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Abstract. Quantum ergodicity theorem states that for quantum systems with er-

godic classical flows, eigenstates are, in average, uniformly distributed on energy

surfaces. We show that if N is a hypersurface in the position space satisfying a

simple dynamical condition, the restrictions of eigenstates to N are also quantum

ergodic.

1. Introduction

In a recent paper [6] Toth and Zelditch proved a remarkable result stating that if

(M, g) is a compact manifold with an ergodic geodesic flow, then quantum ergodicity

holds for restrictions of eigenfunctions to hypersurfaces satisfying a certain dynamical

condition. The purpose of this note is to provide a semiclassical generalization of

their result. Our approach avoids global constructions and calculations by reducing

equidistribution for restrictions to the equidistribution in the ambient manifold. The

geometric condition (1.1) enters to obtain a decorrelation between contributions to the

restrictions coming from different parts of phase space.

For the standard quantum ergodicity result established by Shnirelman, Zelditch and

Colin de Verdière, see [2],[3],[6] and references given there. We state the simplest

version of the restriction result as follows.

Suppose that (M, g) is a compact Riemannian manifold with an ergodic geodesic

flow ϕt : S∗M → S∗M , and suppose that N ⊂ M is an open smooth hypersurface. If

S∗NM ⊂ S∗M denotes the cosphere bundle of M restricted to N and B∗N ⊂ T ∗N the

coball bundle of N we let

π1 : S∗NM → B∗N

be the restriction of an element of S∗NM to TN . It defines a unique nontrivial involu-

tion, which is the reflection across the hyperplane T ∗N :

γ1 : S∗NM → S∗NM , π1 ◦ γ1 = π1 , γ1 ◦ γ1 = id.

We make the following dynamical assumption on N :

The set of ρ ∈ S∗NM satisfying ϕt(ρ) ∈ S∗NM
and ϕt(γ1(ρ)) = γ1(ϕt(ρ)) for some t 6= 0, has measure 0.

(1.1)
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Figure 1. Left: the situation prohibited almost everywhere by the dy-

namical assumption (1.1). Right: The projection map π1 and the reflec-

tion map γ1 in the cotangent space over some point x ∈ N .

A natural measure on S∗NM is obtained from the Liouville measure on S∗M , µ1. For

each x ∈M it induces a measure on S∗xM , µx, such that

µ1(Ω) =

∫
M

µx(Ω ∩ S∗xM)d volg(x), Ω ⊂ S∗M.

This defines a measure on S∗NM :

ν1(Γ) =
1

µ1(S∗M)

∫
N

µx(Γ ∩ S∗xM)d volg|N (x), Γ ⊂ S∗NM, (1.2)

where g|N is the metric on N induced by g. (Ω and Γ are Borel sets.)

Now let {uj}∞j=0 be the complete set of eigenfunctions of the Laplacian on (M, g):

−∆guj = λ2
juj, ‖uj‖L2 = 1, 0 = λ0 < λ1 ≤ λ2 ≤ · · · .

The statement of the theorem uses the standard concept of a pseudodifferential

operator on a manifold – see [4, §18.2].

Theorem 1. Let N be a smooth open hypersurface satisfying (1.1). Suppose that A ∈
Ψ0

phg(N) is a classical pseudodifferential operator on N , with WF(A) ∩ S∗N b S∗N ,

that is A compactly supported inside N . Suppose that vj := uj|N . Then

1

λn

∑
λj≤λ

∣∣∣∣〈Avj, vj〉L2(N,d volg|N ) −
∫
S∗NM

π∗1σ(A) dν1

∣∣∣∣ −→ 0, λ→∞, (1.3)

where σ(A) is the principal symbol of A (a homogeneous function of degree 0 on T ∗N \
{0}), and the measure ν1 is defined in (1.2).

Remark. The measure (π1)∗ν1 can be explicitely calculated – see [6] and §5. Here we

emphasize that it is smooth on S∗NM . Its invariant meaning becomes more apparent in

the semiclassical formulation below, which also easily allows more general restrictions
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auj|N + bλ−1∂νuj|N , for a, b ∈ C∞(N). We note also that this nonsemiclassical formu-

lation of quantum ergodicity only implies the angular equidistribution of vj in T ∗xN .

That is natural for the standard quantum ergodicity since uj concentrate on S∗M but

not in this case as vj’s can be microsupported anywhere in B∗N . That is remedied in

the semiclassical Theorem 2.

A semiclassical version of quantum ergodicity was first provided by Helffer–Martinez–

Robert [3] and Theorem 1 is a consequence of a more general semiclassical result. To

make the presentation simpler we will consider a version presented in [7, Chapter

15], sufficient to deduce Theorem 1. Similarly, we will only present the result for

Schrödinger operators even though (as can be seen from the proof) it holds for more

general operators. The proof uses some ideas of [2, Appendix D] but we will not refer

to any results from that paper. Refinements allowing energy ranges of size h should

also be possible by those methods but, following [6], we present the case of fixed size

energy ranges only.

Suppose

P (h) := −h2∆g + V (x), V ∈ C∞(M ;R),

is a semiclassical Schrödinger operator on M . We consider P (h) as a self-adjoint

operator acting on half-densities (see [7, Chapter 9]), L2(M,Ω
1
2
M). This is helpful when

more general operators are considered.

