$TD n^{o}4$

1 Convergence d'opérateurs

[2, chap.6]

Si $(\varphi_n)_{n\in\mathbb{N}}$ est une base orthonormée d'un espace de Hilbert \mathcal{H} et $\psi\in\mathcal{H}$, $\|\psi\|=1$, on considère l'opérateur de rang $1:T_n:=|\psi\rangle\langle\varphi_n|$.

- 1. Montrer que pour tout $u \in \mathcal{H}$, $||T_n u|| \to 0$ pour $n \to \infty$. Donc $T_n \to 0$ pour la topologie forte et la topologie faible.
- 2. Montrer que $||T_n|| = 1$ pour tout n. Donc $T_n \to 0$ ne converge pas en "norme opérateur".
- 3. Considérer maintenant l'opérateur adjoint T_n^* . Montrer que $T_n^* \to 0$ ne converge pas en topologie forte mais $T_n^* \to 0$ en topologie faible.

2 Opérateur différentiel à coefficients constants

réf: Davies 1995, chap.3.

On utilise les notations : $\alpha = (\alpha_1, \alpha_2 \dots \alpha_n) \in \mathbb{N}^n$, $|\alpha| = \alpha_1 + \dots + \alpha_n$ et $D^{\alpha} := \left(-i\frac{\partial}{\partial x_1}\right)^{\alpha_1} \dots \left(-i\frac{\partial}{\partial x_n}\right)^{\alpha_n}$. On considère sur \mathbb{R}^n l'opérateur différentiel

$$P = \sum_{|\alpha| \le k} a_{\alpha}(x) D^{\alpha}$$

On suppose que $a_{\alpha}(x) \in C^{\infty}(\mathbb{R}^n)$ et ses dérivées $D^{\beta}a_{\alpha}$ sont à croissance au plus polynomiale.

Le **symbole** de P est la fonction sur $\mathbb{R}^n \times \mathbb{R}^n$:

$$p(x,\xi) := \sum_{|\alpha| \le k} a_{\alpha}(x) \xi^{\alpha}, \quad x \in \mathbb{R}^{n}, \xi \in \mathbb{R}^{n}$$

1. Si $u \in \mathcal{S}(\mathbb{R}^n)$ montrer que P s'obtient à partir de son symbole par la formule :

$$(Pu)(x) = \frac{1}{(2\pi)^{n/2}} \int e^{ix\xi} p(x,\xi) (\mathcal{F}u)(\xi) d\xi$$

où $(\mathcal{F}u)(\xi)$ est la transformée de Fourier de u.

2. On suppose que les coefficients $a_{\alpha}(x) = a_{\alpha}$ sont tous **constants et réels**. Montrer que $\mathcal{F}P\mathcal{F}^{-1}$ est un opérateur multiplication et déduire que P est essentiellement autoadjoint sur $\mathrm{Dom}(P) = \mathcal{S}(\mathbb{R}^n)$ ou $C_0^{\infty}(\mathbb{R}^n)$. Montrer que

$$\sigma\left(P\right) = \sigma_{ess.}\left(P\right) = \overline{\left\{p\left(\xi\right), \quad \xi \in \mathbb{R}^n\right\}}, \qquad \sigma_{ponct.}\left(P\right) = \emptyset.$$

Dans quel cas peut on avoir $\sigma(P) = [\lambda, +\infty[, \lambda \in \mathbb{R}]]$?

3 Algèbre de Heisenberg

réf: [2, p.274]

Sur $u \in \mathcal{S}(\mathbb{R})$ on définit les opérateurs position X et impulsion D par (Xu)(x) = xu(x), $(Du)(x) := -i\frac{du}{dx}$.

- 1. Montrer que $[X, D] = i \mathrm{Id}$.
- 2. Inversement montrer que si A, B sont des opérateurs auto-adjoints vérifiant la relation [A, B] = i Id alors A, B ne peuvent pas être bornés tous les deux. (Aide : utiliser $AB^n BA^n = inB^n$).

4 Groupe de Heisenberg

ref: [3, p.4],[1].

Sur \mathbb{R}^n on note $X:=(X_1,\ldots,X_n), (X_iu)(x)=x_iu(x)$ l'opérateur position et $D=(D_1,\ldots,D_n), D_i=-i\frac{\partial}{\partial x_i}$ l'opérateur impulsion.

1. Pour $q \in \mathbb{R}^n, p \in \mathbb{R}^n, u \in \mathcal{S}(\mathbb{R}^n)$ montrer que

$$(e^{ip.X}u)(x) = e^{ip.x}u(x), \qquad (e^{-iq.D}u)(x) = u(x-q)$$

et

$$\mathcal{F}\left(\left(e^{ip.X}u\right)\right)(\xi) = \left(\mathcal{F}u\right)(\xi - p), \qquad \mathcal{F}\left(\left(e^{-iq.D}u\right)\right)(\xi) = e^{-iq.\xi}\left(\mathcal{F}u\right)(\xi)$$

où \mathcal{F} désigne la transformation de Fourier. Interpréter $e^{-iq.D}$ et $e^{ip.X}$ comme des **opérateurs de translation** de (q,p) dans \mathbb{R}^{2n} .

