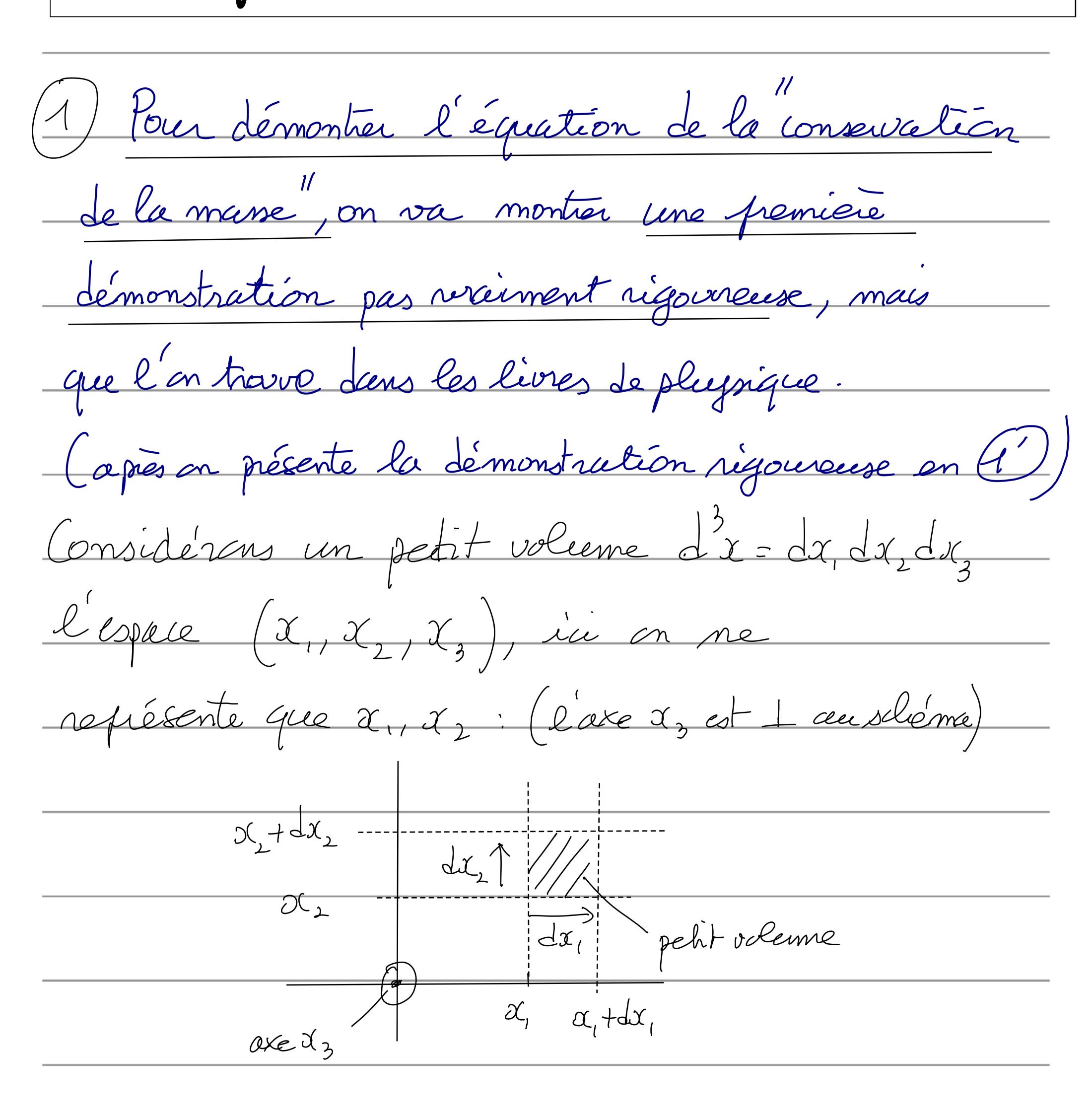
Composition de l'air

Une môle de molévules de dé-azote a la mane: $\frac{M}{N_2} = \frac{N_A \times 2 \times (7+7) \times m_{\text{nucl}}}{1 + 7}$ mans neutrons d'un nucléan nombre de noyaerx (protonou neutron) nombre de molécules or Mx mul = 19. = 10 -3 lag : marse d'une mole de nucleans