The classical symbol of P (h) is given by

p(x, ξ) = |ξ|2g + V (x), (x, ξ) ∈ T ∗M,

and p defines the Hamiltonian flow,

ϕt := exp(tHp) : p−1(E) −→ p−1(E), E ∈ R.

We make the following assumption on a range on energies:

For E ∈ [a, b], dp|p−1(E) 6= 0, and the flow ϕt : p−1(E)→ p−1(E) is ergodic, (1.4)

where ergodicity is with respect to the Liouville measure µE on p−1(E).

Now, let N be a smooth open hypersurface in M . We define the following analogue

of S∗NM :

ΣE := p−1(E) ∩ π−1(N), (1.5)

where π : T ∗M → M is the natural projection. We note that ΣE is a smooth hyper-

surface in p−1(E) if

V (x) = E =⇒ dV (x) /∈ N∗xN, (1.6)

and for simplicity we make this assumption for E ∈ [a, b]. For E > 0 it is satisfied

when V ≡ 0, and that is the setting of Theorem 1.
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By restricting elements of ΣE to TN we obtain a map

πE : ΣE → BE := πE(ΣE) ⊂ T ∗N, (1.7)

which is a diffeomorphism almost everywhere. It defines a unique nontrivial involution

γE : ΣE → ΣE, πE ◦ γE = πE, γE ◦ γE = id.

The assumption on N is analogous to the assumption (1.1):

For E ∈ [a, b], the set of ρ ∈ ΣE satisfying ϕt(ρ) ∈ ΣE

and ϕt(γE(ρ)) = γE(ϕt(ρ)) for some t 6= 0, has measure 0.
(1.8)

We denote by uj(h) a normalized eigenfunction of P (h) with an eigenvalue Ej(h),

P (h)uj(h) = Ej(h), ‖uj(h)‖
L2(M,Ω

1
2
M )

= 1.

To formulate the next theorem we need to restrict half-densities to N and that

requires a choice. Suppose f ∈ C∞(M), f |N = 0, df |N 6= 0. Informally, the restriction

is now defined using, |dx| 12 = |dy| 12 |df | 12 , x ∈ M , y ∈ N . More precisely if, in local

coordinates, x = (x′, xn), N = {xn = 0} then, in the half-density notation of [7, §9.1],(
u(x)|dx|

1
2

)
|N := u(x′, 0)|dx′|

1
2

∣∣∣∣ ∂f∂xn (x′, 0)

∣∣∣∣− 1
2

. (1.9)

Theorem 2. Let P (h) = −h2∆g + V (x) be a Schrödinger operator satisfying (1.4)

and N be a smooth open hypersurface satisfying (1.8). Suppose that A ∈ Ψ0(N,Ω
1
2
N) is

a compactly supported semiclassical pseudodifferential operator. For Q ∈ Ψm(M,Ω
1
2
M)

define vj := Quj(h)|N , where the restriction operator on half densities is defined in

(1.9). Then

hn
∑

Ej∈[a,b]

∣∣∣∣〈Avj, vj〉L2(N,Ω
1
2
N )
−
∫

ΣEj

π∗Ejσ(A)|σ(Q)|2dνEj
∣∣∣∣ −→ 0, h→ 0, (1.10)

where σ(A) ∈ S0(T ∗N) is the symbol of A, σ(Q) ∈ Sm(T ∗M) is the symbol of Q, and

νE =
1

µE(p−1(E))

1

|Hpf |
(σ|ΣE)n−1

(n− 1)!
(1.11)

with µE the Liouville measure and f defining the restriction of half-densities in (1.9).

The now standard argument due to Colin de Verdière and Zelditch and described in

[7, Theorem 15.5] shows that this result provides pointwise convergence for a density

one subsequence.

The dynamical condition of Toth–Zelditch [6] is stated using Poincaré return times

but the analysis in that paper shows that it is equivalent to our condition. The paper [6]

provides interesting examples for which it is satisfied.
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2. Semiclassical preliminaries

We will use the calculus of semiclassical pseudodifferential operators described in

[7, §9.3, §14.2]. For a compact manifold, X (which could different from the compact

manifold M considered in Section 1), the class Ψm(X) denotes operators of order m,

so that, for instance −h2∆g ∈ Ψ2(M). We have the symbol map, σ, appearing in the

following exact sequence

0 −→ hΨm−1(X) −→ Ψm(X)
σ−→ Sm(T ∗X)/hSm−1(T ∗X) −→ 0,

where Sm denotes the standard space of symbols. The quantization map Oph :

Sm(T ∗X)→ Ψm satisfies

σ(Oph(a)) = a mod hSm−1(T ∗X).

We also introduce the class of compactly microlocalized pseudodifferential operators,

Ψcomp(X): A ∈ Ψ−∞(X) is in Ψcomp(X) if for some χ ∈ C∞c (T ∗X),

Oph(1− χ)A ∈ h∞Ψ−∞(X).

For this class the definition of WFh(A) given in [7, §8.4] applies. From the same

section we take the definition of microlocal equality of operators.

