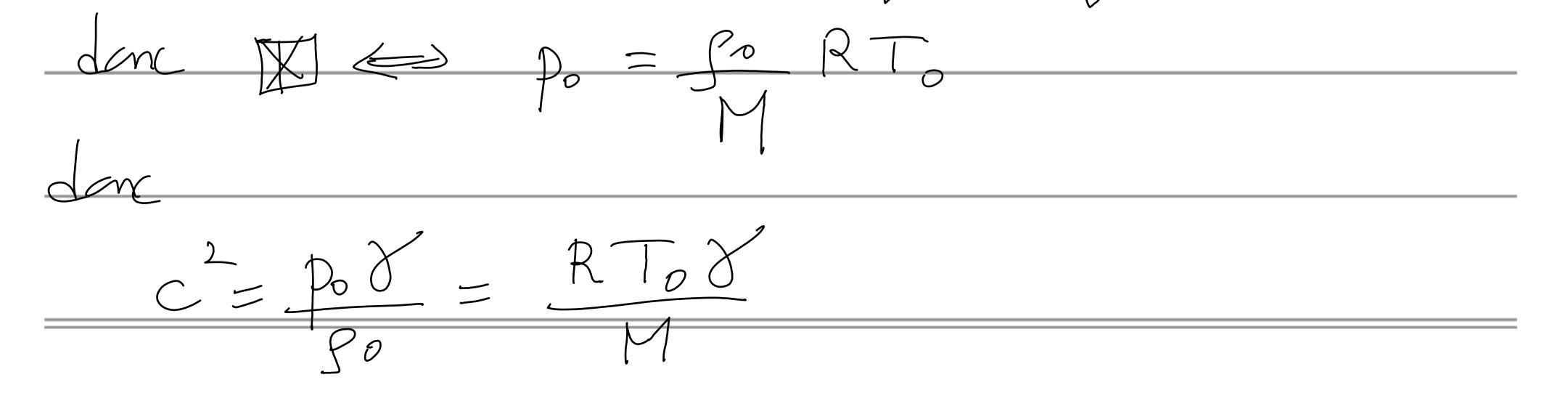




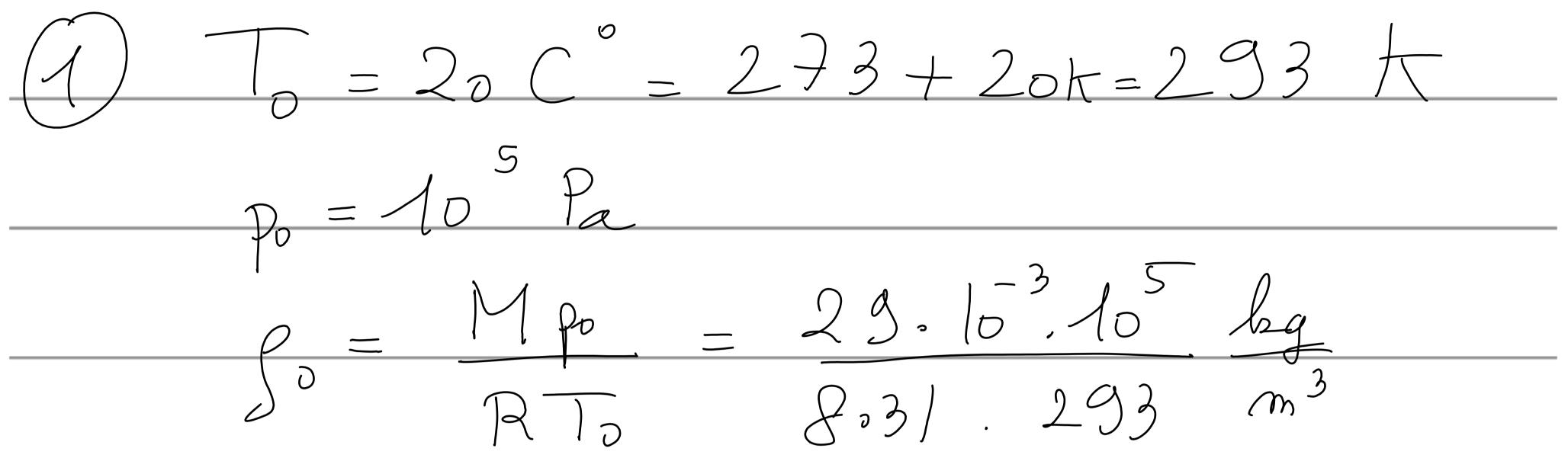




L'équation des gaz parfait est pV = n RT poV = n RT temperature mayenne remin nomme de moles dans le volceme V R = 8.31 J X pression R=8.31 J/K moyenne or læ mæne est m = M n T nomhe de moles Mane/mol Marse volumique moyenne $g = \frac{m}{V} = \frac{Mm}{V}$ $\bigotimes \frac{m}{1} = \int_{M}^{0}$



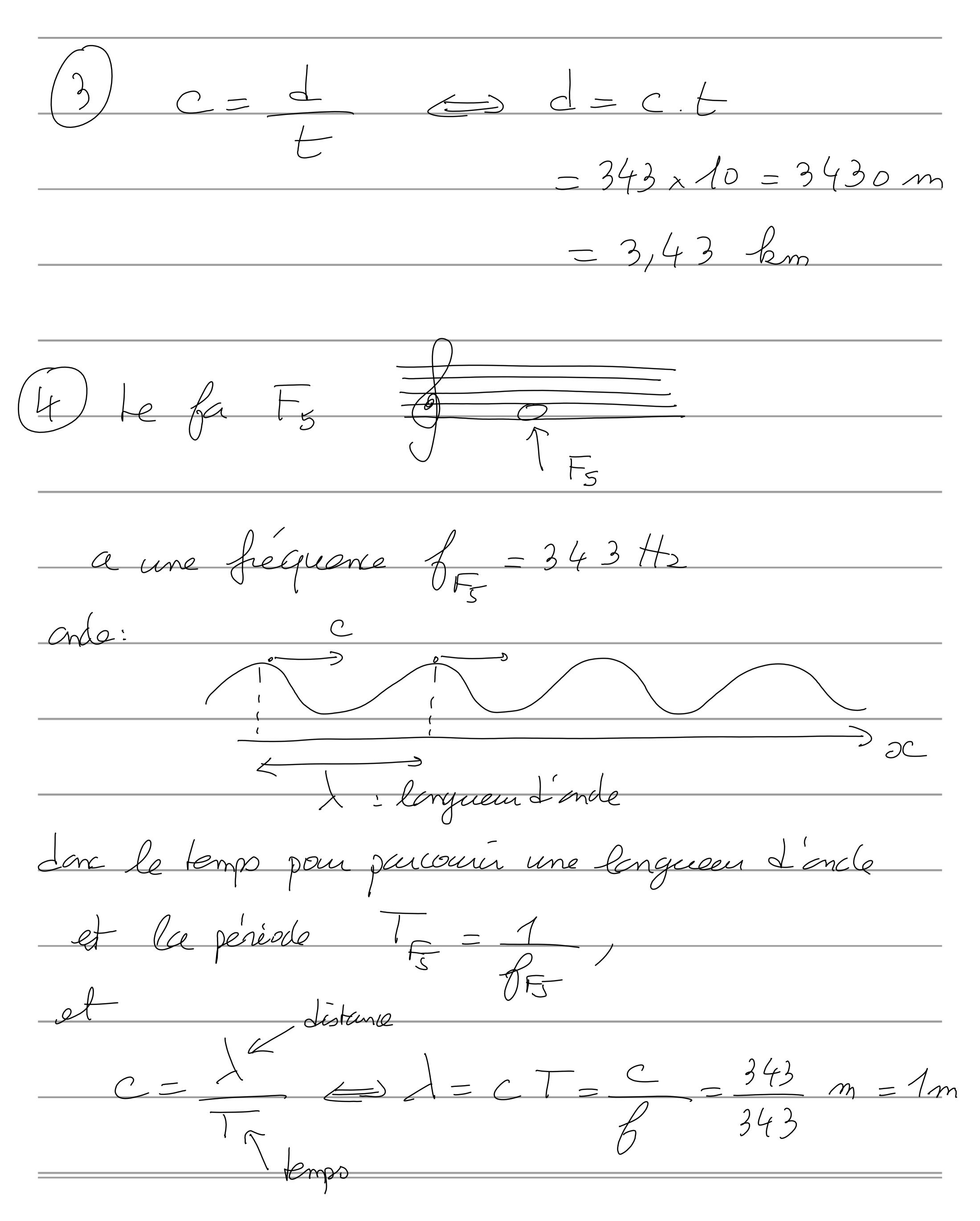
Valeurs numériques sur les ontes sonores

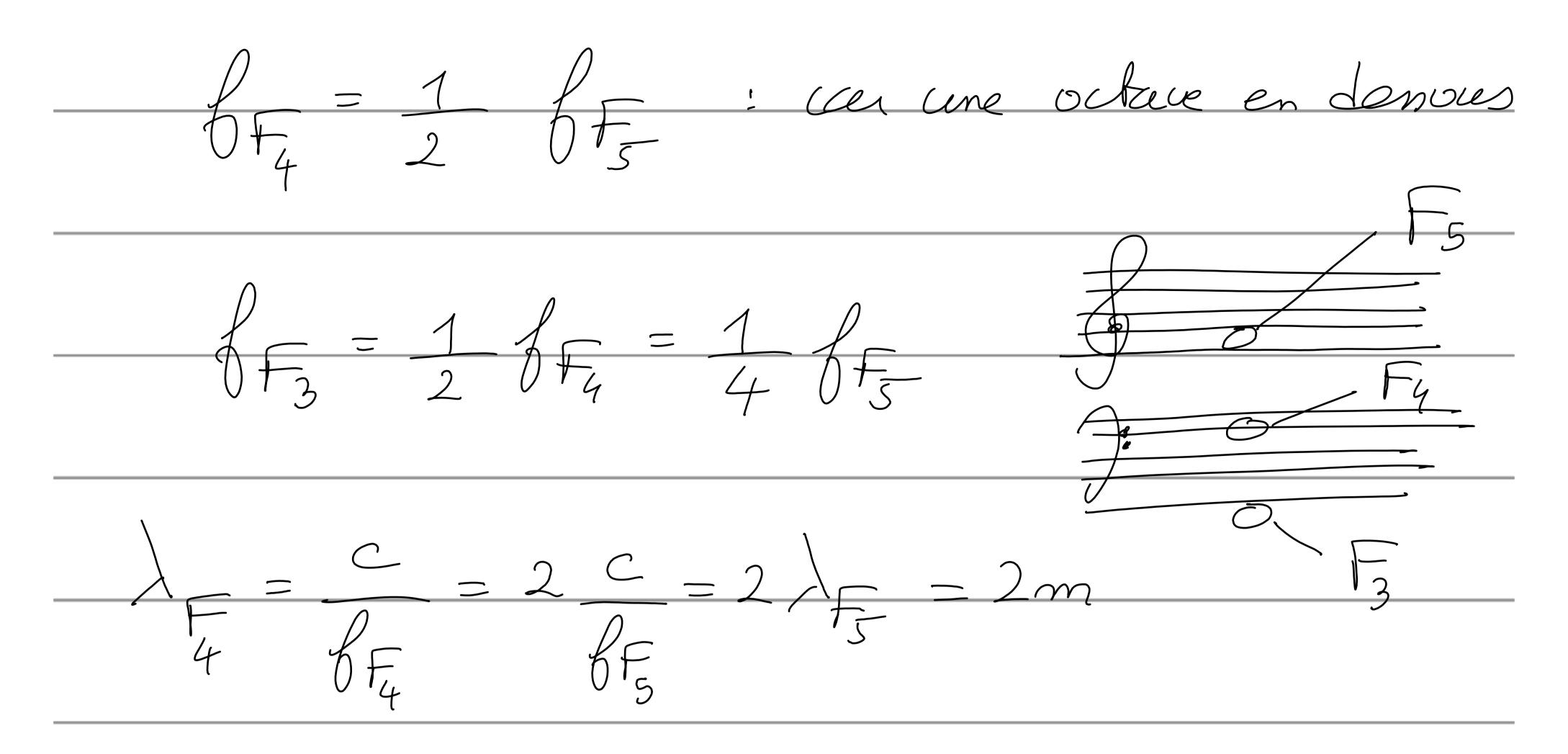


 $= 1019 \text{ kg/m}^3$ $C = \begin{pmatrix} \gamma p_0 \\ - \end{pmatrix} \begin{pmatrix} \gamma 2 \\ -$ = 343 m/s

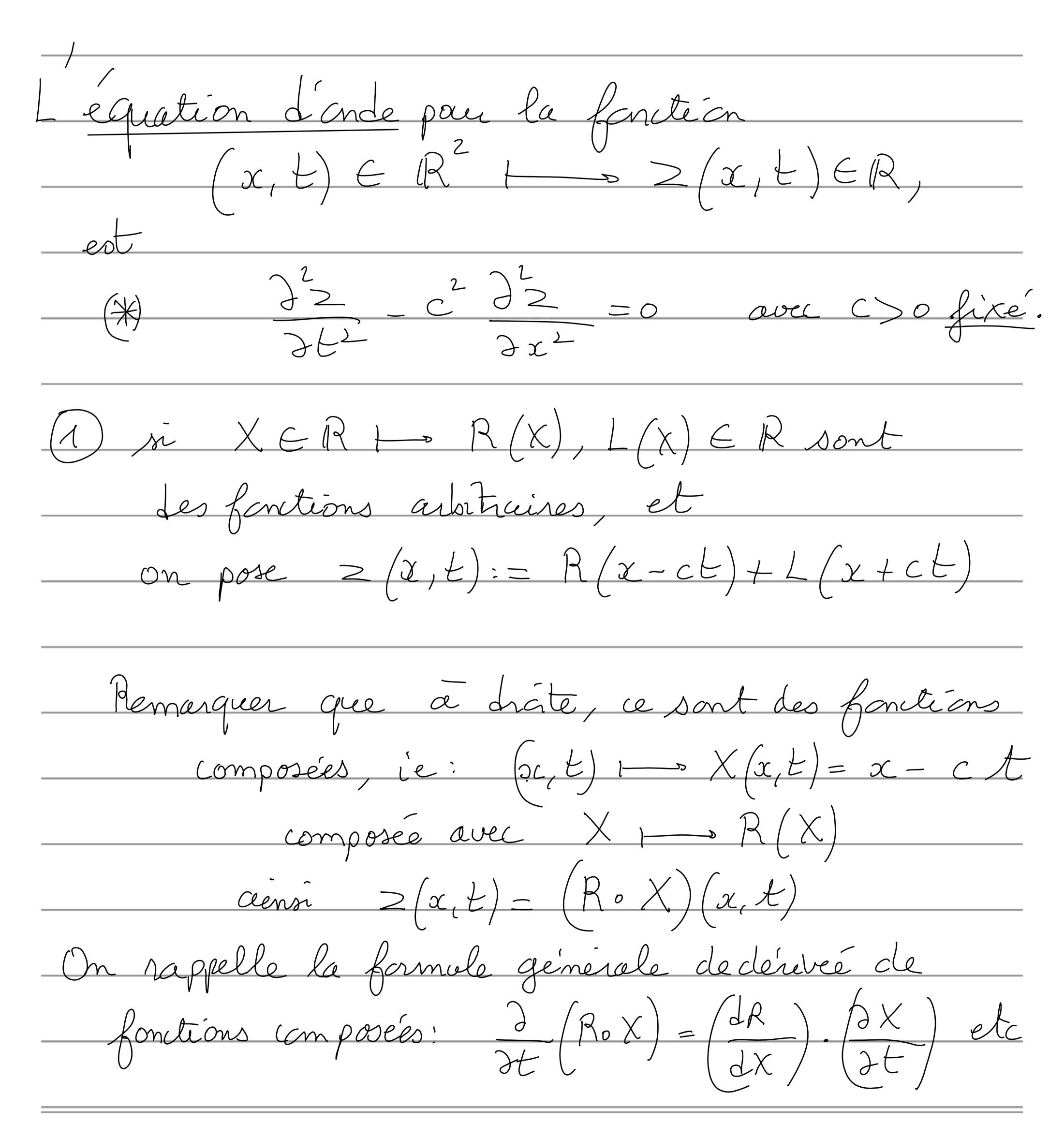
C=d < distance intere itere = 17 m.ce temp At = 50 ms et applé la "Latence maximale en musique.