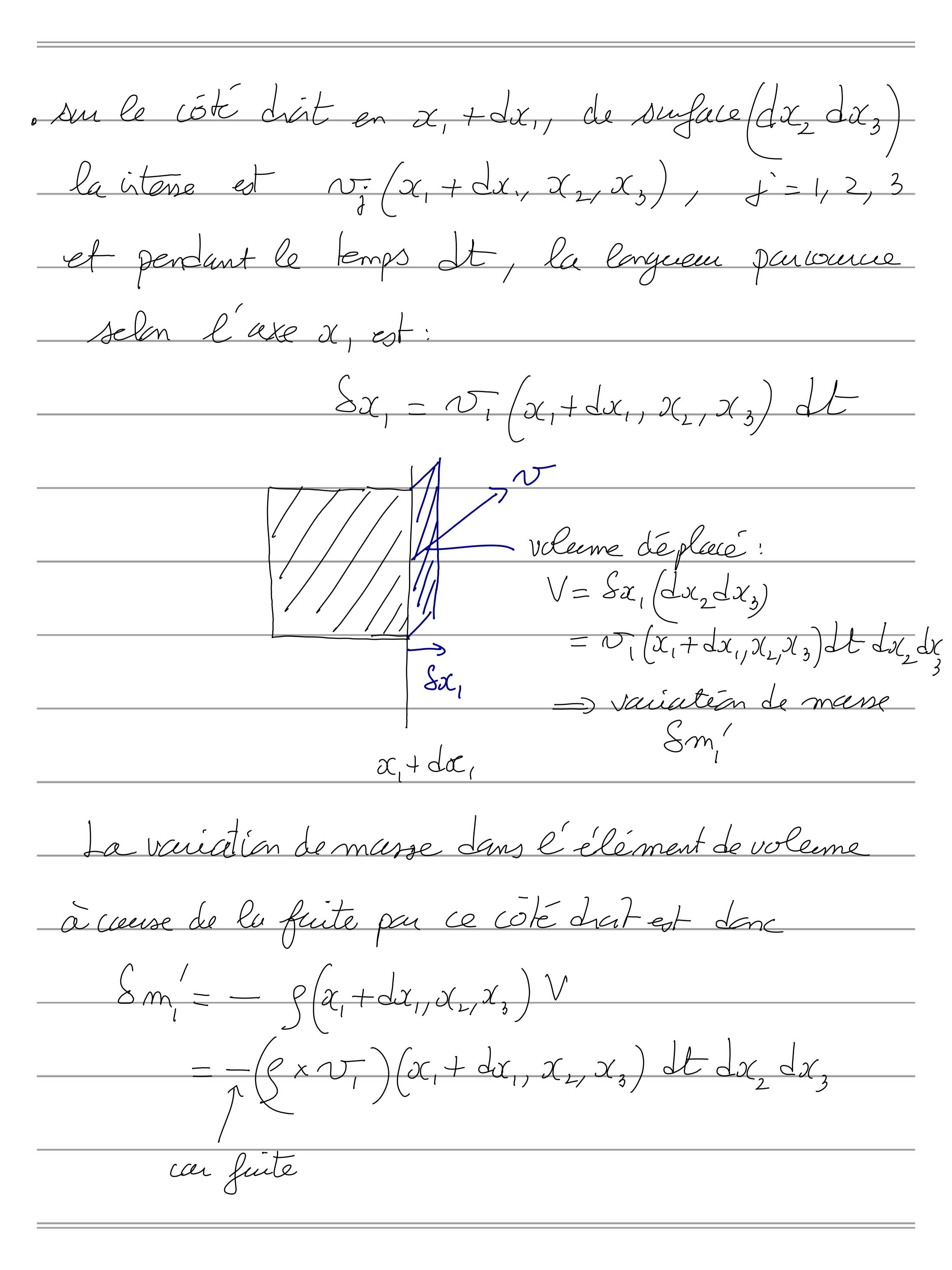
de même $M = N_{x} \times 2 \times (8+8) \times m_{mucl}$ denc la masse molaise moyenne des molécules

L'air est: $M = 80/0 M_{x} + 20/0 M_{0z}$ $= 2 \left(N_{x} m_{mucl}\right) \left(0.8 \times 14 + 0.2 \times 16\right)$ $= 29 g = 29.10^{-3} log (par mole)$

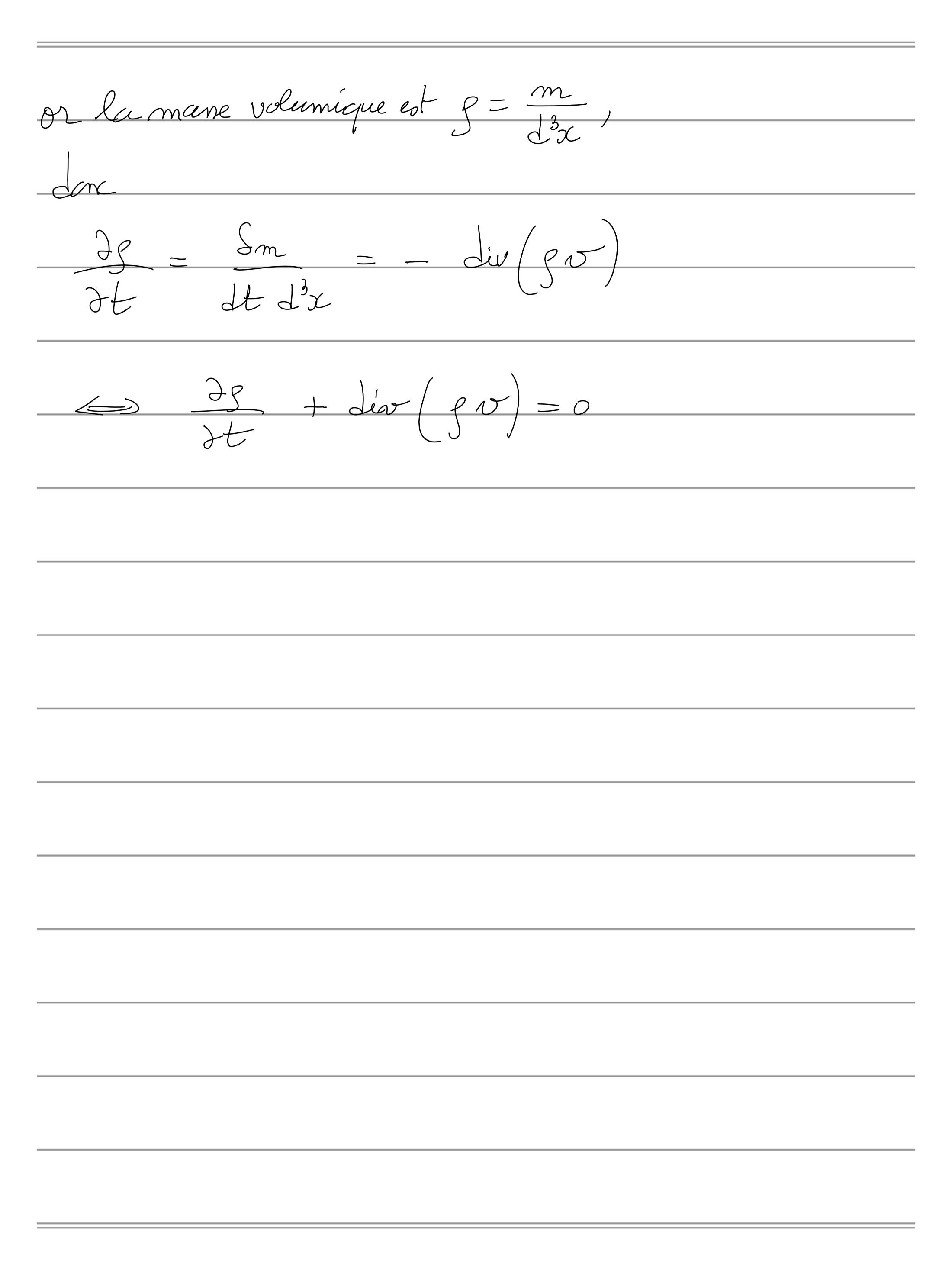
Equation de movvement du fluide: équation d'Euler