Following [1, §2.3], [5, §3], and [7, §11.2] we consider Fourier integral operators

quantizing a canonical transformation κ : U1 → U2, U1 b T ∗X and U2 b T ∗Y , κ

defined on a neighbourhood of U1: we say that an operator F : L2(X) → L2(Y ),

quantizes κ if for any A ∈ Ψcomp(Y ) with WFh(A) b U2,

F ∗AF = B, B ∈ Ψcomp(X), σ(B) = κ∗σ(A). (2.1)

We further require that F be microlocally unitary in the sense that F−1 = F ∗ microlo-

cally near U1 × U2. If F quantizes κ, then the operator F ∗ quantizes κ−1.

The standard example is given by F (t) = e−itP (h), where P (h) = −h2∆g + V (x) ∈
Ψ2(M) (or a more general operator) which quantizes the Hamiltonian flow ϕt :=

exp(tHp).

We say that a tempered operator (see [7, §8.4]) G : L2(X) → L2(Y ), is compactly

microlocalized if for some A ∈ Ψcomp(X) and B ∈ Ψcomp(X),

AGB −G ∈ h∞Ψ−∞. (2.2)
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In that case we can define WFh(G) ⊂ T ∗X × T ∗Y , by taking the twisted WFh of its

Schwartz kernel, KG:

WFh(G) := {(x,−ξ; y, η) : (x, ξ; y, η) ∈WFh(KG)}.

If F quantizes some canonical transformation κ, then WFh(F ) lies inside the graph of

κ.

We recall from [7, Theorem 14.9] that for P (h) = −h2∆ + V (x) (and by the same

methods for more general operators) and f ∈ C∞c (R),

f(P (h)) ∈ Ψcomp(M), σ
(
f(P (h))

)
= f(p). (2.3)

As before, let (uj(h))j∈N be the full orthonormal system of eigenfunctions of P (h)

with eigenvalues Ej(h). From [7, Theorem 15.3] applied to the operator f(P (h))A,

where A ∈ Ψm(M) and f ∈ C∞c (R), we obtain

(2πh)n
∑
j

f(Ej)〈Auj, uj〉 =

∫
T ∗M

f(p)σ(A) dµσ +O(h), (2.4)

where µσ is the symplectic measure, µσ = σn/n!.

We conclude this section with two lemmas. The first one, in the spirit of [2, Appen-

dix D], gives estimates using L2 norms of symbols:

Lemma 1. There exists a constant C such that for each a′ < a < b < b′ and each

A ∈ Ψm(M),

(2πh)n
∑

Ej∈[a,b]

‖Auj‖2
L2 ≤ ‖σ(A)‖2

L2(p−1([a′,b′])) +O(h) (2.5)

where the L2 norm of σ(A) is taken with respect to the measure µσ.

More generally, if N ⊂ M is a fixed smooth submanifold (of any dimension), then

there exists a constant C such that for each Ã ∈ Ψm(N),

hn
∑

Ej∈[a,b]

‖Ã(uj|N)‖2
L2 ≤ C‖σ(Ã)‖2

L2(π(p−1([a′,b′])∩T ∗NM)) +O(h). (2.6)

Here T ∗NM is the cotangent bundle of M restricted to N and π : T ∗NM → T ∗N is the

projection.

Remark. We note that in the case when Ã = 1 we recover the bound

hn
∑

Ej∈[a,b]

‖uj|N‖2
L2 ≤ C . (2.7)

It is essential to average as for individual eigenfuctions the bound Ch
n−k
2 is optimal.
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Proof. To show (2.5), take f ∈ C∞c (a′, b′) such that 0 ≤ f ≤ 1 everywhere and f = 1

on [a, b]. Then we write by (2.4),

(2πh)n
∑

Ej∈[a,b]

‖Auj‖2
L2 ≤ (2πh)n

∑
j

f(Ej)〈A∗Auj, uj〉

=

∫
T ∗M

f(p)|σ(A)|2 dµσ +O(h) ≤
∫
p−1([a′,b′])

|σ(A)2| dµσ +O(h).

To show (2.6), denote by RN : C∞(M) → C∞(N) the restriction operator and note

that

hn
∑

Ej∈[a,b]

‖Ã(uj|N)‖2
L2 ≤ hn

∑
j

|f(Ej)|2‖ÃRNuj‖2
L2 = hn

∑
j

‖ÃRNf(P )uj‖2
L2

= hn‖ÃRNf(P )‖2
HS.

The Hilbert–Schmidt norm on the right-hand side is equal to the L2 norm of the

Schwartz kernel K of ÃRNf(P ). Note that K = O(h∞) away from the diagonal of N

embedded in N ×M . To estimate K near the diagonal, we choose local coordinates

x = (x′, x′′), x′ ∈ Rk, x′′ ∈ Rn−k, where k = dimN , on M near some point of N , in

which N is given by {x′′ = 0}. If ã is the full symbol of Ã in these coordinates (in

the standard quantization) and b̃ is the full symbol of the pseudodifferential operator

f(P (h)), then we can write

K(x, y) = (2πh)−n−k
∫
e
i
h

(x·η−z·η+z·ξ′−y·ξ)ã(x, η)b̃(z, 0, ξ) dzdηdξ,

here y, ξ ∈ Rn and x, z, η ∈ Rk. By the unitarity of the (semiclassical) Fourier trans-

form, the L2
x,y norm of K(x, y) is equal to the L2

x,ξ norm of

K1(x, ξ) = (2πh)−n/2−k
∫
e
i
h

(x·η−z·η+z·ξ′)ã(x, η)b̃(z, 0, ξ) dzdη.