Donc pour joues ensemble, des musiciens (orchetra) daient être déstants le mons de 17 m (à peu près)



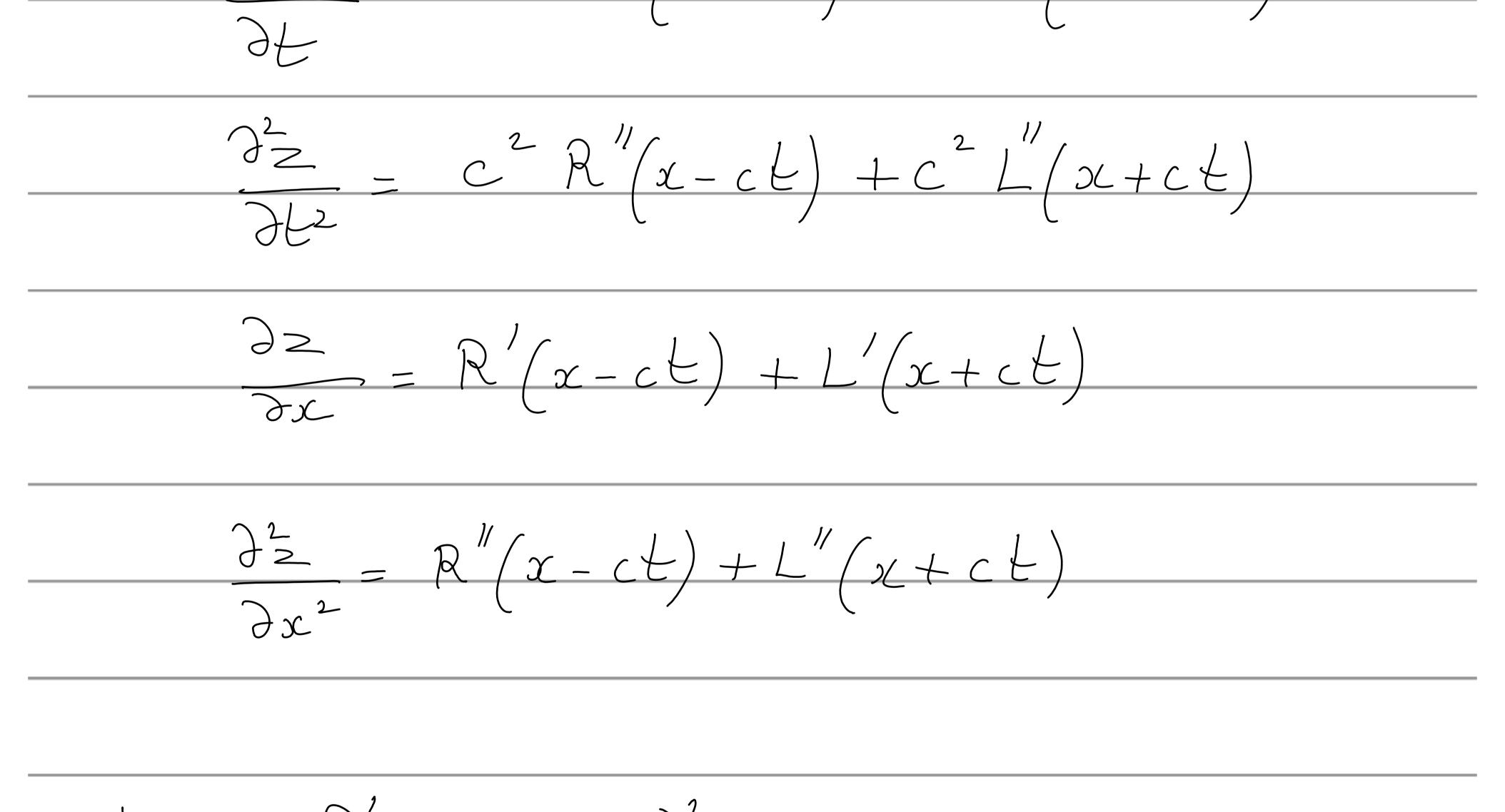


Solution d'Alambert de l'équation des ondes à 1D su IR

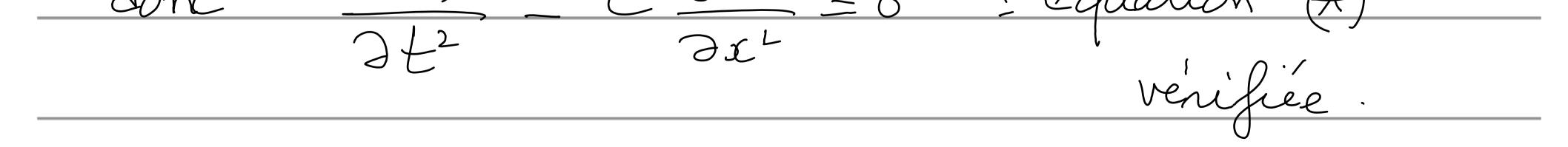


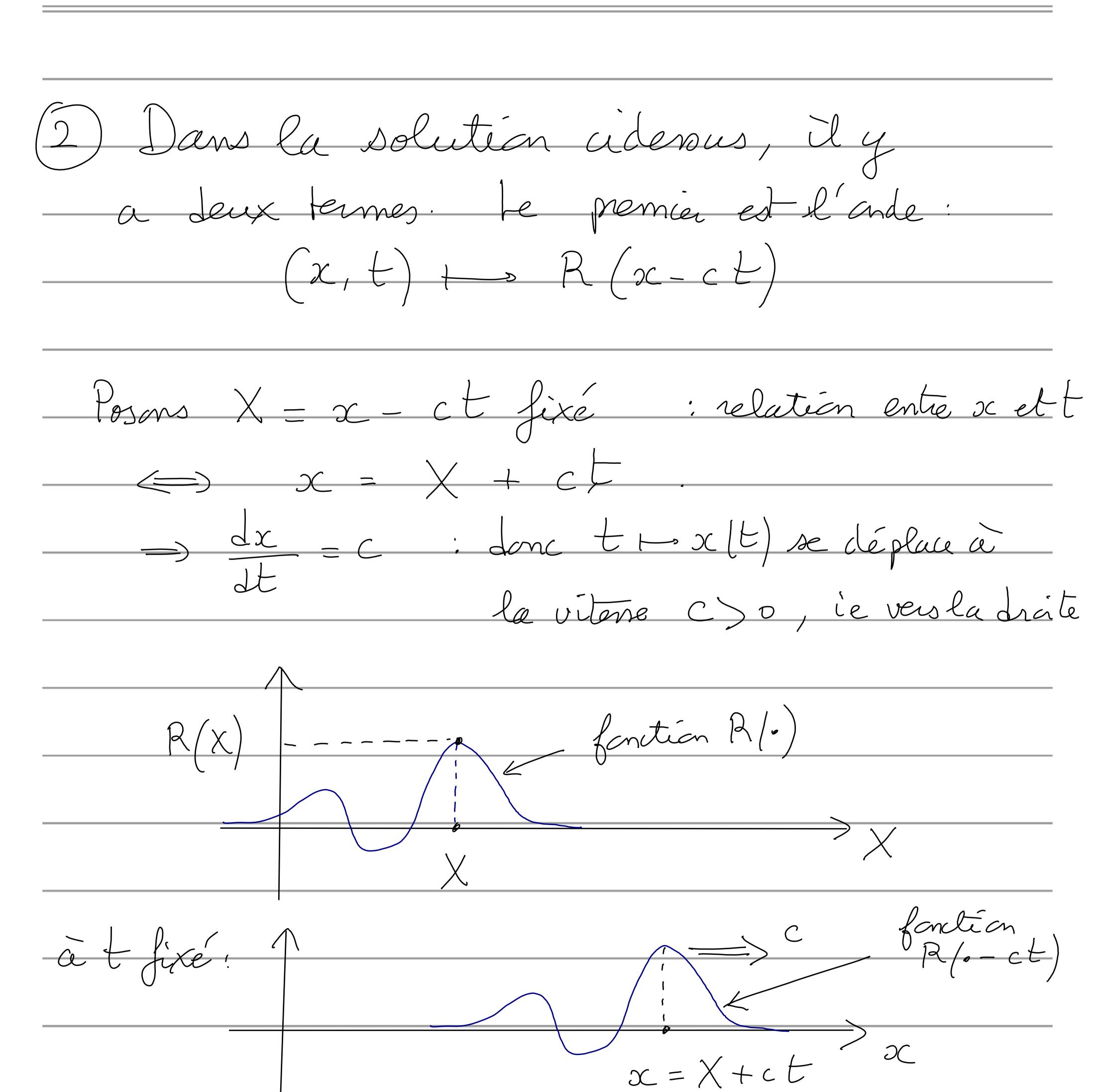
On motion
$$R'(X) = \frac{dR}{dX}$$
 (concentrate variable)
et si $X(x,t) = x - ct$,
on a $\frac{\partial X}{\partial t} = -c$
 $\frac{\partial t}{\partial t}$

alas R/x-ct) + c L/x+ct— — C

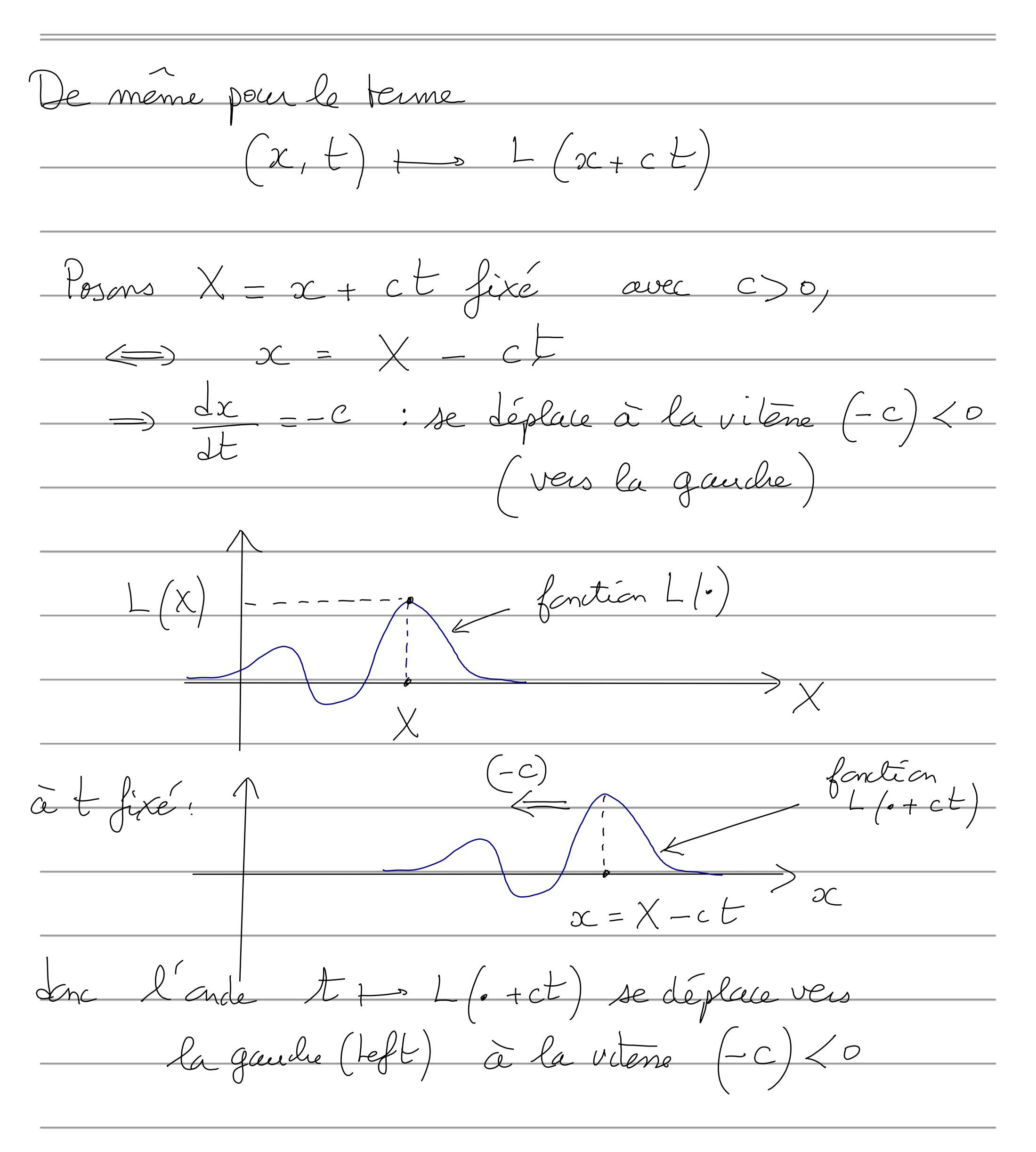


donc $\frac{\partial^2 Z}{\partial Z} = \frac{\partial^2 Z}{\partial Z} = 0$: Équation (X)