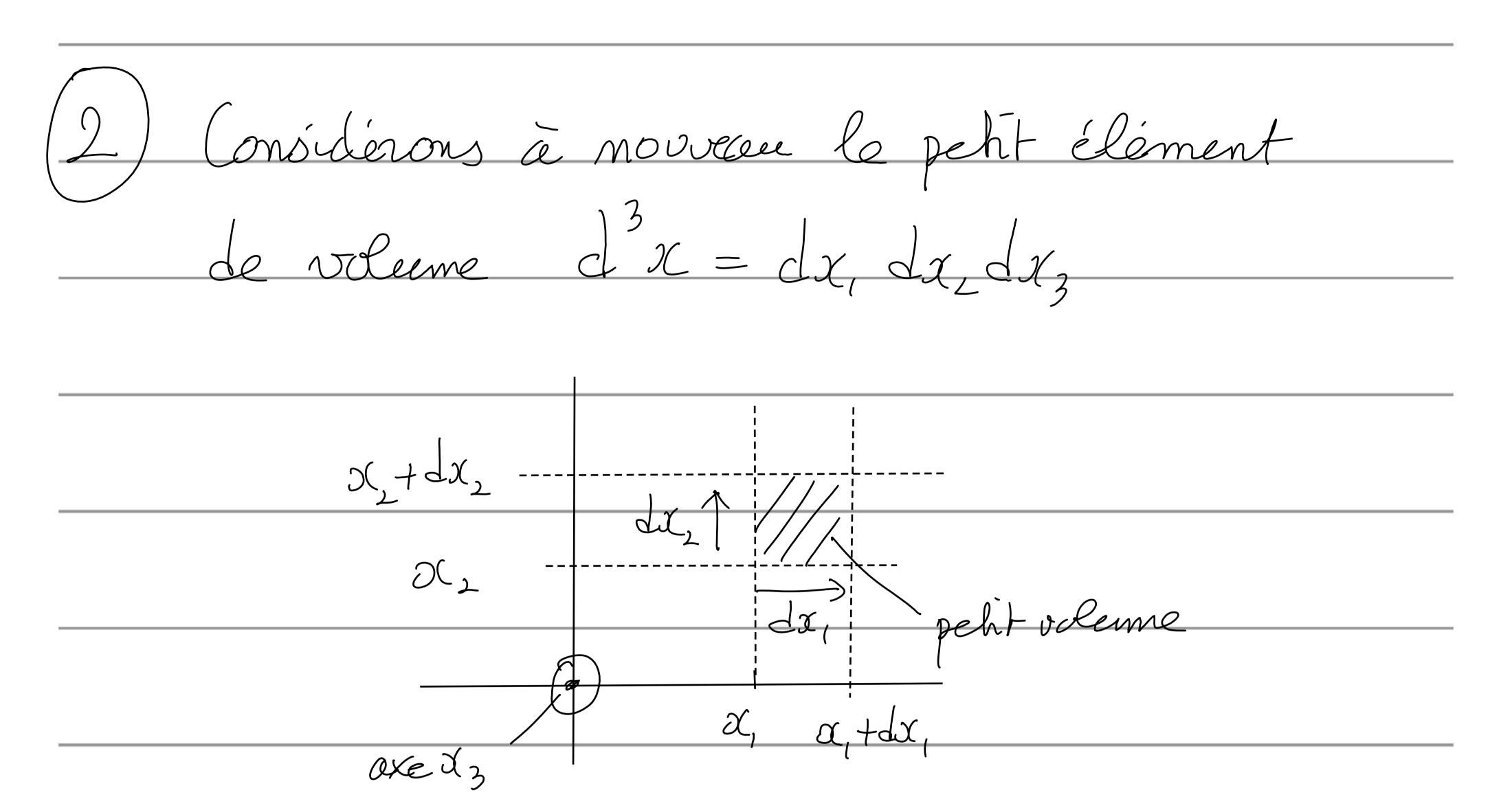
Ce volume innugénacie est fixe et le flecide passe
à traves lui à veuse de la interse v.
Par conséquent la marse m (t) dans ce voleine
raire avec le temps. Faisans le bilan,
on supposons que la marse totale est conservée,
ic la marse se déplace mais n'est pas détreite ni créée