The method of stationary phase shows that

K1(x, ξ) = (2πh)−n/2e
i
h
x·ξ′(ã(x, ξ′)b̃(x, 0, ξ) +OC∞(h)).

Now, hn/2 times the L2 norm of K1 is bounded by a constant times the L2 norm of ã

on the set π(supp b̃ ∩ T ∗NM), with an O(h) remainder. �

From the lemma we recover the standard fact that for each a < b, there exists a

constant C such that

#{j : Ej ∈ [a, b]} ≤ Ch−n. (2.8)

To formulate the next lemma we define

Diag(T ∗M) := {(ρ, ρ) : ρ ∈ T ∗M} ⊂ T ∗M × T ∗M.
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Lemma 2. Suppose that G : L2(M)→ L2(M) is a compactly microlocalized tempered

operator in the sense of (2.2), and that f ∈ C∞c (R). Then for G satisfying

WFh(G) ∩Diag(T ∗M) = ∅,

we have ∑
j

f(Ej)〈Guj, uj〉 = O(h∞). (2.9)

Proof. The left-hand side of (2.9) is equal to the trace of Gf(P (h)). We can write

G as a finite sum of operators of the form X1GX2, where X1, X2 ∈ Ψcomp satisfy

WFh(X1) ∩WFh(X2) = ∅. Then by the cyclicity of the trace,

Tr(X1GX2f(P )) = Tr(X2f(P )X1G) = O(h∞),

as X2f(P )X1 ∈ h∞Ψ−∞. �

3. Decorrelation for Fourier integral operators

In the proof of Theorem 2 we will encounter expressions involving 〈Fuj, uj〉, where

(uj(h))j∈N is the full orthonormal system of eigenfunctions of P (h) = −h2∆g + V (x)

with eigenvalues Ej(h), and F is a compactly microlocalized semiclassical Fourier

integral operator. This section shows that the sum of such terms over j in anO(1) sized

spectral window is negligible when the canonical relation of F satisfies a ‘nonreturning’

assumption; we call this phenomenon decorrelation for Fourier integral operators.

Assume F is a compactly microlocalized tempered operator L2(M) → L2(M), in

the sense of (2.2), and

‖F‖L2→L2 = O(1), WFh(F ) ⊂ {(ρ, κ(ρ)) : ρ ∈ K1}, (3.1)

where κ : V1 → V2 is a canonical transformation, V1, V2 ⊂ T ∗M are open sets, and

Kj ⊂ Vj are compact sets such that κ(K1) = K2. (In our case, F will be a Fourier

integral operator, but this is not required in the proof.)

For each t ∈ R, define the t-exceptional set,

Eκ(t) := {ρ ∈ K1 ∩ ϕ−t(K1) : ϕt(κ(ρ)) = κ(ϕt(ρ))}, ϕt := exp(tHp). (3.2)

The decorrelation result is given as follows:

Lemma 3. Suppose that a < b are fixed, and that there exists t0 > 0 such that

µσ

(
p−1([a, b]) ∩

⋃
|t|≥t0

Eκ(t)
)

= 0, (3.3)

where Eκ(t) is given by (3.2) and µσ is the symplectic measure.



QUANTUM ERGODICITY FOR RESTRICTIONS 9

Then for each F satisfying (3.1),

hn
∑

Ej∈[a,b]

|〈Fuj, uj〉| → 0 as h→ 0. (3.4)

Proof. Take T > t0 and denote

K̃T :=
⋃

t0≤|t|≤T

Eκ(t). (3.5)

Then K̃T is a compact subset of U1 and µσ(K̃T ∩ p−1([a, b])) = 0. Therefore, there

exists an open set ŨT ⊂ U1 and constants a′ < a and b′ > b such that

K̃T ⊂ ŨT , µσ(ŨT ∩ p−1([a′, b′])) ≤ T−1.

Take XT ∈ Ψcomp(M) satisfying |σ(XT )| ≤ 1, WFh(XT ) ⊂ ŨT , and XT = 1 mi-

crolocally near K̃T . Since F is bounded on L2(M), |〈FXTuj, uj〉| ≤ C‖XTuj‖L2 .

Hence (2.5) and (2.8) give

hn
∑

Ej∈[a,b]

|〈FXTuj, uj〉| ≤ C

(
hn

∑
Ej∈[a,b]

‖XTuj‖2
L2

)1/2

≤ C(‖σ(XT )‖2
L2(p−1([a′,b′])) +OT (h))1/2 ≤ C(T−1 +OT (h))1/2,

(3.6)

where C denotes a constant independent of T and h.

We now analyse the contribution of F1 := F (1−XT ). For that define

〈F1〉T :=
1

T

∫ T

0

eitP (h)/hF1e
−itP (h)/h dt.

For each eigenfunction uj, we have

〈F1uj, uj〉 = 〈〈F1〉Tuj, uj〉.