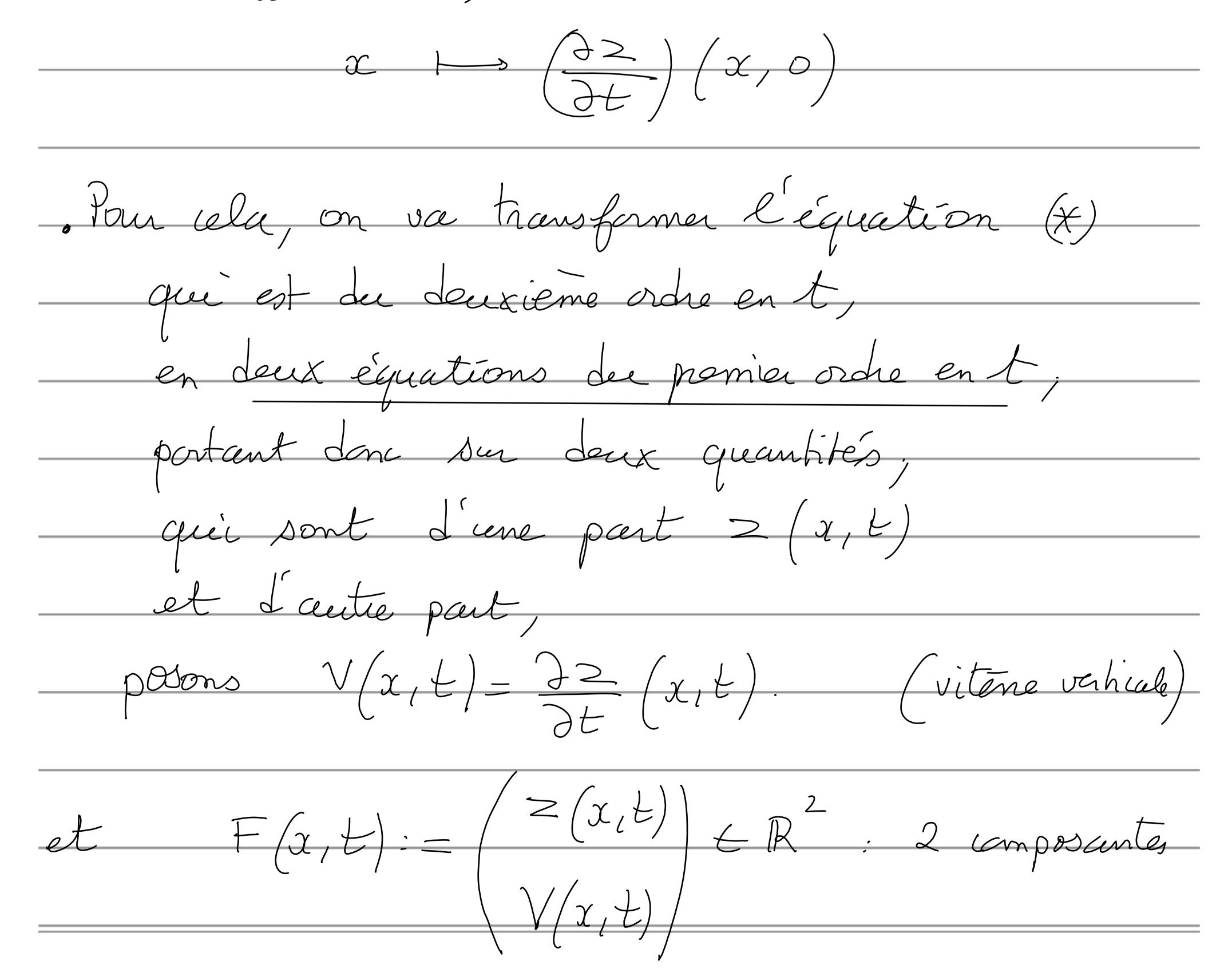


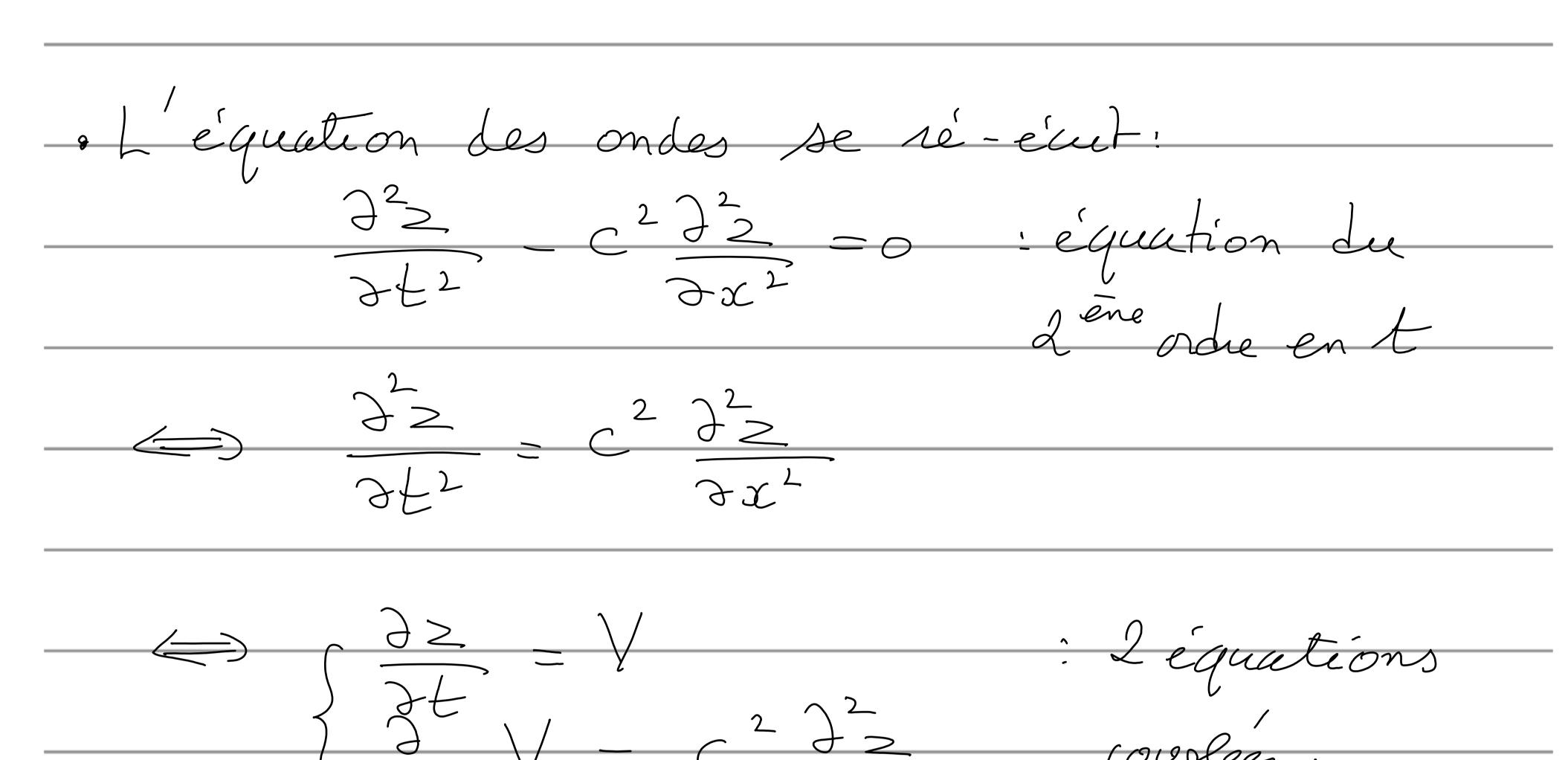
Anc l'ande tip R(-ct) se déplace vers la drate (Right) à la viterre C>0



On les appelle des ondes prograndre. La solution générale est superportion des ces deux ondes progressives.

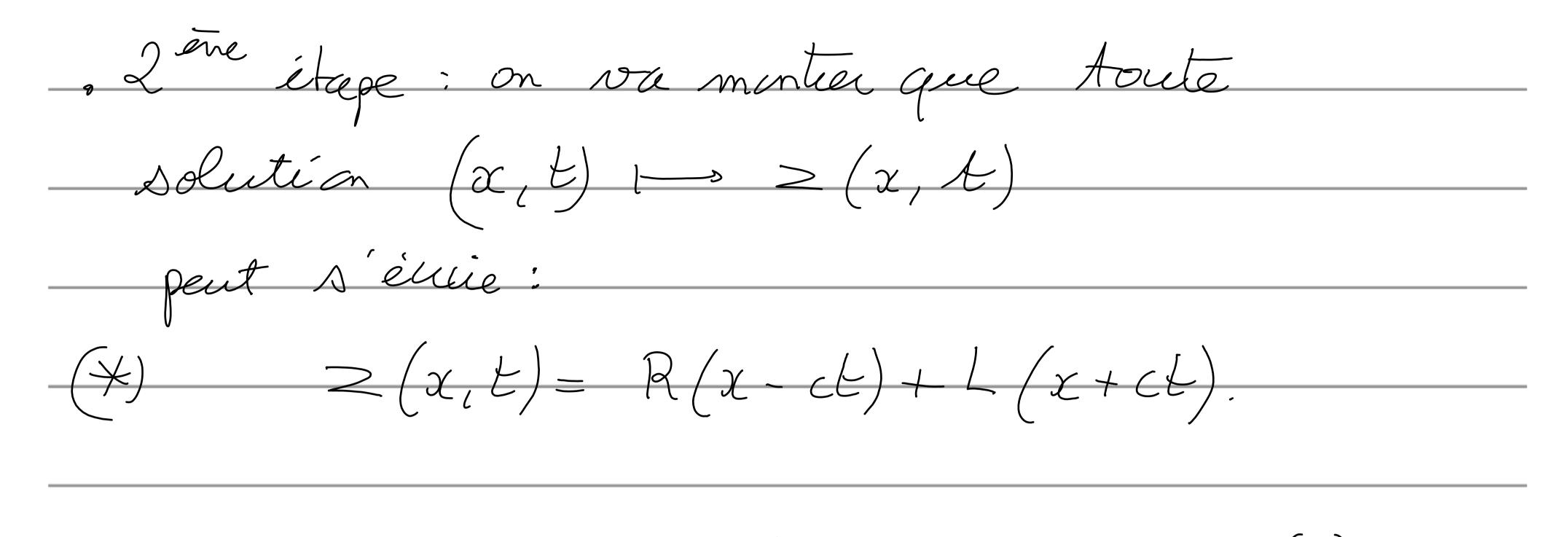
3) On va tout d'abord montrer que une onde $(x,t) \mapsto \geq (x,t)$ solution de l'équation $\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial z}{\partial x^2} = 0$ (X) est déterminée par les conditions initiales qui sont la forme à t=0: $\partial C \rightarrow > \geq (\beta C, 0)$ et la "itere initiale" à t=0:

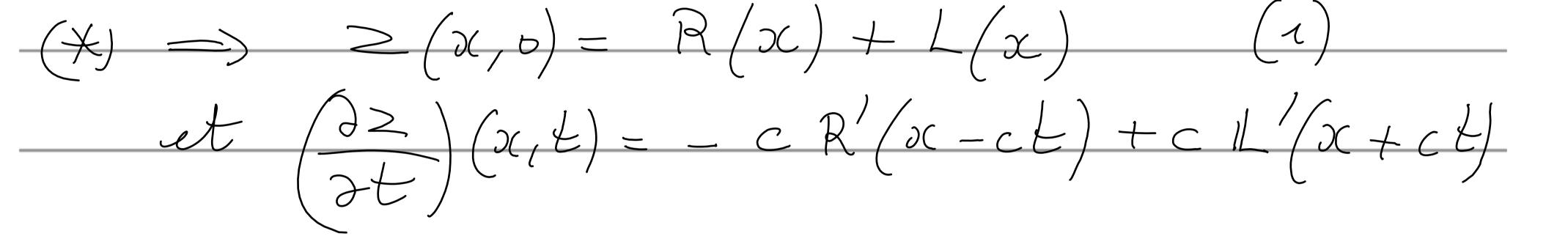


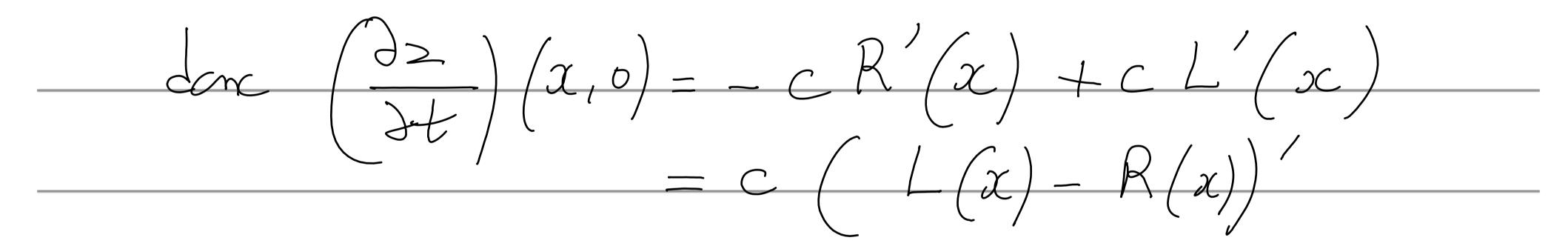


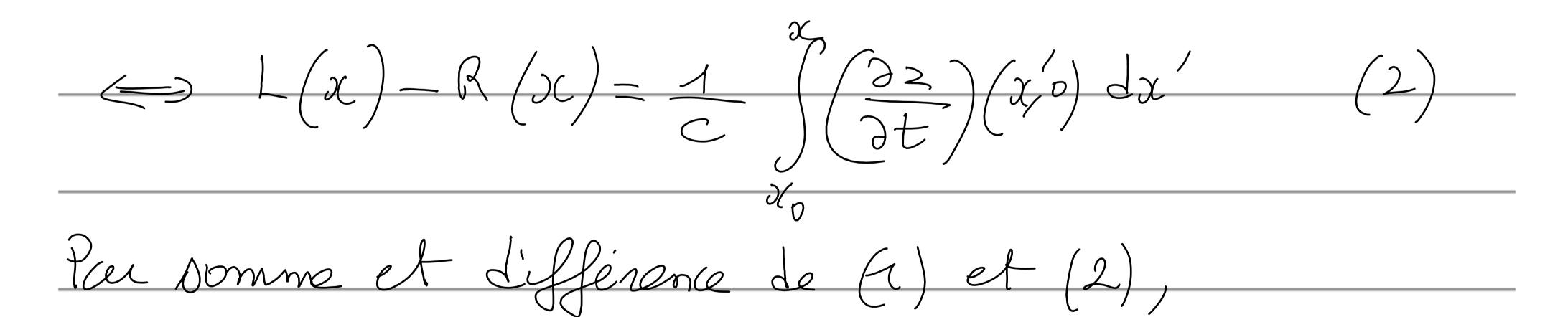
couples, $\frac{2}{2}$ $\frac{1}{2}x^{2}$ mais l'ardre en temps : équation $\frac{\partial t}{\partial t} = \begin{bmatrix} 2 & \frac{2^2}{2} & 0 \\ \frac{2^2}{2^2} & 0 \end{bmatrix}$ Efférentielle ordinacie vertaielle du l'andre l'intérêt de cette formulation et de déduire que l'état initial à t=o: $F(x, p) = \int_{-}^{-} 2(x, p) f(x, p) = \int_{-}^{-} 2(x, p) f(x, p) f(x, p) = \int_{-}^{-} 2(x, p) f(x, p) f(x, p) f(x, p) = \int_{-}^{-} 2(x, p) f(x, p) f(x, p) f(x, p) = \int_{-}^{-} 2(x, p) f(x, p) f(x, p) f(x, p) f(x, p) = \int_{-}^{-} 2(x, p) f(x, p) f(x, p) f(x, p) f(x, p) f(x, p) f(x, p) = \int_{-}^{-} 2(x, p) f(x, p) f(x, p) f(x, p) f(x, p) f(x, p) f(x, p) = \int_{-}^{-} 2(x, p) f(x, p) f(x,$ détermène $\frac{\partial 2}{\partial t} \left(J(p) \right)$ la solution car si F(x,o) = o, $\forall x$ clas F(x,t) = 0, tx, tt.