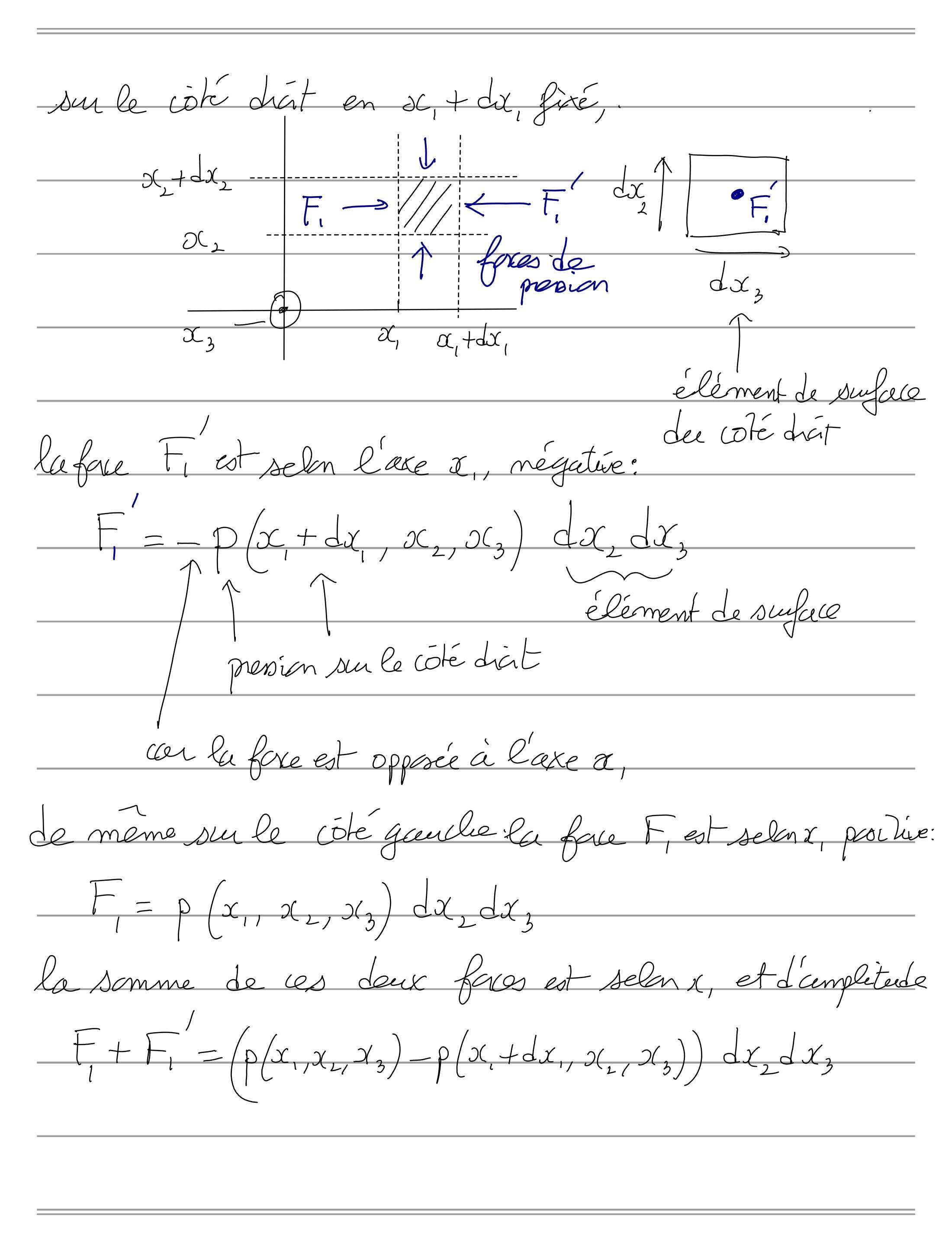


Le même la vaination de manse à cause des coté
gande et:
$Sm = + (f \times v_1)(x_1, x_2, x_3) It dx_2 dx_3$
or d'après la famule de la dérivée d'une fanction: $f(x+dx)-f(x)=f(x)=x dx + o(dx)$
on déduit que régligeable si dx XI,
selan l'axe x_i : $Sm_1 + Sm_1' = \left(\frac{2}{2x_i} \left(\int v_i \right) \right) dx_i dx_3$
De même selon les axes x x et au total
la variation de marse dans ce petit volceme est
$Sm = \left(\frac{\partial}{\partial x_1}(\beta v_1) - \frac{\partial}{\partial x_2}(\beta v_2) - \frac{\partial}{\partial x_3}(\beta v_3)\right) It I_3$
$= -\operatorname{diw}(gv)) \operatorname{It} \operatorname{d}^{3}x \qquad = \frac{\operatorname{diw}(u)}{\operatorname{d}^{3}x_{1}} + \frac{\operatorname{diw}(u)}{\operatorname{d}^{3}x_{2}} + \frac{\operatorname{diw}(u)}{\operatorname{d}^{3}x_{2}}$