We now take some f ∈ C∞c (R) such that 0 ≤ f ≤ 1 everywhere and f = 1 near [a, b].

Then by (2.8),

hn
∑

Ej∈[a,b]

|〈F1uj, uj〉| = hn
∑

Ej∈[a,b]

|〈〈F1〉Tuj, uj〉|

≤ C

(
hn
∑
j

f(Ej)‖〈F1〉Tuj‖2
L2

)1/2

.

(3.7)

We now write

hn
∑
j

f(Ej)‖〈F1〉Tuj‖2
L2 = hn

∑
j

f(Ej)〈〈F1〉∗T 〈F1〉Tuj, uj〉

=
1

T 2

∫ T

0

∫ T

0

hn
∑
j

f(Ej)〈ei(s−t)P (h)/hF ∗1 e
i(t−s)P (h)/hF1uj, uj〉 dtds.
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Since ‖ei(s−t)P (h)/hF ∗1 e
i(t−s)P (h)/hF1‖L2→L2 is bounded uniformly in t, s, h, we estimate

the integral over the region |t − s| ≤ t0 using the upper bound on the number of

eigevalues, (2.8),

1

T 2

∫
0≤t,s≤T
|t−s|≤t0

hn
∑
j

f(Ej)〈ei(s−t)P (h)/hF ∗1 e
i(t−s)P (h)/hF1uj, uj〉 dtds ≤ CT−1, (3.8)

where C is again a constant independent of T and h.

It remains to estimate the integral over the region t0 ≤ |t − s| ≤ T . However, for

t0 ≤ |r| ≤ T , WFh(e
irP (h)/hF ∗1 e

−irP (h)/hF1) ⊂

{(ρ, ρ′) | ρ ∈ K1 \ K̃T , ϕr(ρ
′) ∈ K1, κ(ϕr(ρ

′)) = ϕr(κ(ρ))}. (3.9)

The definition of K̃T – see (3.2) and (3.5) – shows that the set in (3.9) does not intersect

Diag(T ∗M). This means that the operator G = eirP (h)/hF ∗1 e
−irP (h)/hF1 satisfies the

hypothesis of Lemma 2, and by (2.9) we find

1

T 2

∫∫
0≤t,s≤T
|t−s|≥t0

hn
∑
j

f(Ej)〈ei(s−t)P (h)/hF ∗1 e
i(t−s)P (h)/hF1uj, uj〉 dtds = OT (h∞).

Combining this with (3.8) and recalling (3.6) and (3.7), we get

hn
∑

Ej∈[a,b]

|〈Fuj, uj〉| ≤ (CT−1 +OT (h))1/2,

where C is a constant independent of T and h. By choosing T large and then h small,

we obtain (3.4). �

4. Quantum ergodicity for restrictions

We will now prove Theorem 2 and we use the notation from the second (semiclassical)

part of Section 1. To simplify the presentation we put Q = Id. The general case is

similar.

We start with some geometric observations. The condition (1.6) shows that, in

the notation of (1.7), BE := πE(ΣE) ⊂ T ∗N, is a smooth manifold with a smooth

boundary. Any ρ ∈ BE \ ∂BE is a regular value of πE; moreover, π−1
E (ρ) = {ρ+, ρ−},

πE is a local diffeomorphism near ρ±, and the involution γE is given by γE(ρ±) = ρ∓.

The Hamilton vector field Hp is transversal to ΣE at ρ±.

To prove Theorem 2 we we can assume that [a, b] is a small neighbourhood of a fixed

energy level E. We then decompose any compactly supported A ∈ Ψ0(N) as follows:

A =
J∑
j=1

Ãj,ε + Aε + (1−XE)A, (4.1)

where
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• XE ∈ Ψcomp(N) is microlocally equal to Id near BE ⊂ T ∗N , and WFh(XE) is

contained in small neighbourhood of BE,

• Ãj,ε ∈ Ψcomp(N), and WFh(Ãj,ε) is a small open subset of BE \ ∂BE,

• Aε ∈ Ψcomp(N), µσ(WFh(Aε)) < ε, where µσ is the symplectic measure.

The estimate (2.6) in the second part of Lemma 1 shows that the contribution of

(1−XE)A is negligible, and that the contribution of Aε will disappear in ε→ 0 limit.

Hence we only need to prove Theorem 2 for terms of the form Ãj,ε. We assume now

that ρ ∈ BE \ ∂BE, and that Ã ∈ Ψcomp(N) is microlocalized in a small neighborhood

V ⊂ T ∗N of ρ. Choose small δ > 0 and define the set

U := {ϕt(x̃, ξ̃) : |t| < δ, (x̃, ξ̃) ∈ ΣE+τ ∩ π−1
E+τ (V ), |τ | < δ}.

If V and δ are small enough, then we can write U = U1 t U2, where U`, ` = 1, 2, are

open subsets of T ∗M (one of which is a neighborhood of ρ+ and the other of ρ−) and

moreover, the maps κ` : U` → V × {|t|, |τ | < δ},

κ` : ϕt(x̃, ξ̃) 7−→ (πE+τ (x̃, ξ̃), t, τ) , (x̃, ξ̃) ∈ ΣE+τ ∩ U`, |t|, |τ | < δ, (4.2)

are diffeomorphisms. The maps κ` are symplectomorphisms if we consider {|t|, |τ | < δ}
as a subset of T ∗Rt, with τ the momentum corresponding to t.