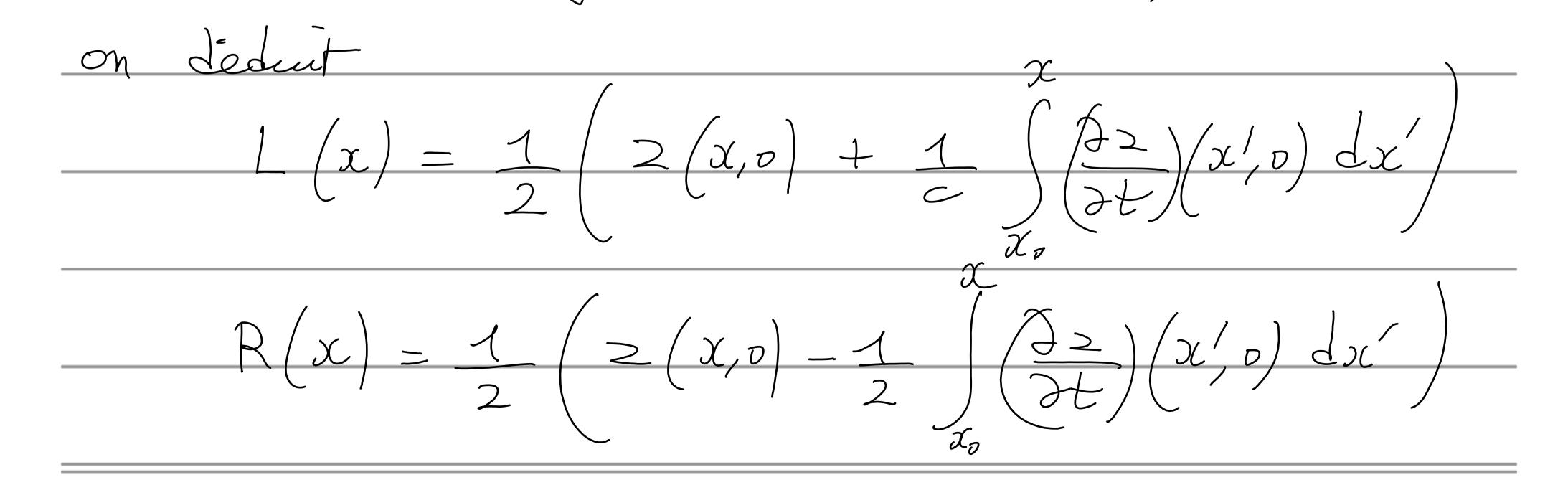
et inversement Aut Etat miticel a une



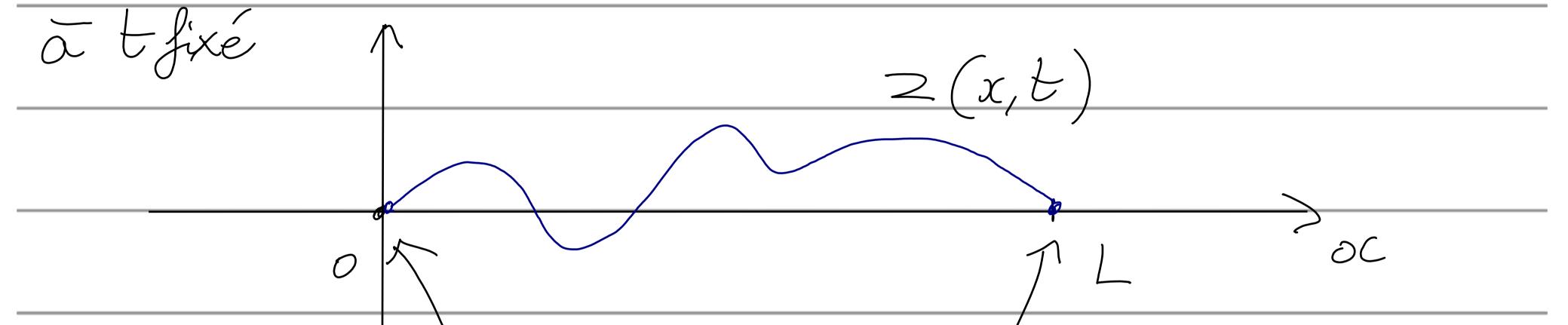






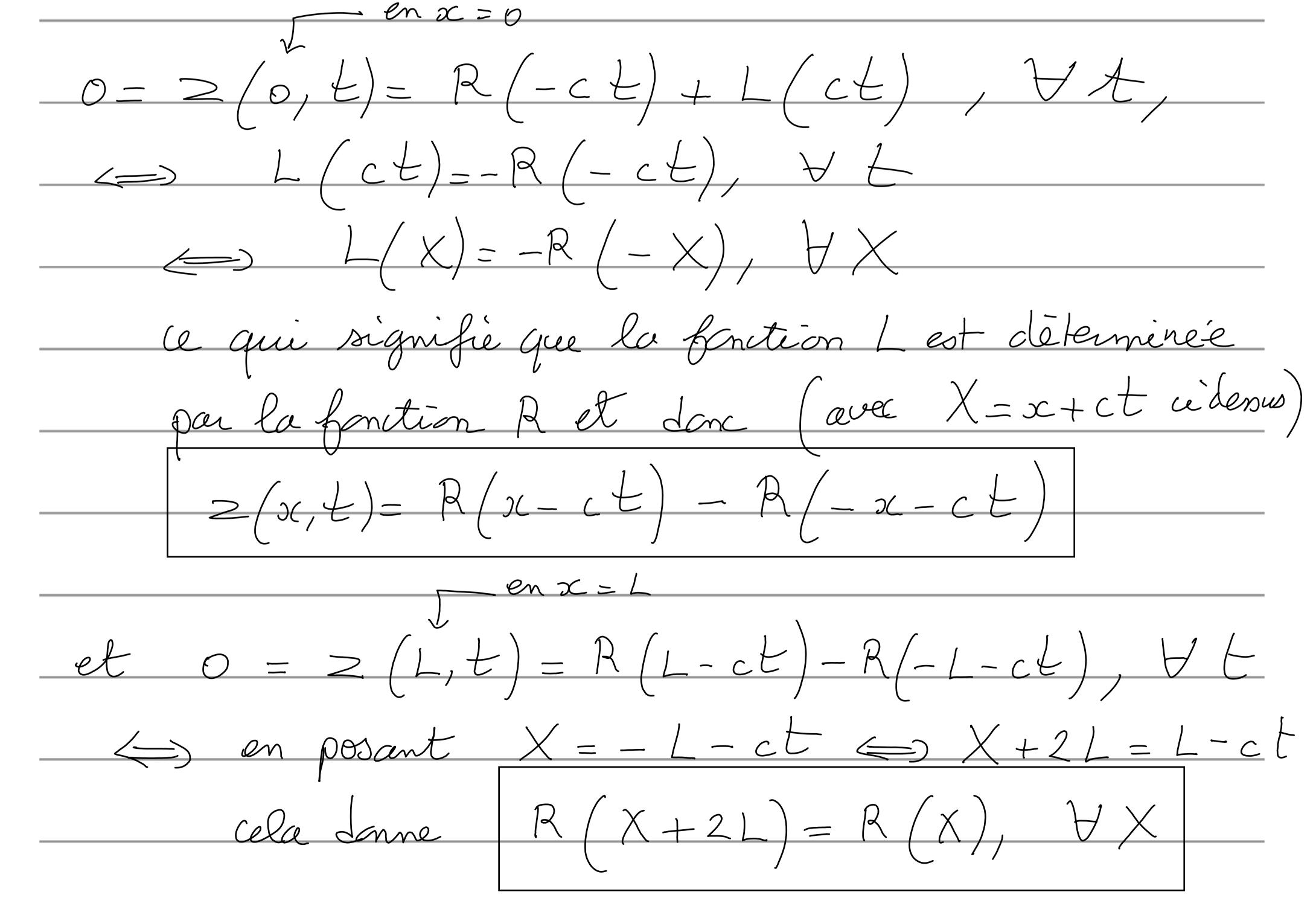


Solution L'Alembert de l'équation des ondes 1D sur un segment [0, L]



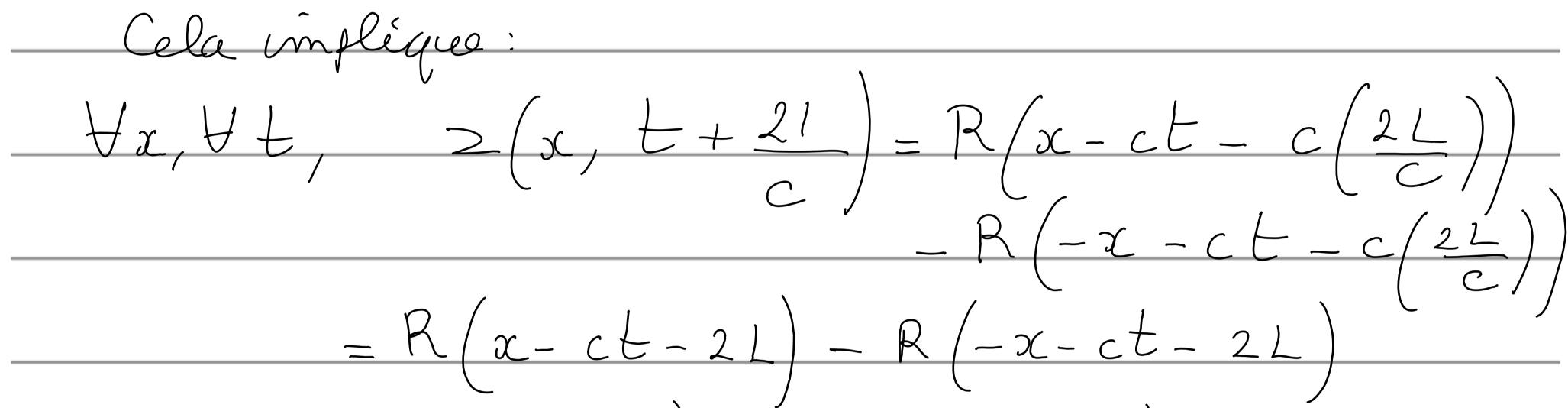
samule aux bads x=2 et x=L

(1) Toute solution de l'équation d'ande est de la fame suivante (d'après un exercice précédent sur R) Z(x,t) = R(x - ct) + L(x + ct)et les conditions au bad x=0 et x= L'imposent:



2) on a montié que

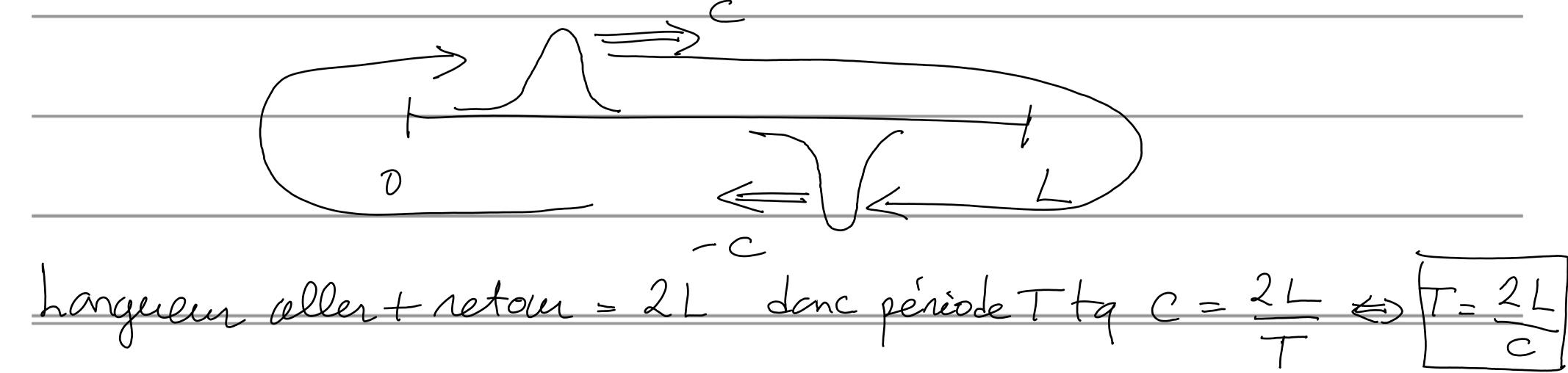
$$= (x,t) = R(x-ct) - R(-x-ct),$$
avec une fonction $X \mapsto R(X)$ vérifiant
$$R(X+2L) = R(X), \forall X : 2L périod.'$$



= R(x - ct) - R(-x - ct) - con Rest= 2(x, t) 21 périodique le qui signifie que le signal t to 2(x, t) est périodèque de période $T = \frac{2L}{C}$ en tout point x.