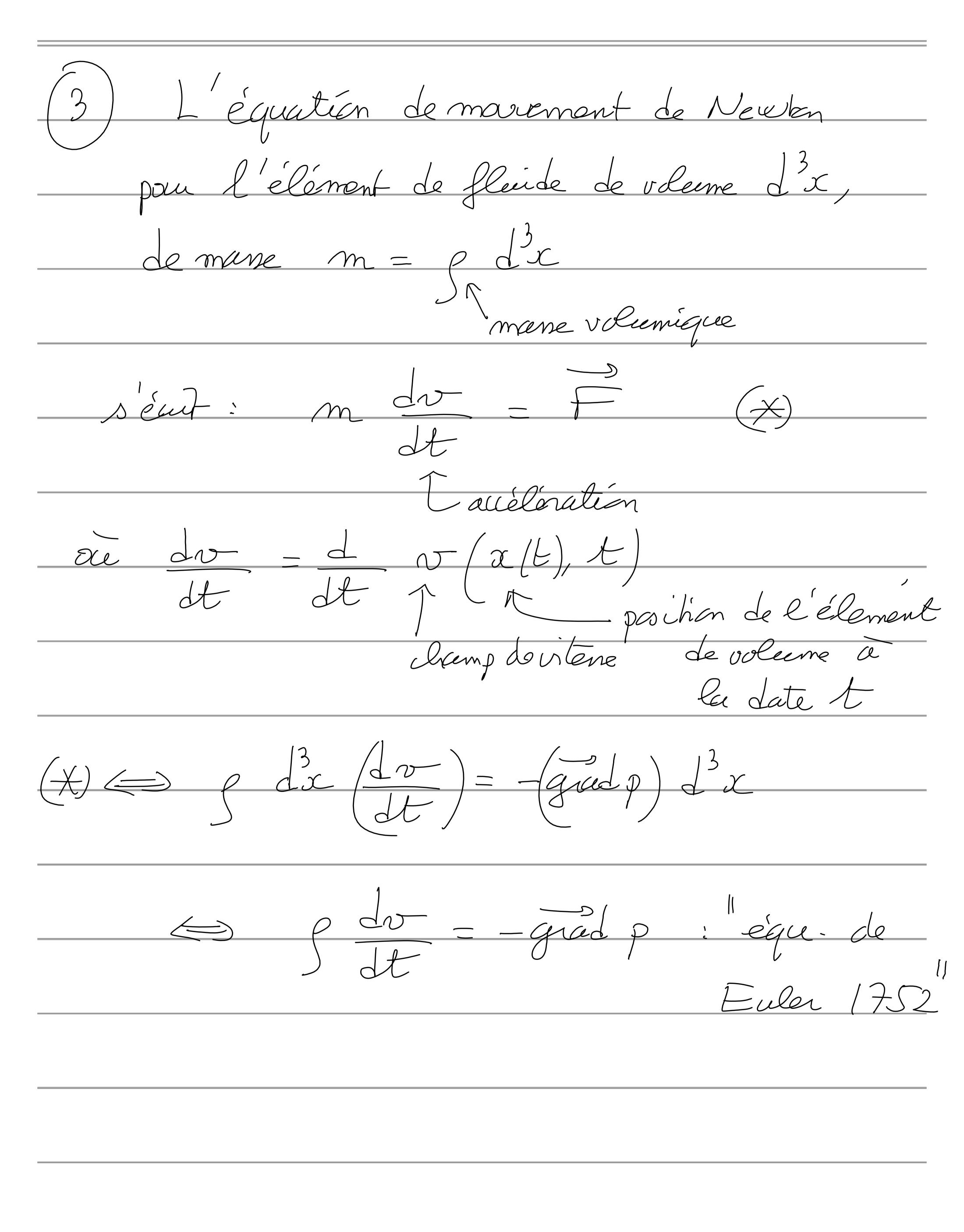


DAntie panse de l'équation de conservation	
Le la mane dans un langage makiématique	
plus correct.	





or d'après la famille de la dérivée d'une fonction: f(x+dx)-f(x)=f(x)=f(x)+o(dx)ona ici: f(x+dx)-f(x)=f(x)+o(dx)ona ici: f(x+dx)-f(x)=f(x)+o(dx) f(x+dx)-f(x)=f(x)+o(dx) f(x+dx)-f(x)=f(x)+o(dx) f(x+dx)-f(x)=f(x)+o(dx) f(x+dx)-f(x)=f(x)+o(dx) f(x+dx)-f(x)=f(x)+o(dx) f(x+dx)-f(x)=f(x)+o(dx) f(x+dx)-f(x)=f(x)+o(dx) f(x+dx)-f(x)=f(x)+o(dx) f(x+dx)-f(x)=f(x) f(x+dx)-f(x)=f(De même pour les centres paires de faces (axes x 2, x3) et au final la force total de premion exercée su l'élément de volume est le verteur $F = -\frac{\partial \rho}{\partial x_1} = -\left(\frac{\partial^2 x}{\partial x_2}\right) = -\left(\frac{\partial^2 x}{\partial x_1}\right) = -\left(\frac{\partial^2 x}{\partial x_2}\right) =$ qui est nulle si læ pession p(x,t)est uniforme, mais non nulle si p(x,t) varie over sc.



Equation des ondes sonores

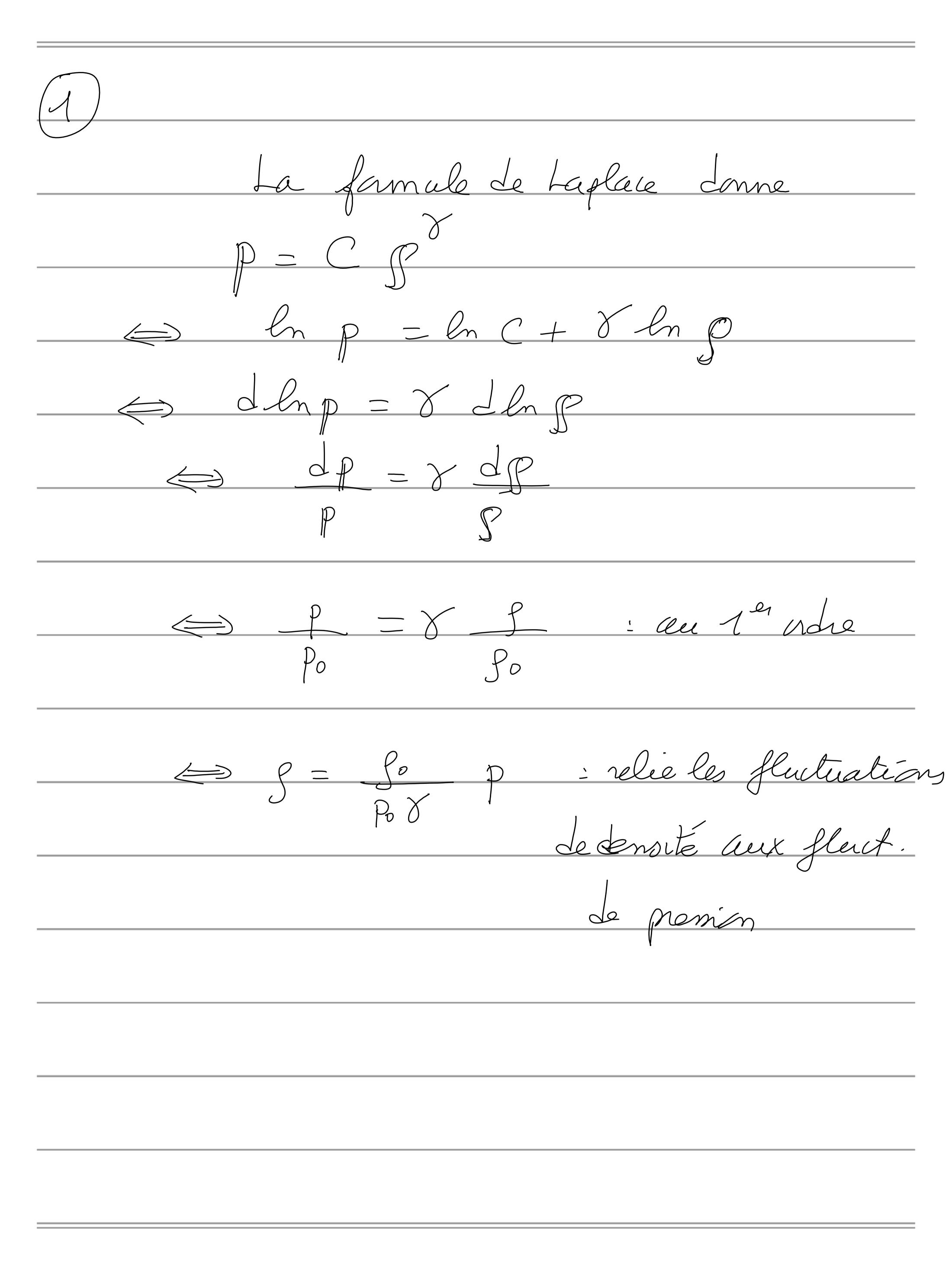
· Considérais in fluide lêtre (pas de face de
Desember, ni viscosité)
Son movement est donc décet par l'équalien
de movement de Euler (ie Newton):
P dv = greed P
J