Fix a local coordinate system x = (x′, xn) on M such that N = {xn = 0}. To

simplify the symbol calculations, we additionally choose this coordinate system so

that the volume form on N is given by |dx′| and the volume form on M is given by

|dx|. Consider the operator

R : C∞(M)→ C∞(N × Rt), Ru(t) := (eit(P (h)−E)/hu)|N , (4.3)

then

hDtR = R(P (h)− E). (4.4)

Take X` ∈ Ψcomp(M) microlocalized inside U`, but such that

X` = 1 microlocally near κ−1
` (WFh(Ã)× {|τ |, |t| ≤ δ/2}).

Let χ̃(t) ∈ C∞c (−δ, δ) be equal to 1 near [−δ/2, δ/2]. Then

B` := χ̃(t)RX` : C∞(M)→ C∞(N × Rt)

are compactly microlocalized Fourier integral operators associated to κ`. This fol-

lows from an oscillatory representation of ei(P (h)−E)/h given in [7, §10.2]. Indeed, in

coordinates x = (x′, xn) and in the notation of [7, Theorem 10.4],

Ru(t, x̃) :=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h

(ψ(t,x̃,0,η)−y·η)b(t, x̃, 0, η;h)u(y) dydη, (4.5)

where
ψ(0, x, η) = x · η, ∂tψ(t, x, ∂xψ) = p(x, ∂xψ)− E,

ϕt(x, ∂xψ(t, x, η)) = (∂ηψ(t, x, η), η).
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The microlocalization inside U` means that ∂ξnp(x̃, 0, ξ) 6= 0, and that implies that

∂2
(t,x′),ηψ is nondegenerate. Hence, ψ(t, x̃, 0, η) is a generating function of κ`.

Now, let u be an eigenfunction of P (h) with eigenvalue E ′ = E + λ, where λ ∈
[−δ/2, δ/2]. Then WFh(u) ⊂ p−1([E − δ/2, E + δ/2]) and thus

u|N = (X1 +X2)u|N = B1u|t=0 +B2u|t=0 microlocally near WFh(Ã).

Now, by (4.4) each w` := B`u solves hDtw` = λw` microlocally near WFh(Ã) for

|t| ≤ δ/2. Therefore, w`(t) = eitλ/hw`(0) microlocally near WFh(Ã) for |t| ≤ δ/2.

Take χ(t) ∈ C∞c (−δ/2, δ/2) that integrates to 1. Then

〈Ã(w`|t=0), wk|t=0〉L2(N) = 〈(χ(t)⊗ Ã)w`, wk〉L2(N×Rt) +O(h∞).

Therefore,

〈Ã(u|N), (u|N)〉L2(N) =
2∑

`,k=1

〈Ã(w`|t=0), wk|t=0〉L2(N) +O(h∞)

=
2∑

`,k=1

〈(χ(t)⊗ Ã)w`, wk〉L2(N×Rt) +O(h∞)

=
2∑

`,k=1

〈B∗k(χ(t)⊗ Ã)B`u, u〉L2(M) +O(h∞).

(4.6)

We now need to analyse the operators Bk` := B∗k(χ(t) ⊗ Ã)B`. This is split into two

cases. For k = `, Bk` is a pseudodifferential operator. We can then use the usual

quantum ergodicity [7, Theorem 15.4] which we slightly modify:

hn
∑

Ej∈[E−δ/2,E+δ/2]

∣∣∣∣〈B``uj, uj〉L2(M) −
∫
−
p=Ej

σ(B``) dµEj

∣∣∣∣→ 0 , h→ 0. (4.7)

(To see this from [7, Theorem 15.4] apply the zero-mean quantum ergodicity to the

function B``−f(P ), where f(λ) is the mean integral of the symbol of B`` over p−1(E+

λ).)

We need to compute the symbol of B``. For that, we use the integral representation

(4.5) and the stationary phase method, applicable since ∂2
(t,x′),ηψ is nondegenerate.

More precisely, the Schwartz kernel, B∗`B`(z, y) is given by

1

(2πh)2n

∫
Rnt,x̃×Rnη×R

n
ζ

e
i
h

(ψ(t,x̃,0,η)−ψ(t,x̃,0,ζ)+z·ζ−y·η)b(t, x̃, 0, η)b(t, x̃, 0, ζ) dx̃dtdηdζ.

We apply the method of stationary phase in the x̃, t, η variables. The stationary point

is given by η = ζ, ϕt(x̃, 0, ∂xψt(t, x̃, 0, η)) = (y, η), and the value of the phase at a

stationary point is (z − y) · ζ. At t = 0, the leading term in the amplitude is given
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by |∂ξnp|−1. That is, σ(B∗`B`) = |∂ξnp|−1 on T ∗NM near κ−1
` (WFh(Ã) × {|τ | ≤ δ/2}).