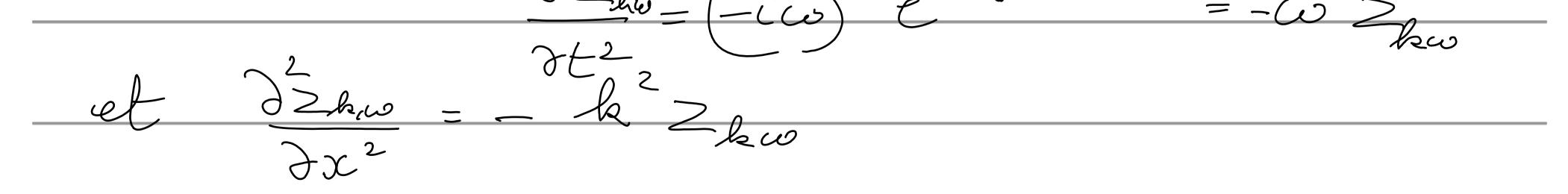
interpetation: a t fixé: vaie un schema des fantions $x \mapsto R(x-ct)$ et $x \mapsto -R(-x-ct)$ R(x-ct)

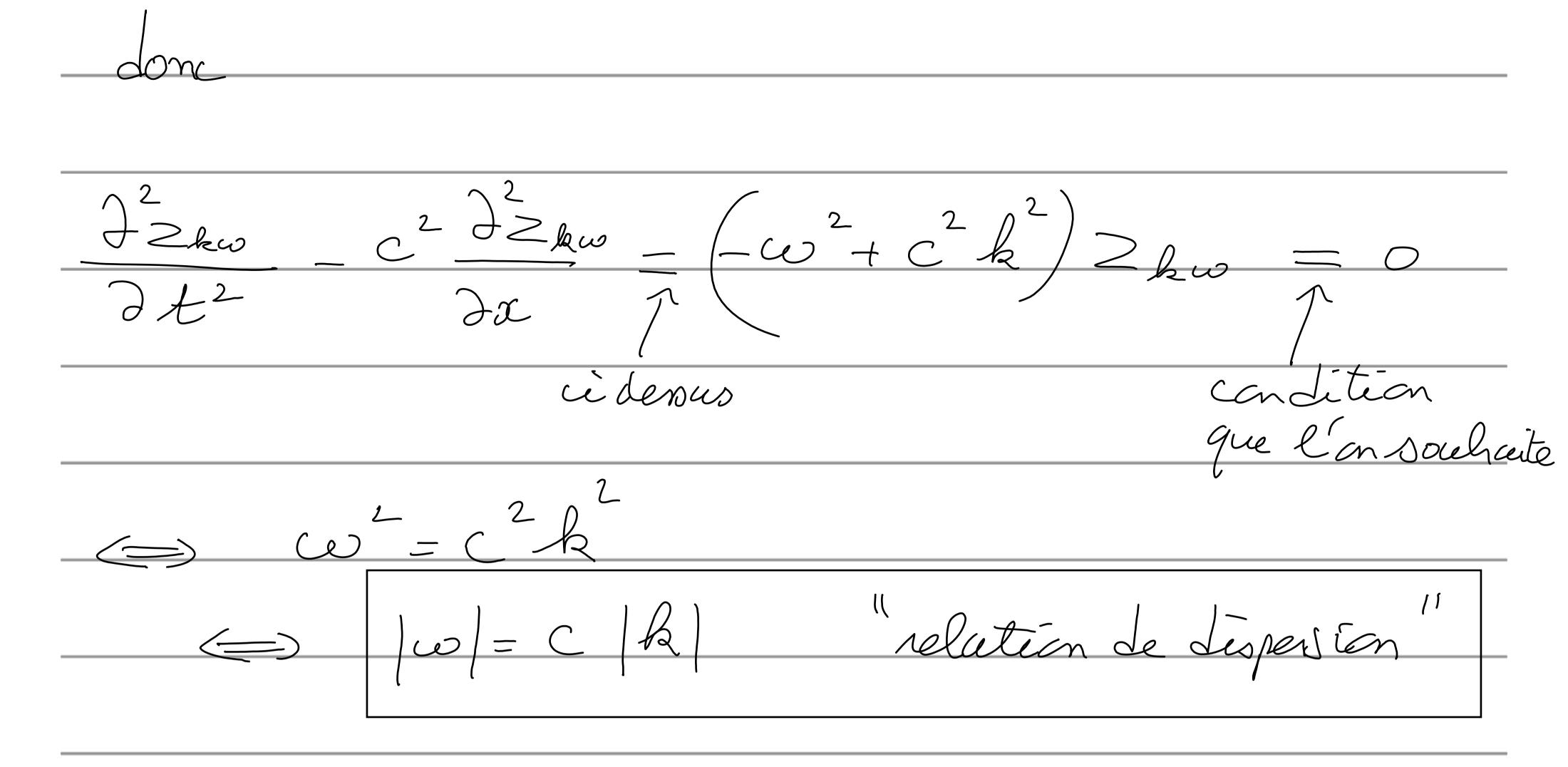
2L (-c) \mathcal{T} on observe que la superportion de ces deux fonctions dance une fonction 2 (2, t) qui s'annulle en z=o et z=L pour tout temps t. De ples dans le segment 20 E [0, L], l'onde 2 (x, t) semble rebondir sur les bords:

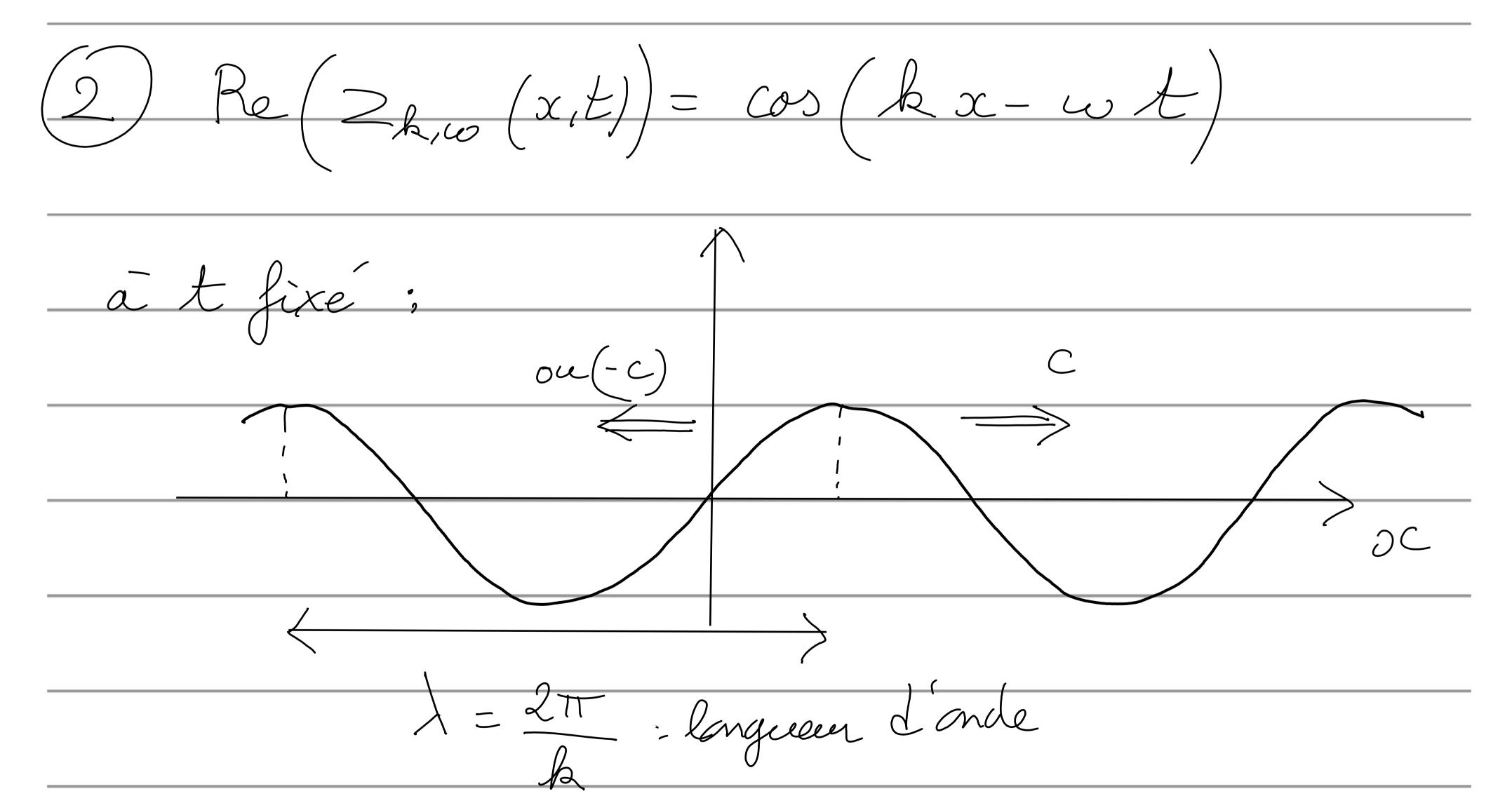


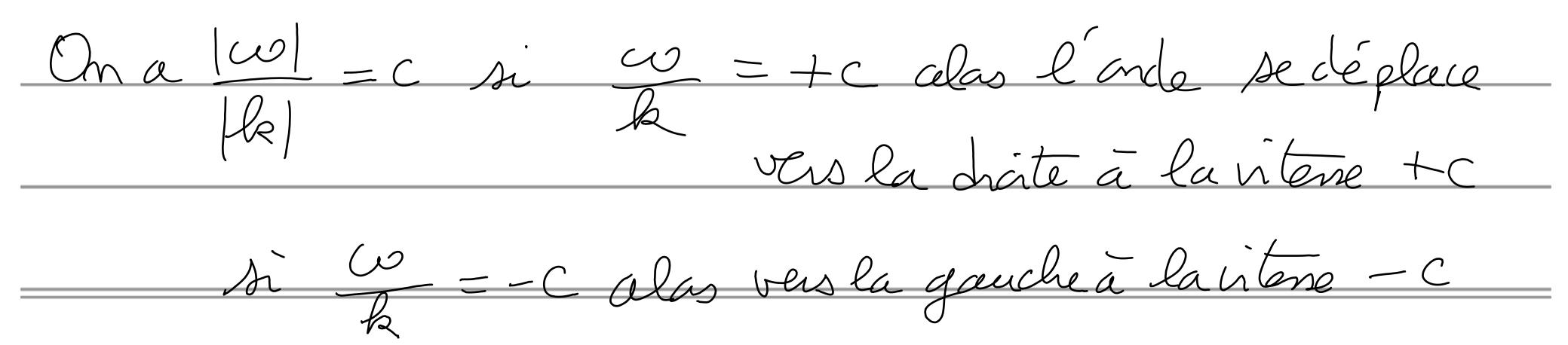
Solution de Fourier de l'équation des ondes à 1D. sur R

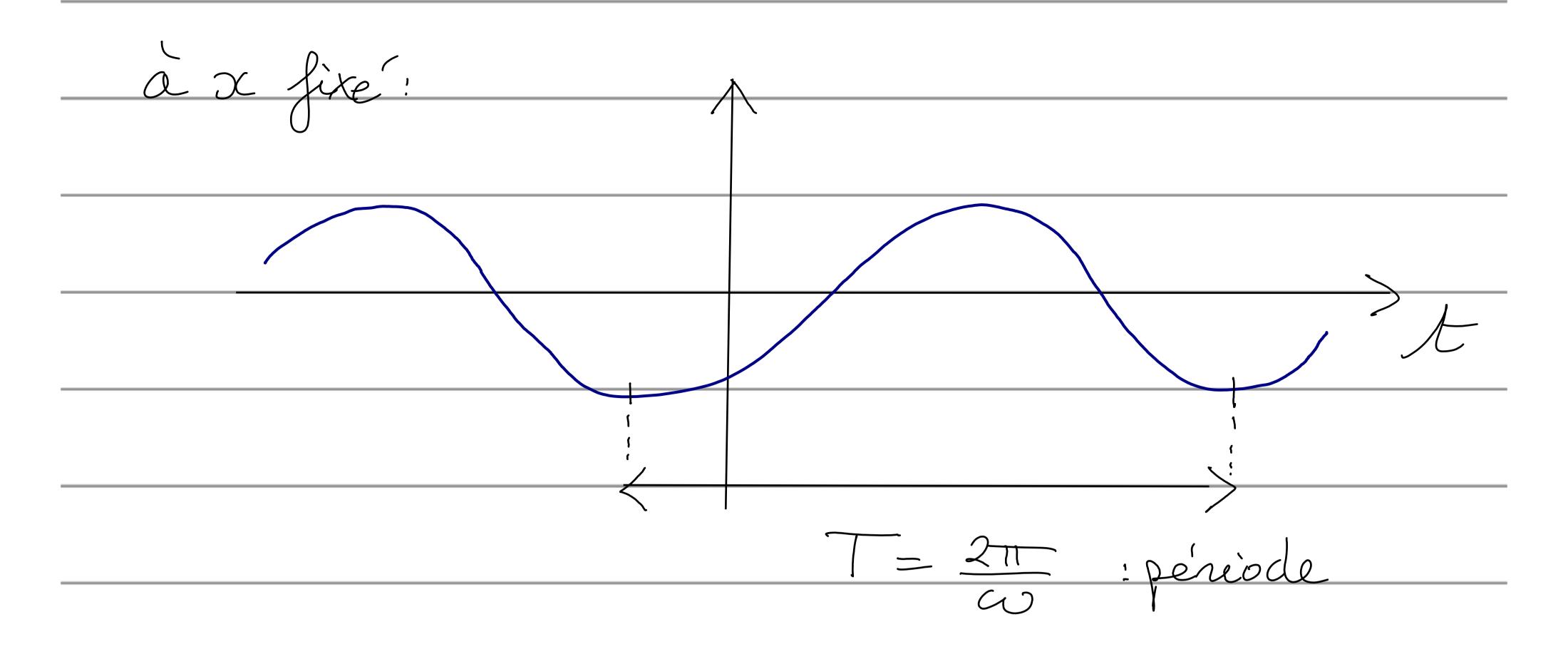
On considére une fonction $x \in \mathbb{R}, t \in \mathbb{R} \longrightarrow z(x, t) \in \mathbb{R}$ solution de l'équation des ondes $\frac{J^2}{J^2} - c^2 \frac{J^2}{J^2} = 0$ $\frac{J^2}{J^2} - c^2 \frac{J^2}{J^2} = 0$ (1) Soit RER (verteur L'ande) ce ER (fréquence) $\sum_{k,\omega} (x,t) := e^{i(kx-\omega t)}$ et Il II Il II Il II ou l'Mode Le Fourier " On calcule $\frac{\partial z_{hw}}{\partial t} = -i\omega e^{i(kx-\omega t)}$ $\frac{\partial t}{\partial z_{hw}} = (-i\omega)^2 e^{i(kx-\omega t)} = -\omega \frac{z_{hw}}{hw}$