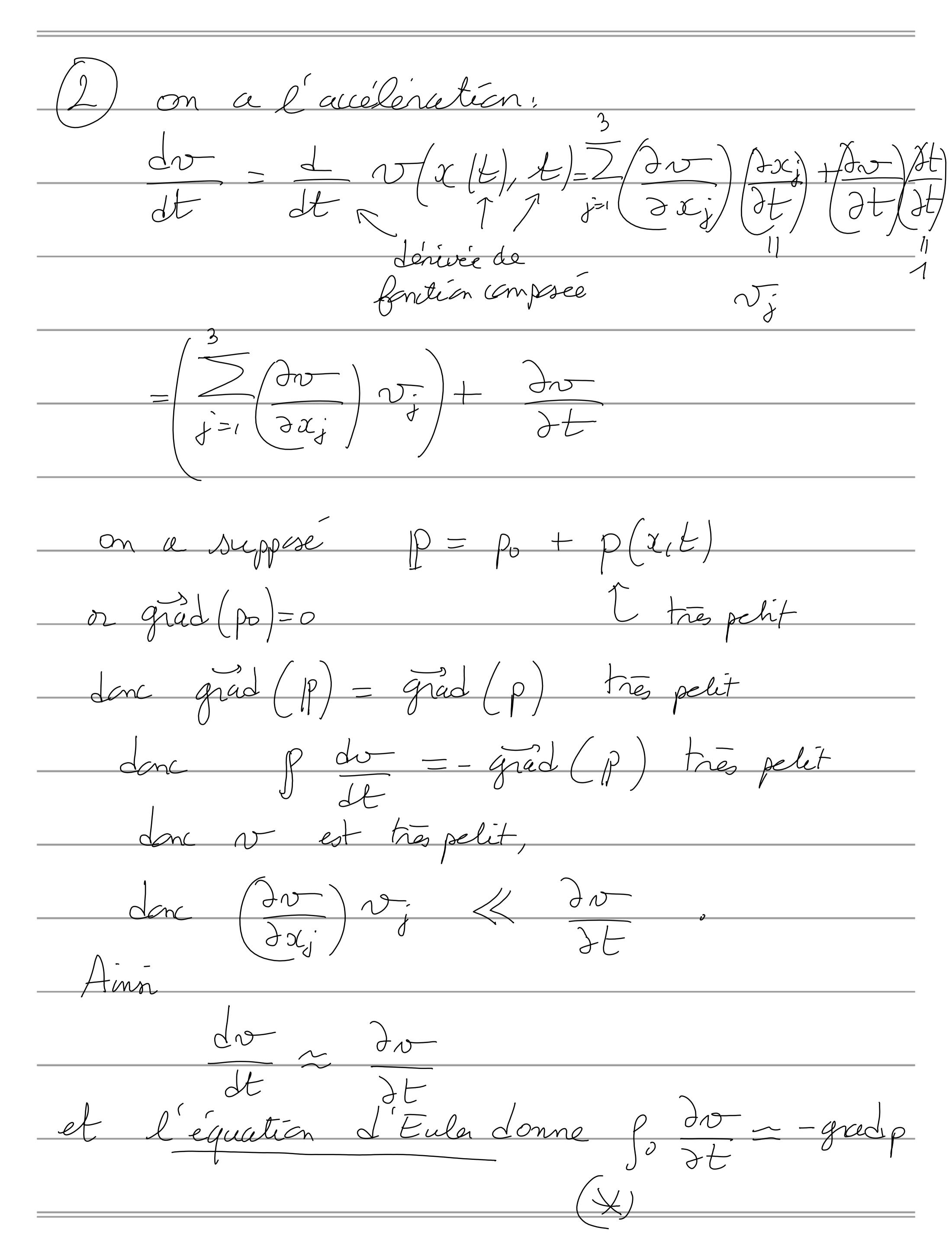
• Supposas
$$P(x,t) = P_0 + P(x,t)$$

 $P(x,t) = S_0 + S(x,t)$
 $Constants$ $Sectuations$

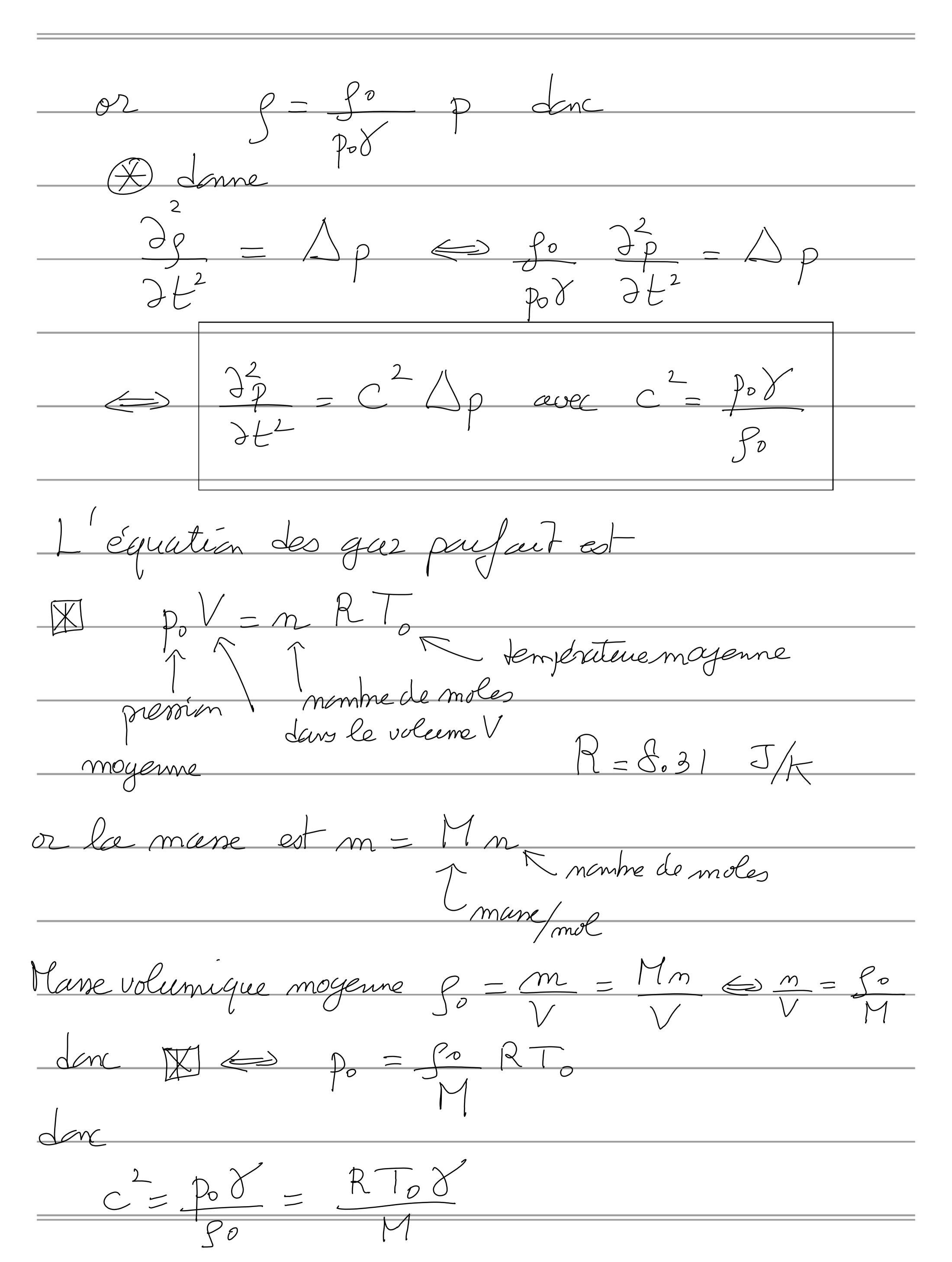
On admet que le moviement est suffisement Cent pour conseiver l'entropie et cela implique $p(x,t) = C\left(p(x,t)\right)^{\chi} \text{ over } \chi = \frac{7}{5}$

(pour molésseles L'écetomiques)





De même,
$$g \vec{v} = (f_0 + g) \vec{v} \approx f_0 \vec{v}$$