Now, we also see from (4.4) that

[P,B∗`B`] = B∗` χ̃(t)R[P,X`] + [P,X∗` ]R∗χ̃(t)B` +X∗`R∗[hDt, |χ̃(t)|2]RX`

vanishes microlocally near κ−1
` (WFh(Ã)× {|τ |, |t| ≤ δ/2}). It follows that

σ(B∗`B`) ◦ κ−1
` = |∂ξnp ◦ κ−1

` ◦ π0|−1 near WFh(Ã)× {|τ |, |t| ≤ δ/2},

where π0 : T ∗(N ×Rt)→ T ∗(N ×Rt) maps (x̃, ξ̃, t, τ) to (x̃, ξ̃, 0, τ). From here and by

Egorov’s Theorem applied to χ(t)⊗Ã, we get σ(B``)◦κ−1
` = |∂ξnp◦κ−1

` ◦π0|−1σ(Ã)χ(t)

near {|τ | ≤ δ/2}. Then∫
−
{p=Ej}

σ(B``) dµEj =
1

µEj(p
−1(Ej))

∫
{τ=Ej−E}

σ(B``) ◦ κ−1
` dx̃dξ̃dt

=
1

µEj(p
−1(Ej))

∫
ΣEj∩U`

|∂ξnp|−1π∗Ejσ(Ã) dx̃dξ̃,
(4.8)

where we parametrized ΣEj by (x̃, ξ̃) ∈ BEj .

Now, we consider the case k 6= `. Then Bk` is a Fourier integral operator with the

canonical transformation κk` := κ−1
k ◦ κ`. We want to apply the decorrelation result

given in Lemma 3.

Using the definition (4.2) of κ`, we see that the canonical transformation κ = κk`
can be described as follows:

κ(ϕs(x̃, ξ̃)) = ϕs(γE′(x̃, ξ̃)), |s| < δ, (x̃, ξ̃) ∈ ΣE′ ∩ U`.

To apply Lemma 3 we need to verify the following: there exists t0 > 0 such that the

set

E := {ρ ∈ U` ∩ ϕ−t(U`) : ∃ t, |t| ≥ t0 , ϕt(κ(ρ)) = κ(ϕt(ρ))} ⊂ T ∗M , (4.9)

has µσ-measure zero. To see this, suppose that ρ ∈ E , t is the corresponding time, and

s, s′ ∈ (−δ, δ) are such that ρ = ϕs(x̃, ξ̃), ϕt(ρ) = ϕs′(x̃
′, ξ̃′), (x̃, ξ̃), (x̃′, ξ̃′) ∈ ΣE′ ∩ U`.

Then (x̃′, ξ̃′) = ϕt+s−s′(x̃, ξ̃) and the condition ϕt(κ(ρ)) = κ(ϕt(ρ)) can be rewritten as

(x̃, ξ̃) ∈ ΣE′ , ϕt+s−s′(x̃, ξ̃) ∈ ΣE′ , ϕt+s−s′(γE′(x̃, ξ̃)) = γE′(ϕt+s−s′(x̃, ξ̃)).

Put t0 > 2δ, then t + s − s′ 6= 0. It now follows from (1.8) that the set E from (4.9)

has measure zero; by Lemma 3, the contributions of Bk`, k 6= ` to the sum (1.10) go

to 0 as h→ 0.

Going back to (4.6), (4.7) and (4.8) this means for Ã satisfying our localization

assumptions

hn
∑

Ej∈[a,b]

∣∣∣∣〈Ã(uj|N), (uj|N)〉L2(N) −
1

Vj

∑
`=1,2

∫
ΣEj∩U`

|∂ξnp|−1π∗Ejσ(Ã) dx′dξ′
∣∣∣∣ = o(1),
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where Vj := µEj(p
−1(Ej)). This is (1.10) with f = xn. If we chooose a different f to

obtain the restriction of half-densities in (1.9), then we obtain a factor of |∂xnf |:

〈Ãfv, v〉L2(N) = 〈Ã|∂xnf |−
1
2v, |∂xnf |−

1
2v〉L2(N), σ(Ãf ) = |∂xnf |−1σ(Ã).

and Hpf = ∂xnf∂ξnp on T ∗NM . This completes the proof of (1.10).

5. From semiclassical estimates to high energy estimates

We conclude the paper by explaining how Theorem 1 follows from Theorem 2. We

put V ≡ 0 and identify L2(M,Ω
1
2
M) with L2(M,d volg) by writing half-densities as

u(x)|d volg |
1
2 , where u ∈ L2(M,d volg).

Let x = (x′, xn) be normal geodesic coordinates near (0, 0) ∈ N , in which N =

{xn = 0}, p(x, ξ′, ξn) = ξ2
n + r(x, ξ′), and r(x′, 0, ξ′) is the dual of the restriction metric

g|N . Suppose that f satisfies f |N = 0, |df(x)|g = 1. In the chosen coordinates the last

condition means that ∂xnf = 1, f = 0, on N . Hence the restriction of half-densities

(1.9) obtained using this choice of f shows that, we obtain an identification with the

restriction of functions u|N ∈ L2(N, d volg|N ).