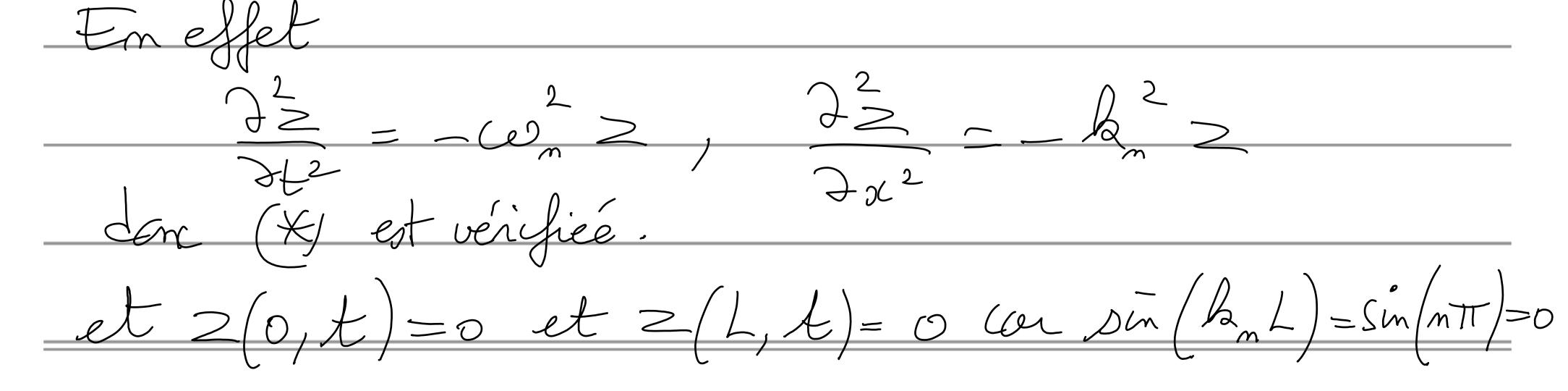


Solution de Fourier de l'équation des ondes 1D sur un segment 2C E [0, L]

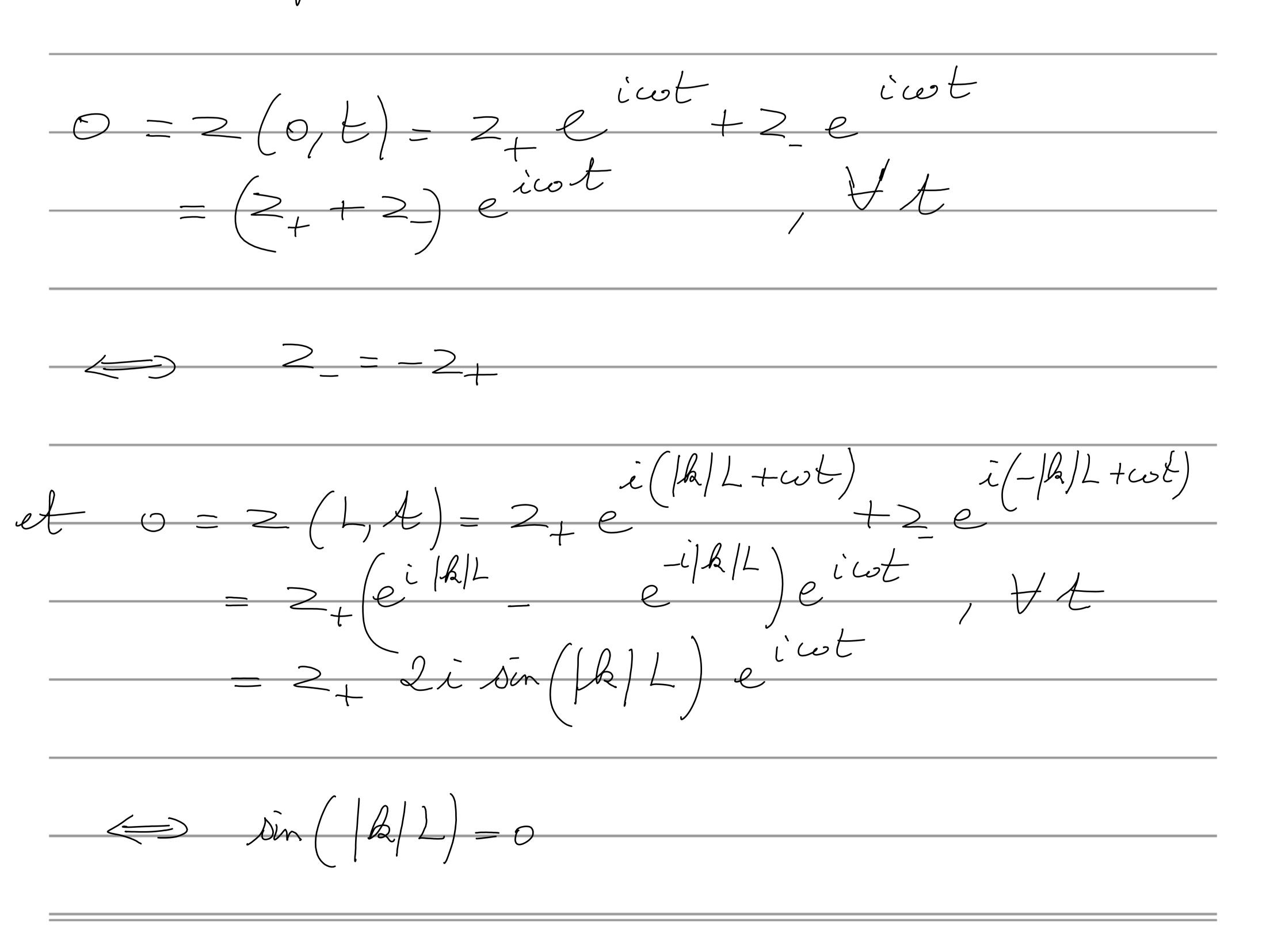
On suppose que la fonction $x \in \mathbb{R}, t \in \mathbb{R} \longrightarrow Z(x, t) \in \mathbb{R}$ et solution de l'équation des ondes $\begin{array}{cccc} (\chi) & \frac{\partial^2 z}{\partial z} & \frac{b}{\partial z^2} & \frac{\partial^2 z}{\partial z} & = 0 \\ & \frac{\partial^2 z}{\partial z^2} & \frac{\partial^2 z}{\partial x^2} & = 0 \end{array}$

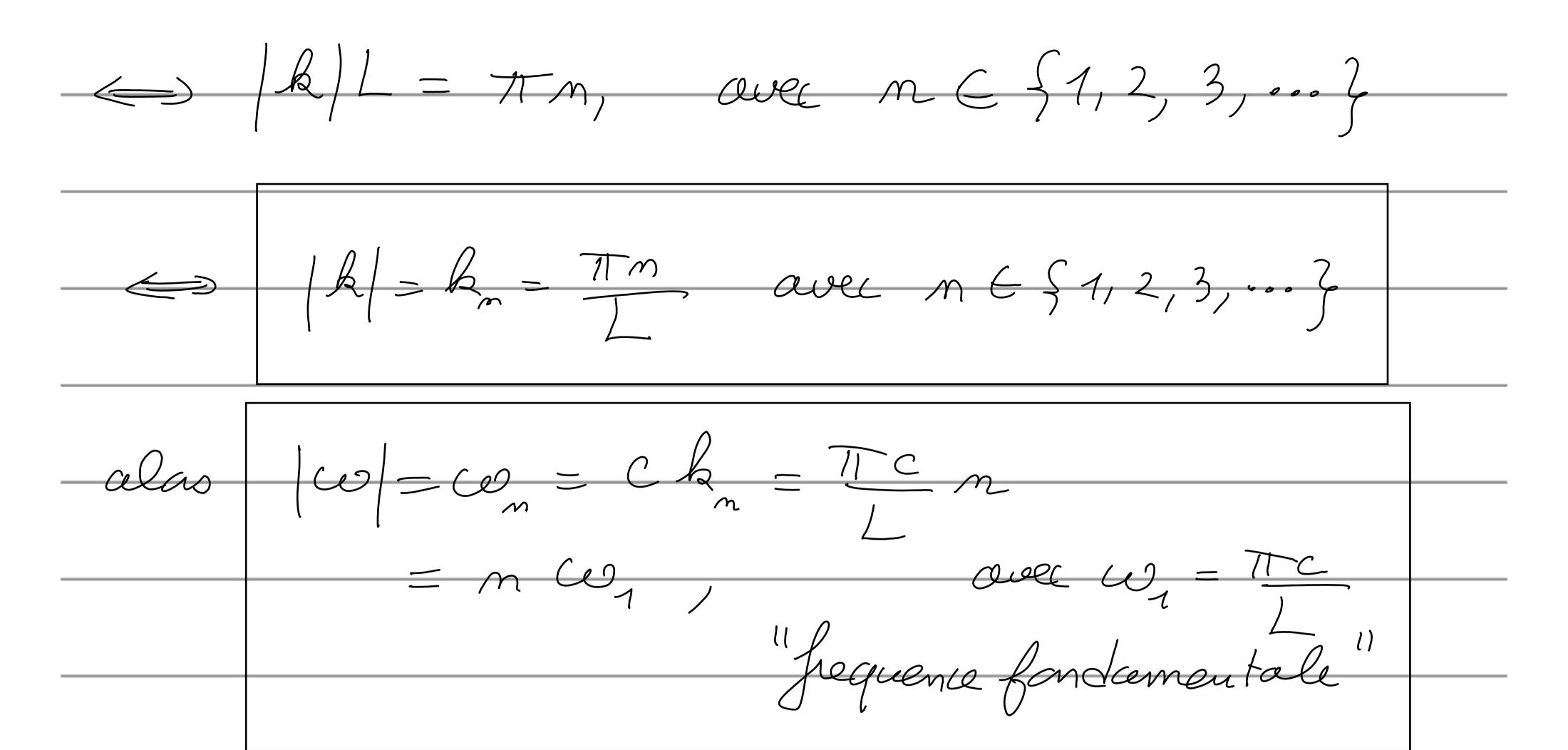
avec les conditions en x = 0 et x = L: 2(0,k)=0, 2(L,k)=0, $\forall A \in \mathbb{R}$.

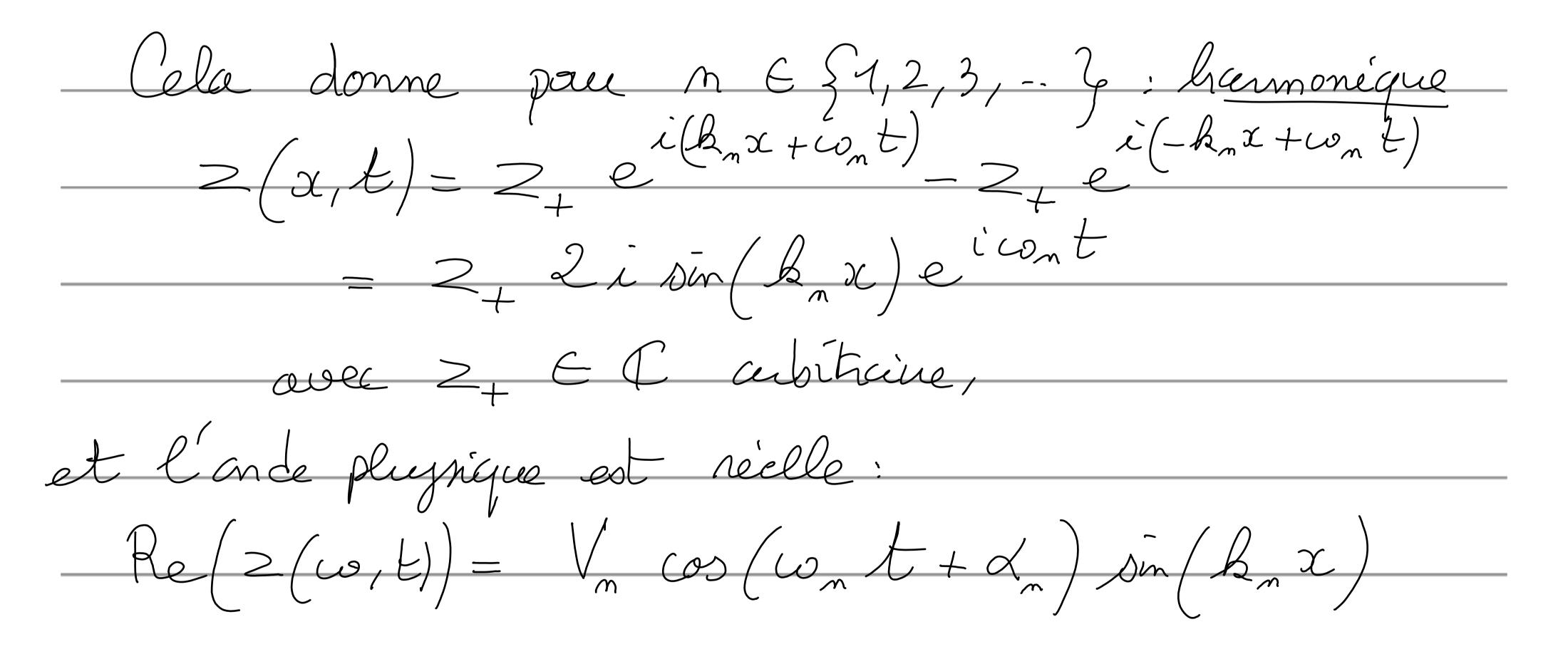
1) On va vérifier que $\sum (x,t) = co(cont + con) pin(knx)$ est polition, si k = nT et $co = c k_n$.