 $t = geht$
 $t = g$



Valeurs numériques sur les ondes sonores

$$C = \begin{cases} 70 \\ 90 \end{cases} = \begin{cases} 7 \cdot 10^{5} \\ 5 \cdot 10^{9} \end{cases}$$

$$=343 m/s$$

(2) on a
$$C = \begin{cases} 8RT \\ M \end{cases}^{1/2}$$

$$= 3 \ln C = \frac{1}{2} \ln T + \frac{1}{2} \ln \left(\frac{8R}{R} \right)$$

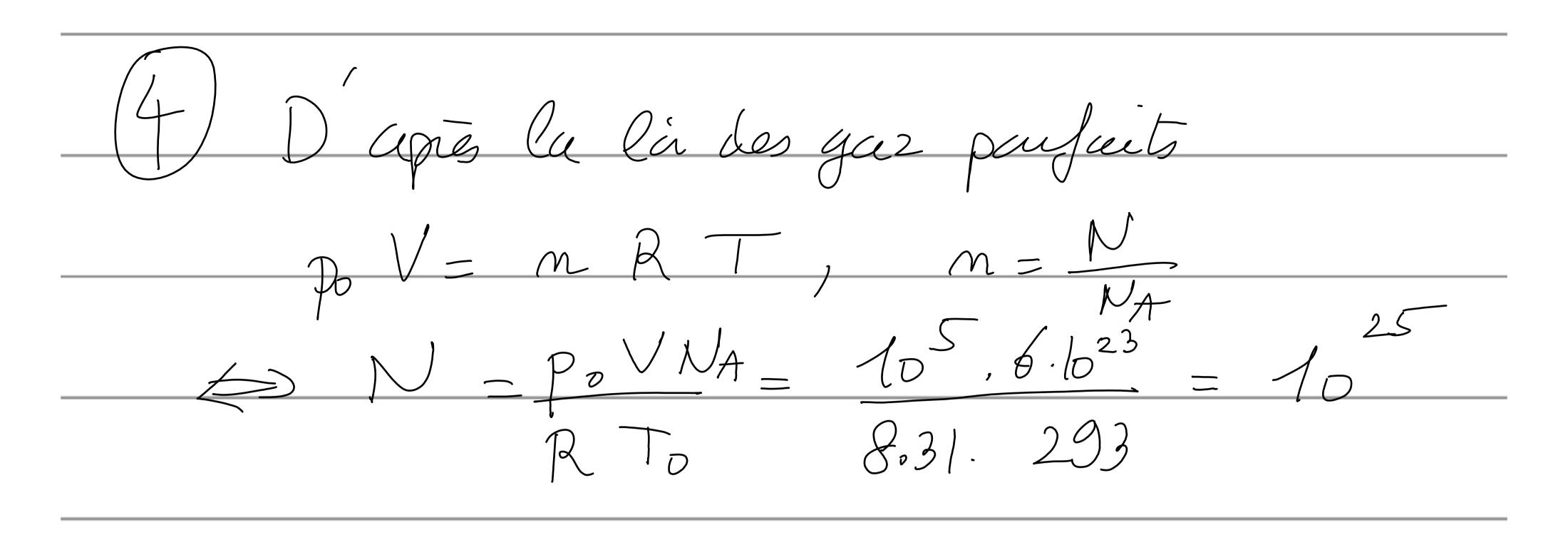
$$= \frac{1}{2} \left(\frac{20}{233} \right) = \frac{3}{2} \%$$