We now identify the measures appearing in Theorems 1 and 2; this can be done

locally. In our coordinates, S∗M can be parametrized by (x′, xn, ξ
′), r(x′, ξ′) ≤ 1,

ξn = ±(1− r(x, ξ′)) 1
2 (the parametrization degenerates at r(x, ξ′) = 1). The Liouville

measure is obtained by requiring dµ1 ∧ dp = dxdξ, and

dµ1 =
1

2|ξn|
dxdξ′ =

1

2(1− r(x, ξ′)) 1
2

dxdξ′.

In the notation of (1.2) this gives dµ(0,x′) = det g(0, x′)−
1
2dξ′/(2(1 − r(x′, 0, ξ′)) 1

2 ), so

that

dν1 =
1

µ1(S∗M)

1

2
√

1− r(x′, 0, ξ′)2
dx′dξ′, B1 = {(x′, ξ′) : r(x′, 0, ξ′) ≤ 1} ,

where we parametrized S∗NM = {(x′, 0, ξ) : ξ2
n + r(x′, 0, ξ′) = 1} by (x′, ξ′) ∈ B1.

On the other hand, the measure νE given by (1.11) is

dνE =
1

µ1(S∗M)

1

2
√

1− r(x′, 0, ξ′)2
dx′dξ′ ,

ΣE = {(x′, 0,
√
Eξ′,
√
Eξn) : ξn = ±(1− r(x′, 0, ξ′))

1
2 , r(x′, 0, ξ′) ≤ 1}

since for f with ∂xnf = 1, ∂x′f = 0 on xn = 0, Hpf = 2ξn.

To pass from the semiclassical result to the special case of the high energy result we

put Ej = h2λ2
j , h = 1/λ. The difficulty lies in controlling low frequency contributions

and estimates (2.6) and (2.7) are crucial for that.
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Let Â be a classical pseudodifferential operator of order 0 on N , with a compactly

supported Schwartz kernel in N . (Henceforth operators with hats denote polyhomo-

geneous operators, while operators without hats denote semiclassical operators.) Its

principal symbol σ(Â) is a homogeneous function of degree 0 on T ∗N . We define

Aε ∈ Ψ0(N) by putting

Aε := Oph
(
σ(Â)(1− χ(|ξ′|g|N/ε))

)
, χ ∈ C∞c (R) , χ(t) = 1, |t| ≤ 1.

Theorem 2 shows that for 0 < a < b, and vj = uj|N ,

hn
∑

hλj∈[a,b]

∣∣∣∣〈Aεvj, vj〉L2(N,d volg|N ) −
∫

ΣEj

π∗Ejσ(Aε)dνEj

∣∣∣∣ −→ 0, h = 1/λ→ 0. (5.1)

We also have ∫
ΣEj

π∗Ejσ(Aε)dνEj =

∫
S∗NM

π∗1σ(Â)dν1 +O(ε),

and hence the result will follow (by taking [a, b] = [1, 2] and using a dyadic sum in λ)

once we show that

λ−n
∑

hλj∈[a,b]

∣∣∣〈(Â− Aε)vj, vj〉L2(N,d volg|N )

∣∣∣ = O(ε) +Oε(h). (5.2)

Using (2.7) this will follow from

lim
ε→0

lim sup
h→0

hn
∑

hλj∈[a,b]

‖(Â− Aε)vj(h)‖2 = 0. (5.3)

For this, we first claim that for any vector field X on N ,

‖(Â− Aε)hX‖L2→L2 ≤ Cε+Oε(h). (5.4)

Indeed, the left-hand side of (5.4) is O(h) if we put an operator in the class Ψ−1
phg or

hΨ−1 in place of Â−Aε, which means that we can reduce to local coordinates, in which

we can assume X = ∂y1 and the full symbol of (Â − Aε)hX in the non-semiclassical

left quantization becomes, up to Ψ−1
phg + hΨ−1 terms,

r(y, η;h) := hη1a
0(y, η/|η|)

(
(1− χ(|η|))− (1− χ(h|η|g|N/ε))

)
.

However, ∂αy ∂
β
η r(y, η;h) = O(ε + h)〈η〉−|β| (here the first cutoff gives the O(h) term,

while the second cutoff gives the O(ε) term); therefore, by the L2 boundedness of

classical pseudodifferential operators, we get (5.4).

Now, let B0 ∈ Ψcomp(M) be a semiclassical pseudodifferential operator equal to the

identity microlocally near the zero section of T ∗M , but supported inside an ε1/2 sized

neighborhood of the zero section. Then we can write

1−B0 =
∑
k

(hXk)B
k
0 +Oε(h)L2→L2



16 SEMYON DYATLOV AND MACIEJ ZWORSKI

for some vector fields Xk (independent of ε) and some Bk
0 ∈ Ψcomp(M) (with L2 → L2

norm O(ε−1/2)); by (5.4), we have

‖(Â− Aε)(1−B0)‖L2→L2 ≤ Cε1/2 +Oε(h)

and thus by (2.7), the estimate (5.3) holds for (Â−Aε)(1−B0). Same estimate holds

for (Â−Aε)B0, by recalling that ‖Â−Aε‖L2→L2 = O(1) and using (2.6) together with

the bound ‖σ(B0)‖L2 ≤ Cεn/4. This finishes the proof of (5.3) and thus of Theorem 1.
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