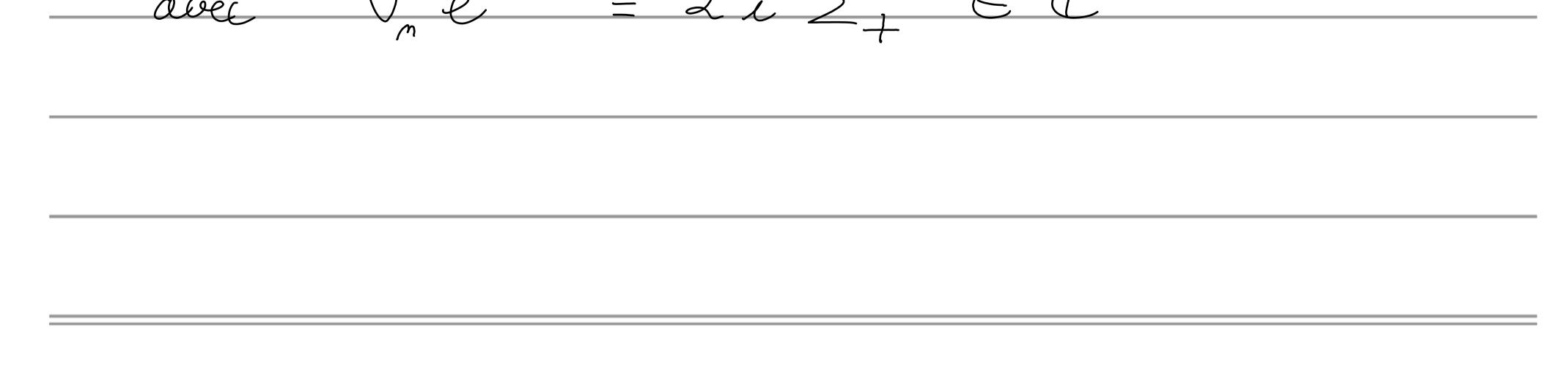
(2) A l'exercice précédent, on a va f_{1} x vanue precedent, on a ve f_{1} un mode de Fourier $\sum_{k,\omega} (x,t) = e^{-i(kx-\omega t)}$ est solution soi $\omega = \pm ck$: deux ponibilités. On va chercher une superposition: $Z(x,t) = Z e^{i(fk|x+\omega t)} + Z e^{i(fk|x+\omega t)}$ avec Z₁, Z E C : complètedes de sate que les conditions limites sont vérifiées.



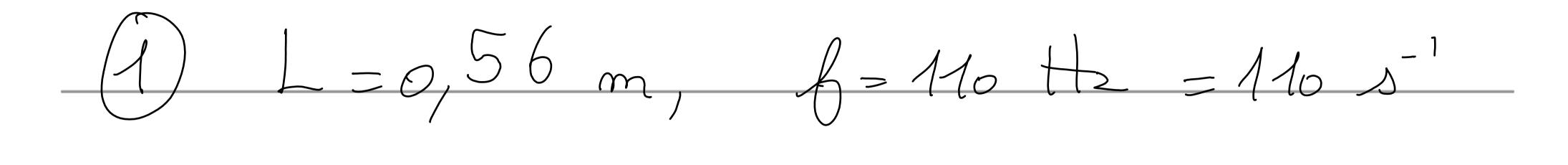


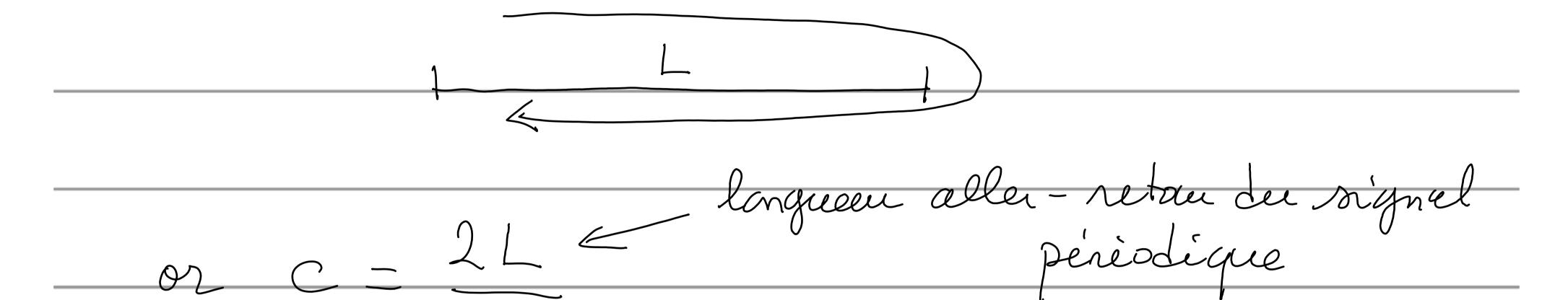


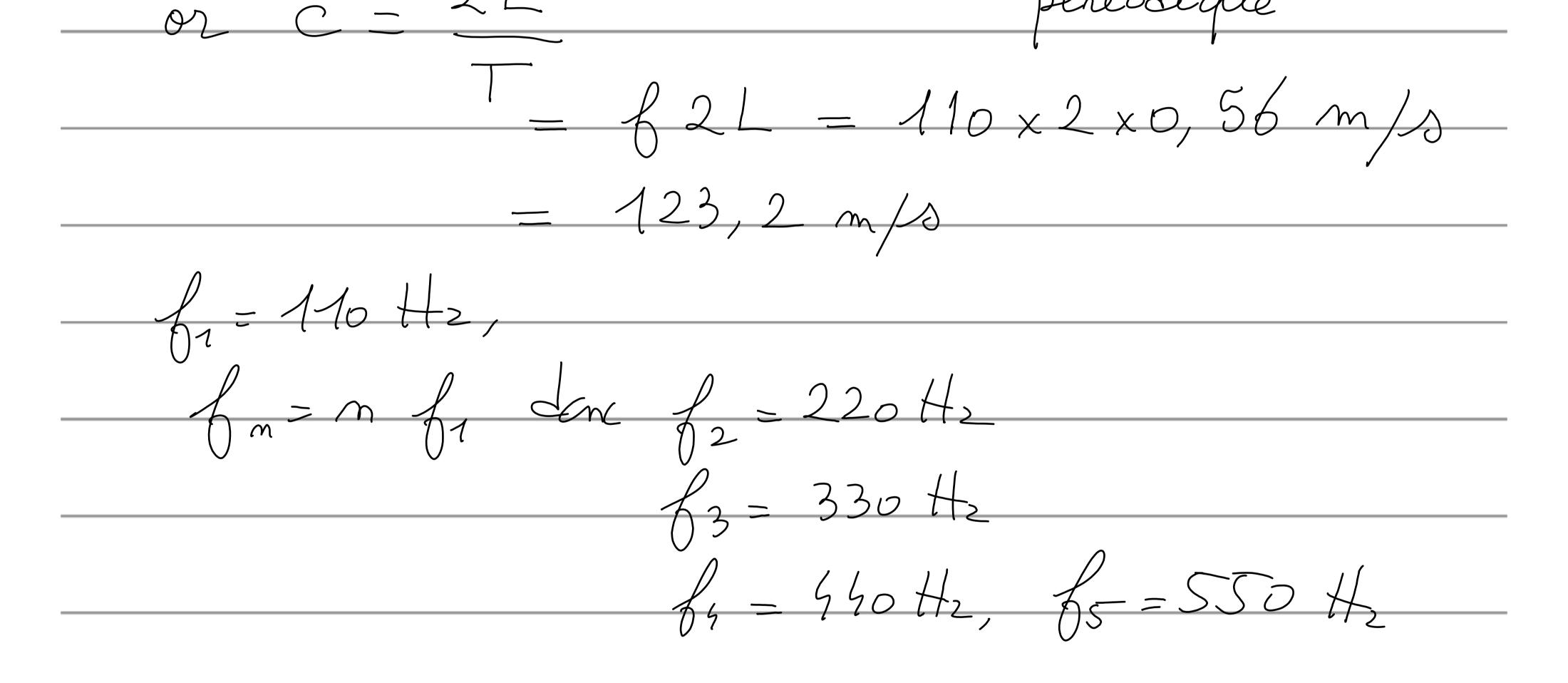
avec Veidn = 2i2, EC



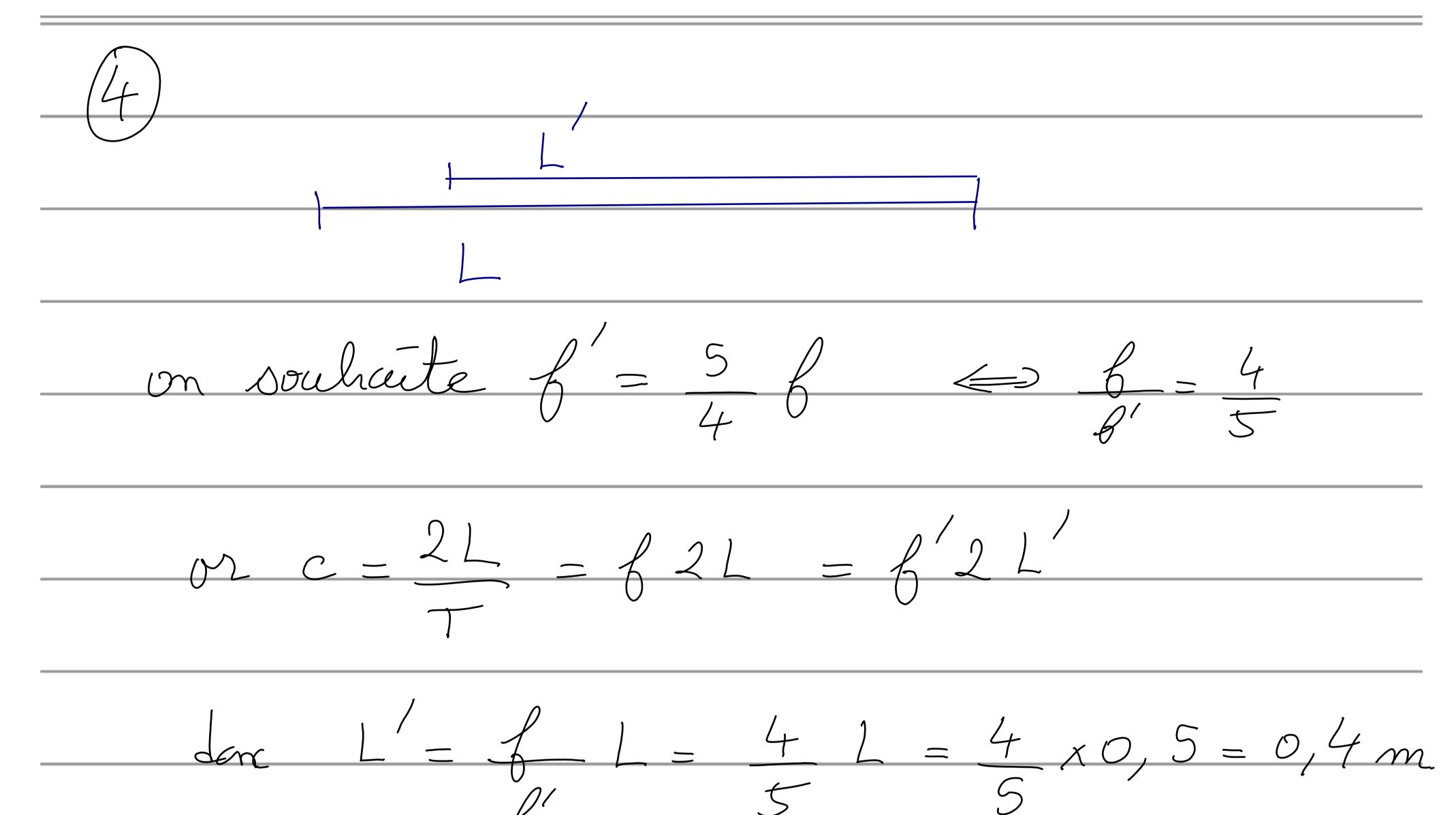
Applications numériques



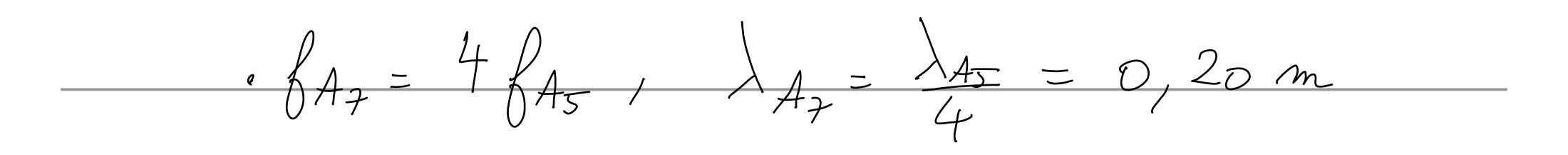


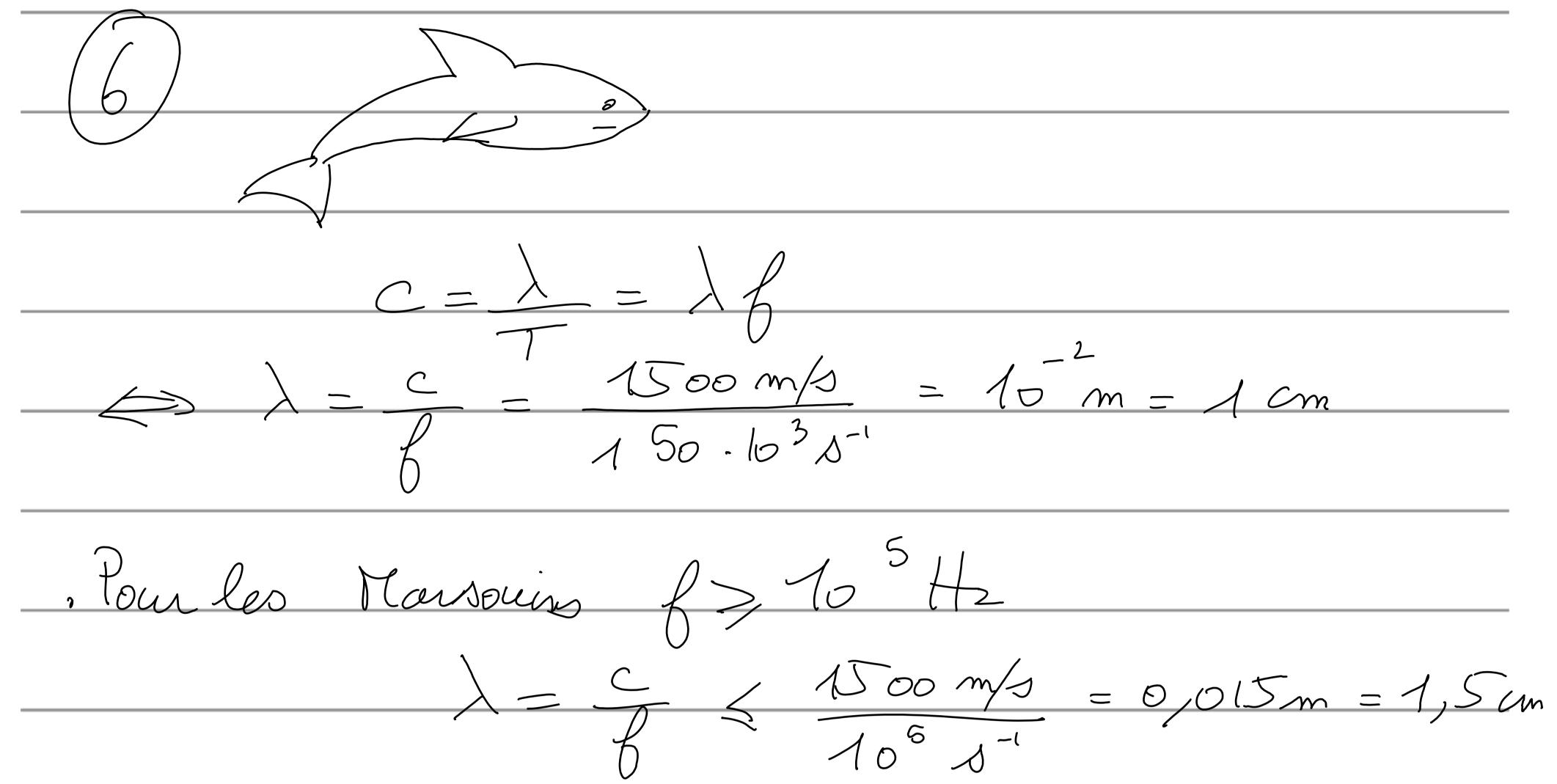


21 Clangueen aller-retain des signel périodique - péride $= \int_{-1}^{1} 2L \tan f = \frac{1}{T}$ = 150 s' × 2× 0, 5m = 150 m/s