2. Montrer la relation

$$e^{-iqD}e^{ipX} = e^{ipX}e^{-iqD}e^{-iqp}$$

et déduire que en posant :

$$z = (q, p, t) \in \mathcal{H}_n := \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$$

$$\pi(z) := e^{it} e^{ipX} e^{-iqD}$$

on a la relation:

$$\pi(z)\pi(z') = \pi(z.z')$$

avec la relation du groupe de Heisenberg:

$$\mathcal{H}_n \times \mathcal{H}_n \rightarrow \mathcal{H}_n$$

 $(z, z') \rightarrow z.z' = (q + q', p + p', t + t' - pq')$

Autrement dit π est une représentation unitaire du groupe \mathcal{H}_n sur $L^2(\mathbb{R}^n)$. (irréductible, voir [1]).

3. Utilisant $[X_i, D_{jk}] = i \operatorname{Id} \delta_{j,k}$, montrer l'autre expression possible :

$$\pi\left(z\right)=e^{it}e^{ipX}e^{-iqD}=e^{i\left(t+\frac{qp}{2}\right)}e^{ipX-iqD}$$

5 Pseudo spectre d'une matrice

Réf: Trefethen, "Spectra and pseudospectra: the behavior of nonnormal matrices and operators".

Soit $A \in M_n$ une matrice $n \times n$.

1. Montrer que

$$\lim_{t \to +\infty} \frac{1}{t} \log \left\| e^{tA} \right\| = \alpha \left(A \right)$$

 $\lim_{t\to +\infty} \frac{1}{t} \log \left\|e^{tA}\right\| = \alpha\left(A\right)$ avec $\alpha\left(A\right) := \sup_{z\in\sigma(A)} \Re\left(z\right)$. (Aide : on utilisera l'intégrale de Dunford : $e^{tA} = \frac{1}{2\pi i} \int_{\Gamma\supset\sigma(A)} \left(z-A\right)^{-1} e^{tz} dz$)

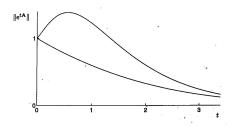
2. Montrer que

$$\frac{d}{dt} \left\| e^{tA} \right\|_{/t=0} = \omega \left(A \right)$$

avec
$$\omega(A) := \sup_{\lambda \in \sigma\left(\frac{1}{2}(A+A^*)\right)} \lambda$$
.

3. Si A est une matrice normale, montrer que $\omega(A) = \alpha(A)$.

4. Exemple : $A_1=\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$, $A_2=\begin{pmatrix} -1 & 5 \\ 0 & -2 \end{pmatrix}$. Parmi les deux courbes ci-dessous,



Matrice de Jordan 6

Soit $J_n := \begin{pmatrix} 0 & 1 & & 0 \\ & \ddots & \ddots & \\ & & & 1 \\ 0 & & & 0 \end{pmatrix}$ est la matrice de Jordan $n \times n$. On note $B(r) := \{z \in \mathbb{C}, |z| \le r\}$.

1. Si $\delta > 0$ montrer que le pseudo-spectre $\sigma_{\delta}(J_n)$ vérifie

$$B\left(\delta^{1/n}\right) \subset \sigma_{\delta}\left(J_{n}\right) \subset B\left(\left(\delta n\right)^{1/n}\right)$$

(Aide : pour la première inclusion on utilisera le vecteur $e:=\left(1,z,z^2,\ldots,z^{n-1}\right)$ avec $|z|\leq \delta^{1/n}$. Pour la deuxième inclusion, on montrera que $R_{J_n}(z)=-\frac{1}{z}\ldots-\frac{J^{n-1}}{z^n}$).

2. Montrer que l'image numérique est $\mathcal{N}(J_n) = B(r)$ avec $r = \cos\left(\frac{\pi}{n+1}\right)$.

3. Considérer la matrice "perturbée" $A_\delta:=\left(egin{array}{ccc}0&1&&&0\\&\ddots&&\ddots&\\&&&&1\\\delta&&&&0\end{array}\right)$. Calculer le spectre de

Références

- [1] G. Folland. Harmonic Analysis in phase space. Princeton University Press, 1988.
- [2] M. Reed and B. Simon. Mathematical methods in physics, vol I: Functional Analysis. Academic press, New York, 1972.
- [3] M. Taylor. Partial differential equations, Vol II. Springer, 1996.