$$= \frac{1}{2} \left(\frac{20}{233} \right) = \frac{3}{2} \%$$

$$= \frac{3}{2} \times C = 0.03 \times \frac{3}{43} \frac{43}{m/s}$$

$$= 10 m/s$$

(3) Pour l'Héleum 4, la marse d'une mole de molécules est $M = (2+2), 10^{-3}$ hag 2 potons + 2 noutrons une molècule est monocetamique danc $Y = 1 + \frac{2}{3 + 0} = \frac{5}{3}$ pas de robation interne



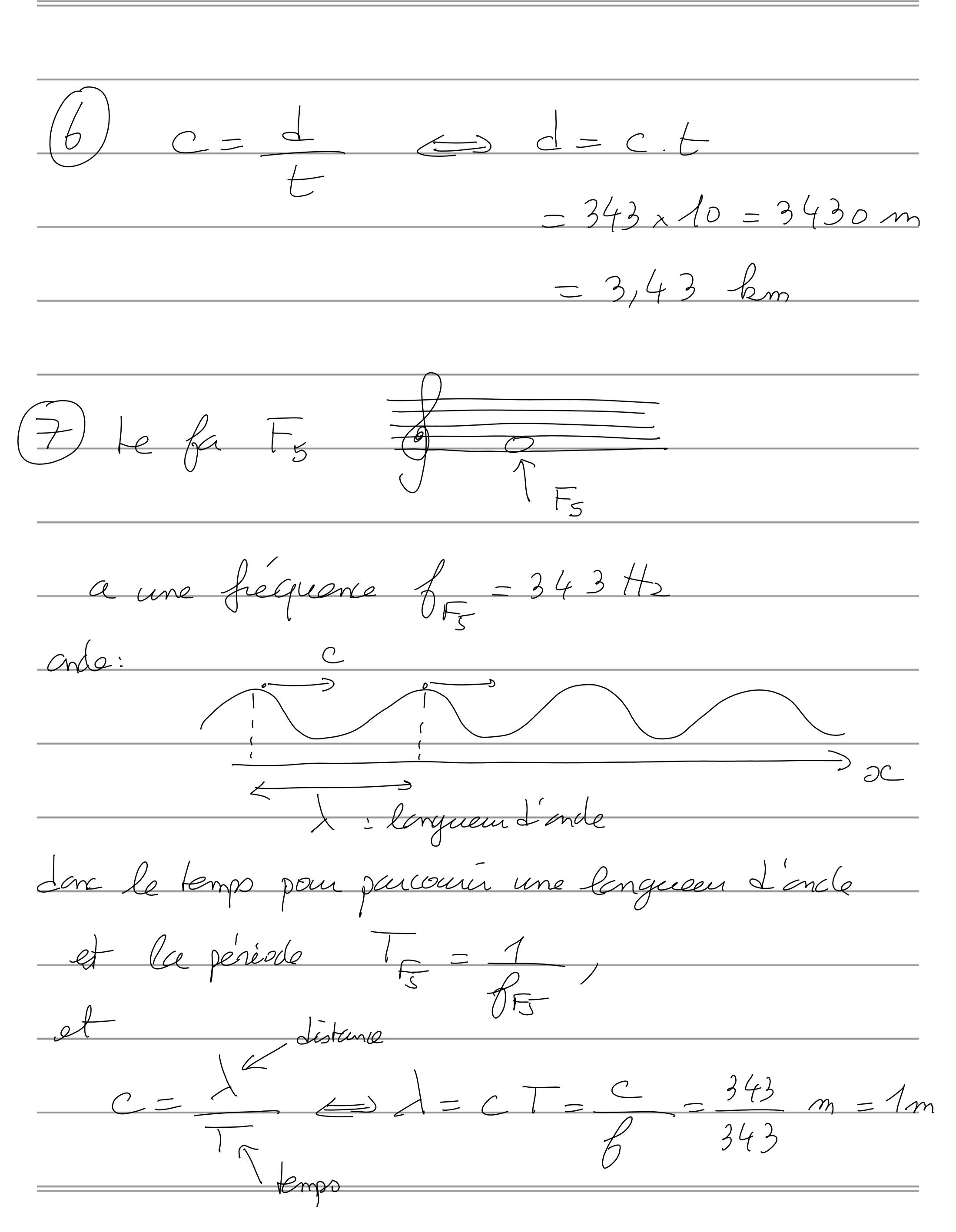
$$= \frac{1}{1000} = \frac$$

Ce temp Dt = 50 ms est appelé la l'hatence maximale en musique.

Donc pour jouer ensemble, des musiciens (oxhetre)

Lavent être distrents de mins de 17 m

(a peu pres)



$$\begin{cases}
f_{4} = 1 \\
f_{5} = 2
\end{cases}$$

$$\begin{cases}
f_{5} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{5} = 1 \\
f_{7} = 2
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$\begin{cases}
f_{7} = 1 \\
f_{7} = 4
\end{cases}$$

$$f_{7} = 1 \\
f_{7} = 4$$

$$f_{7} = 4
\end{cases}$$

$$f_{7} = 4$$

$$f$$

$$\frac{1}{3} = 4 \frac{1}{5} = 4 m$$

(8) on a vu que
$$C = \frac{\lambda}{T} = \lambda f$$