 $\frac{5}{C} = \frac{\lambda}{T} = \frac{\lambda}{A_{5}}$ $\stackrel{(=)}{=} \stackrel{(=)}{\xrightarrow{A_5}} \stackrel{(=)}{=} \stackrel{(=)}{\xrightarrow{B_6}} \stackrel{(=)}{\xrightarrow{B_6} \stackrel{(=)}{\xrightarrow{B_6}} \stackrel{(=)}{\xrightarrow{B_6} \stackrel{(=)}{\xrightarrow{B_6}} \stackrel{(=)}{\xrightarrow{B_6} \stackrel{(=)}{\xrightarrow{B_6} \stackrel{(=)}{\xrightarrow{B_6} \stackrel{(=)}{\xrightarrow{B_6} \stackrel{(=)}{\xrightarrow{B_6} \stackrel{(=)}{\xrightarrow{B_6} \stackrel{(=)}{\xrightarrow{B_6} \stackrel{(=)}{\xrightarrow{B_6} \stackrel{(=)}{\xrightarrow$ Paulos autos la: $b_{A_6} = 2b_{A_5} = 880 H_2, \quad b_{A_5} = 343 = b_{A_5} = 0, 4m$



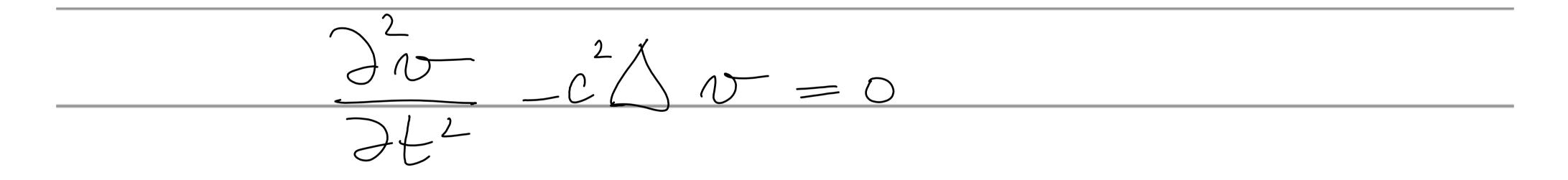


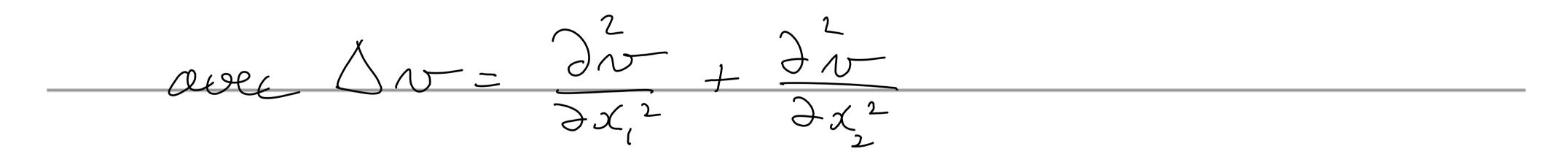
Pour les Orques, $f \leq 10^5 H_2$, $\lambda = \frac{C}{R} > 1, 5 cm$

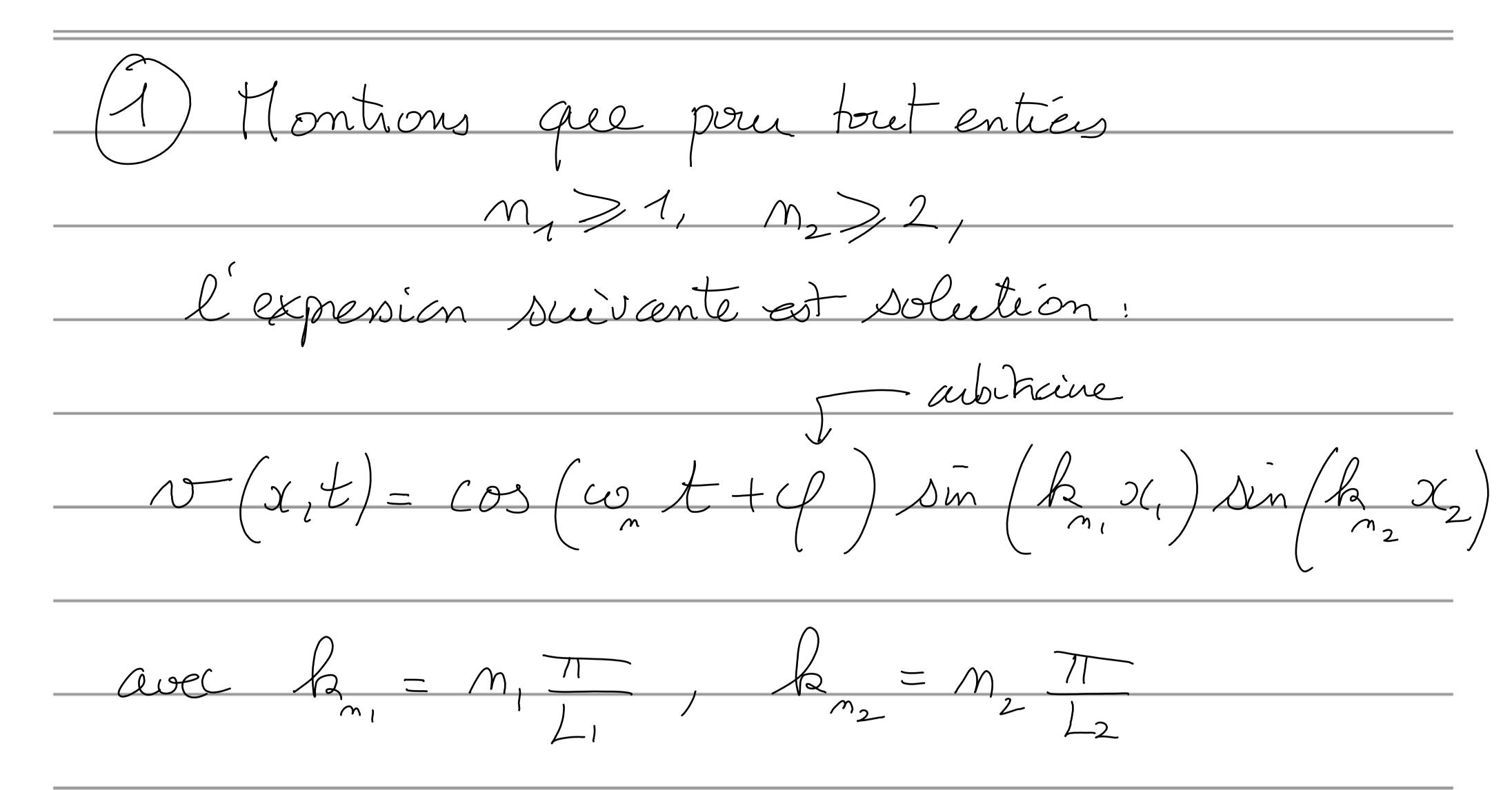
Equation des ondes sur le rectangle [0, L,] × [0, L]

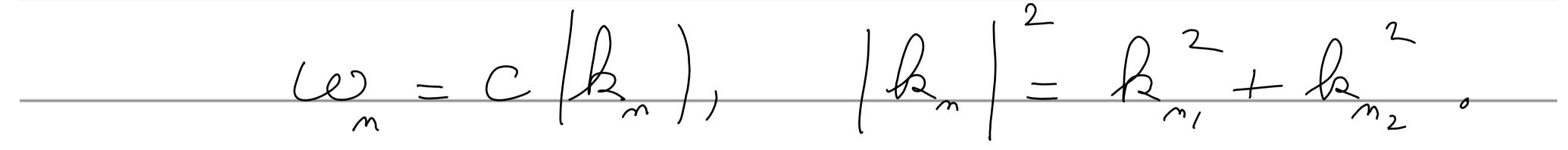
Domaine rectangulaire : $x = (x_1, y_2) \in \Omega = \left[0, 1, \right] \times \left[0, 1_2 \right]$ avec $L_1, L_2 > 0$

Equation des ondes pour (x,t) +> v(x,t) EIR,

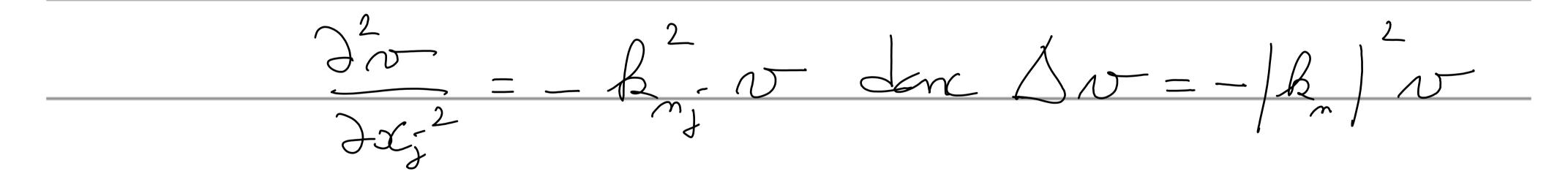


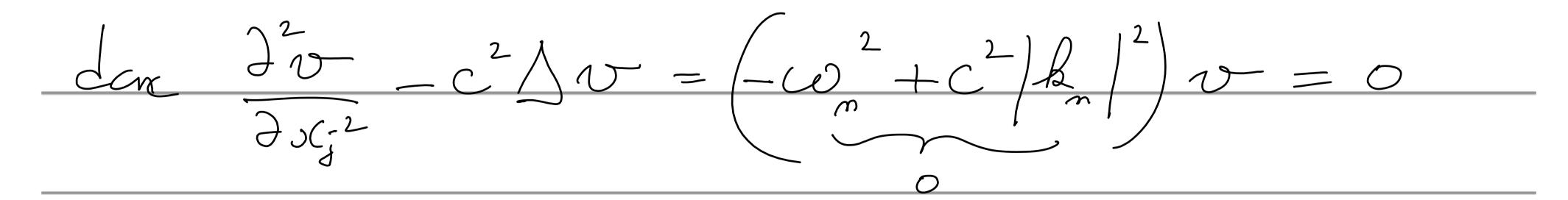






En effet $\frac{\partial v}{\partial t^2} = -c v v$

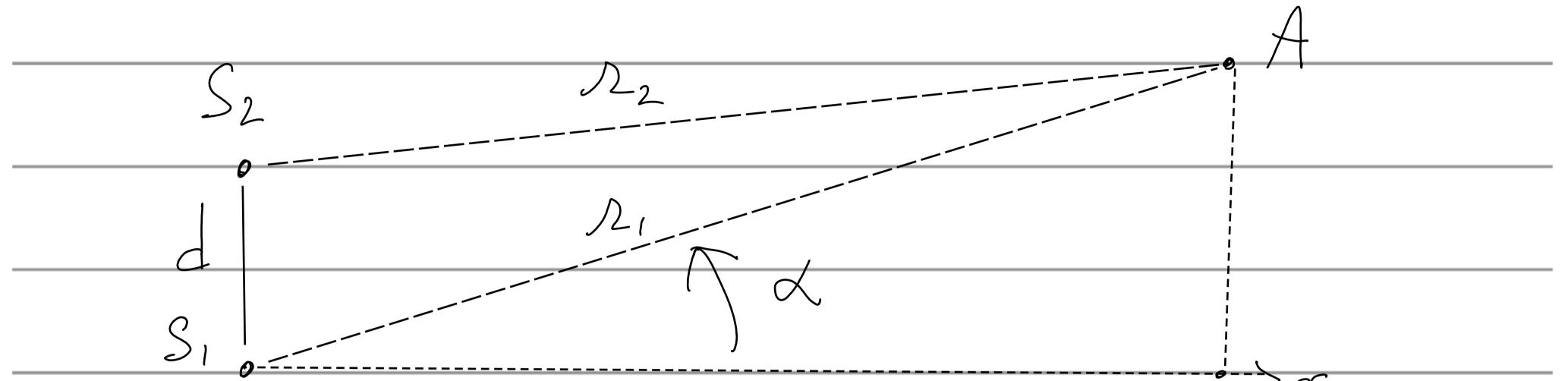




c'et à due que l'équation d'ande est vérifiée.

De plus sur le bad de Q: $\sum_{i} \mathcal{X}_{i} = 0 \text{ or } \mathcal{X}_{2} = 0$ 0 21 361 alas N = 0• Ai $x_i = L_i$ alas $Sin\left(h_n, x_i\right) = Sin\left(m_i \frac{\pi L_i}{L_i}\right) = 0$ $dax \quad v = 0,$ de même si $\chi_{2} = L_{2}$ alas $\sin\left(\frac{k}{n_{2}}\chi_{2}\right) = 0$, w = 0. Dorc les conditions œux bords sont vérificés.

Interférences	
V	



 $\rightarrow j$ fe signal en A a la date t et $S = \cos(\omega t - k z_{1}) + \cos(\omega t - k z_{2})$ $\frac{\partial 2}{\partial x} \cos a + \cos b = 2 \cos \left(\frac{a-b}{2} \right) \cos \left(\frac{a+b}{2} \right)$ $S = 2 \cos \left(\frac{k}{2} \left(\frac{2}{2}, -\frac{2}{2} \right) \cos \left(\frac{\omega t}{2} - \frac{k}{2} \left(\frac{2}{2} \right) \right)$ indépendante de la position 1, 1, mais dépendant de la position 1, 1, On cherche donc à quelles positions on a une emplitude $A = \cos\left(\frac{k}{2}(r, -r_2)\right)$ nulle?

Pau cela il fært détaminer (2, - 2) à partir de 1, d, d:

