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LOWER BOUNDS ON THE HAUSDORFF MEASURE OF NODAL SETS

CHRISTOPHER D. SOGGE AND STEVE ZELDITCH

Abstract. Let Nϕλ
be the nodal hypersurface of a ∆-eigenfunction ϕλ of eigenvalue λ2

on a smooth Riemannian manifold. We prove that Hn−1(Nϕλ
) ≥ Cλ

7

4
−

3n

4 on the surface
measure of its nodal set. The best previous lower bound was e−Cλ.

Let (M, g) be a compact C∞ Riemannian manifold of dimesion n, let ϕλ be an L2-
normalized eigenfunction of the Laplacian,

∆ϕλ = −λ2ϕλ,

and let
Nϕλ

= {x : ϕλ(x) = 0}
be its nodal hypersurface. Let Hn−1(Nϕλ

) denote its (n − 1)-dimensional Riemannian hy-
persurface measure. In this note we prove

Theorem 1. For any C∞ metric g, there exists a constant Cg > 0 so that

Hn−1(Nϕλ
) ≥ Cgλ

7
4
− 3n

4 .

The proof of Theorem 1 is based on a special case of a general identity (Proposition 1)
which has other interesting implications. In §3 we consider possible improvements that might
be derived from other cases of the identity in Proposition 1.

Some background on lower bounds on volumes of nodal hypersurfaces: In [Y], S. T. Yau
conjectured that for any C∞ metric, one should have

cλ ≤ Hn−1(Nϕλ
) ≤ Cλ. (1)

Here, and elsewhere in this article, C, c denote some positive constants depending only on
(M, g) and not on λ. Both the upper and lower bounds were proved for real analytic Cω

metrics by Donnelly-Fefferman in [DF]. However, for C∞ metrics the best previous result
appears to be

C−λ ≤ Hn−1(Nϕλ
) ≤ λCλ. (2)

The upper bound was first proved in [HS] and the lower bound is proved in Theorem 6.2.5
of [HL]. In dimension 2, J. Brüning proved the lower bound of (1) (see also [Sa]). Thus, our
lower bound appears to be the first one that breaks the exponential barrier in dimensions
n ≥ 3. Perhaps surprisingly, the proof is quite simple.

In dimension 2, Donnelly-Fefferman [DF2] and Dong [D] proved the upper boundH1(Nϕλ
) ≤

Cλ3/2 when dimM = 2. In dimensions n ≥ 3, the Hardt-Simon λλ upper bound in (2) still
seems to be the only known bound. The approach taken in this note might lead to improve-
ments in the upper bound, but not as simply as for the lower bound.
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The proof of Theorem 1 is based on the following identity, which was inspired by a closely
related identity of R. T. Dong [D] (see also [ACF]).

Proposition 1. For any C∞ Riemannian manifold, we have,

2

∫

Nϕλ

|∇ϕλ|dS = λ2

∫

M

|ϕλ|dV. (3)

More generally, for any f ∈ C2(M),
∫

M

(

(∆ + λ2)f
)

|ϕλ|dV = 2

∫

Nϕλ

f |∇ϕλ|dS. (4)

To obtain lower bounds onHn−1(Nϕλ
), we need lower bounds on ||ϕλ||L1 and upper bounds

on |∇ϕλ|. The following lower bound is new:

Proposition 2. For any (M, g) and any L2-normalized eigenfunction, ||ϕλ||L1 ≥ Cgλ
−n−1

4 .

Combining Propositions 1 and 2 (and applying the Schwartz inequality to ||ϕλ||L1), we
obtain

Corollary 2. For any C∞ Riemannian manifold, there exists constants C, c > 0 so that

C λ2−n−1
4 ≤ C λ2||ϕλ||L1 =

∫

Nϕλ

|∇ϕλ|dS ≤ c λ2 V ol(M)1/2.

The upper bound is sharp (in terms of order of magnitude) and is achieved by the plane
wave eigenfunctions on flat tori and by highest weight spherical harmonics (see §2).

We then further use the local Weyl law bound ||∇ϕλ||C0 ≤ Cλ
n+1
2 , again valid on any

n-dimensional Riemannian manifold, to obtain

Lemma 1. For any C∞ Riemannian manifold, there exists constants C, c > 0 so that
∫

Nϕλ

|∇ϕλ|dS ≤
(

sup
x∈Nϕλ

|∇ϕλ(x)|
)

Hn−1(Nϕλ
) ≤ Cλ

n+1
2 Hn−1(Nϕλ

).

Theorem 1 follows by combining Corollary 2 and Lemma 1 and by dividing both sides by

λ
n+1
2 .
In §3, we discuss possible improvements of the lower bound. One of the inputs is a lower

bound ||ϕλ||L1 ≥ Cg λ−n−1
4 , on L1 norms of L2-normalized eigenfunctions, which is valid

for all smooth compact Riemannian manifolds. Although this is sharp, it is probably only
achieved for very special Riemannian manifolds.

The identity for general f ∈ C2(M) of Proposition 1 can be used to investigate the
equidistribution of nodal sets equipped with the surface measure λ−2|∇ϕλ|dS. Various results
of this kind are given in [Z2].

0.1. Other level sets. These results generalize easily to any level set N c
ϕλ

:= {ϕλ = c}.
Let sgn(x) = x

|x| .

Proposition 3. For any C∞ Riemannian manifold, and any f ∈ C(M) we have,

∫

M

f(∆ + λ2) |ϕλ − c| dV + λ2c

∫

fsgn(ϕλ − c)dV = 2

∫

N c
ϕλ

f |∇ϕλ|dS. (5)
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This identity has similar implications for Hn−1(N c
ϕλ
) and for the equidistribution of level

sets. Note that if c > sup |ϕλ(x)| then indeed both sides are zero.

Corollary 3. For c ∈ R

λ2

∫

ϕλ≥c

ϕλdV =

∫

N c
ϕλ

|∇ϕλ|dS ≤ λ2V ol(M)1/2.

Consequently, if c > 0

Hn−1(N c
ϕλ
) +Hn−1(N−c

ϕλ
) ≥ Cg λ

2−n+1
2

∫

|ϕλ|≥c

|ϕλ|dV.

Of course,
∫

|ϕλ|≥c
ϕλdV ≤ ||ϕλ||L1, so the lower bound for the c-level sets cannot be better

than the lower bound for nodal sets. Since
∫

|ϕλ|≥c
|ϕλ|dV ≥ ||ϕλ||L1 − cV ol{(|ϕλ| ≥ c}, in

the cases where ||ϕλ||L1 ≥ ǫ0 > 0, this lower bound on Hn−1(N c
ϕλ

∪ N−c
ϕλ

) is comparable to
that for nodal sets when c < ǫ0.

We observe that by the co-area formula,

λ2 =

∫

M

|∇ϕλ|2dV =

∫ max{ϕλ}

min{ϕλ}

(

∫

N c
ϕλ

|∇ϕλ|dS
)

dc. (6)

The bounds on the nodal set measure the extent to which 0 is an “exceptional value” of ϕλ.
Finally, we should explain the connection of our results to those of R. T. Dong. The

identity (4) is closely related to the one in [D], Theorem 2.1: Let qλ(x) = |∇ϕλ(x)|2 + λ2ϕ2
λ

n
.

Then for any domain Ω ⊂ M with smooth boundary,

Hn−1(Nϕλ
∩ Ω) =

1

2

∫

Ω

(∆ + λ2)|ϕλ|√
qλ

dV,

where dV is the volume form of g. More precisely, let Tǫ denote the ǫ-tube around the
singular set Σ(ϕλ) = {x ∈ Nϕλ

: ∇ϕλ(x) = 0}, and define the integral by

lim
ǫ→0

1

2

∫

Ω\Tǫ

(∆ + λ2)|ϕλ|√
qλ

dV,

Dong’s formula shows that (∆+λ2)|ϕλ|√
qλ

dV is the codimension one Hausdorff measure Hn−1 on

Nϕλ
. Dong used this identity to obtain an upper bound on H1(Nϕλ

) on surfaces. We are
using a simpler version where one does not divide by qλ to prove a lower bound.

After the second author presented these results at Johns Hopkins, we learned that similar
results were obtained independently by Colding and Minicozzi [CM]. Using different methods

they obtained the sharper lower bound of λ
3−n
4 for Hn−1(Nϕλ

). Just as we made the final
revision to this article, D. Mangoubi sent the authors a preprint in which derives the lower
bound λ3−n− 1

n . He also compares the methods of the present article and of [CM, M].
We would like to thank D. Mangoubi, Q. Han and W. Minicozzi for comments on earlier

versions of the article. In particular, we thank W. Minicozzi for his helpful helpful comments
on the exposition.
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1. Proof of Proposition 1

We first recall (see [H, HHL, Ch, HHON]) that the the singular set

Σ(ϕλ) = {x ∈ Nϕλ
: ∇ϕλ(x) = 0}

satisfies Hn−2(Σ(ϕλ)) < ∞. Thus, outside of a codimension one subset, Nϕλ
is a smooth

manifold, and the Riemannian surface measure dS = ι ∇ϕλ
|∇ϕλ|

dVg on Nϕλ
is well-defined.

We note that the delta-function on Nϕλ
is the Leray form δ(ϕλ) = ϕ∗

λδ0, i.e. the surface
measure dV ol

dϕλ
= dS

|∇ϕλ| . The measure
∫

fdµλ :=

∫

M

f(∆ + λ2)|ϕλ|dV

can thus be expressed as |∇ϕλ|dS = |∇ϕλ|2δ(ϕλ).
Let us now give the proof of Proposition 1. Clearly the second identity implies the first

one there, and so we need to verify that we have
∫

M

fdµλ = 2

∫

Nϕλ

f |∇ϕλ|dS.

We give two (slightly different) proofs.

Proof. Since dµλ := (∆+λ2)|ϕλ|dV = 0 away from {ϕλ = 0} it is clear that this distribution
is supported on {ϕλ = 0}. We let f ∈ C2(M) and consider

∫

M

f(∆ + λ2)|ϕλ|dV =

∫

|ϕλ|≤δ

f(∆ + λ2)|ϕλ|dV.

Almost all δ are regular values of ϕλ by Sard’s theorem and so we can apply Green’s theorem
to such values, to obtain

∫

|ϕλ|≤δ

f(∆ + λ2)|ϕλ|dV −
∫

|ϕλ|≤δ

|ϕλ|(∆ + λ2)fdV =

∫

|ϕλ|=δ

(f∂ν |ϕλ| − |ϕλ|∂νf)dS.

Here, ν is the outer unit normal and ∂ν is the associated directional derivative. For δ > 0,
we have

ν =
∇ϕλ

|∇ϕλ|
on {ϕλ = δ}, ν = − ∇ϕλ

|∇ϕλ|
on {ϕλ = −δ}. (7)

Letting δ → 0 (through the sequence of regular values) we get
∫

M

f(∆ + λ2)|ϕλ|dV = lim
δ→0

∫

|ϕλ|≤δ

f(∆ + λ2)|ϕλ|dV = lim
δ→0

∫

|ϕλ|=δ

f∂ν |ϕλ|dS.

Since |ϕλ| = ±ϕλ on {ϕλ = ±δ} and by (7), we see that
∫

M
f(∆ + λ2)|ϕλ|dV = limδ→0

∫

|ϕλ|=δ
f ∇|ϕλ|

|∇|ϕλ|| · ∇|ϕλ|dS

= limδ→0

∑

±
∫

ϕλ=±δ
f |∇ϕλ|dS

= 2
∫

Nϕλ

f |∇ϕλ|dS.
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To justify the limit formula, we use the Gauss-Green formula of geometric measure theory,
∫

A(0,δ)

divFdy = −
∫

∂∗A(0,δ)

F (y) · ν(y)dHN−1(y) (8)

to the “annulus” A(0, δ) = {0 ≤ ϕλ ≤ δ}. Here, ∂∗A0,δ is the “essential boundary” of A0,δ

(the boundary in the sense of measure theory). In our case, the full boundary is essential,
and ∂∗A(0, δ) = Nϕλ

∪ N δ
ϕλ
. Also, ν is the unit normal, which in our case is ν = − ∇ϕλ

|∇ϕλ| .
To obtain the desired surface integral, we need to set F = f∇ϕλ, which is a smooth vector
field. We obtain

∫

Nϕλ

f |∇ϕλ|dS −
∫

N δ
ϕλ

f |∇ϕλ|dS =

∫

A(0,δ)

(∇f · ∇ϕλ)− λ2ϕλ)dV = O(δ).

The Gauss-Green formula (8) was proved by De Giorgi and Federer under the assumption
that Hn−1(∂∗A(0, δ)) < ∞, which holds for level sets of eigenfunctions of C∞ metrics since
Hn−1(Σ(ϕλ)) = 0 as Hn−2(Σ(ϕλ)) < ∞. We refer to Federer [F] (Sect 2.10.6, page 173 and
to Theorem 4.5.11 p. 506.) We also refer to Theorem 1 on p. 209 of [EG] and [P] for further
discussion.

�

We now give a second proof:

Proof. We first note that we can express M as the disjoint union

M =

N+(λ)
⋃

j=1

D+
j ∪

N−(λ)
⋃

k=1

D−
k ∪Nλ,

where the D+
j and D−

k are the positive and negative nodal domains of ϕλ, i.e, the connected
components of the sets {ϕλ > 0} and {ϕλ < 0}.

Let us assume for the moment that 0 is a regular value for ϕλ, i.e., Σ = ∅. Then each D+
j

has smooth boundary ∂D+
j , and so if ∂ν is the Riemann outward normal derivative on this

set, by the Gauss-Green formula we have
∫

D+
j

((∆ + λ2)f) |ϕλ| dV =

∫

D+
j

((∆ + λ2)f)ϕλ dV

=

∫

D+
j

f (∆ + λ2)ϕλdV −
∫

∂D+
j

f ∂νϕλ dS

=

∫

∂D+
j

f |∇ϕλ| dS,

using in the last step that ϕλ has eigenvalue λ2, and that −∂νϕλ = |∇ϕλ| since ϕλ = 0 on
∂D+

j and ϕλ decreases as it crosses ∂D+
j from D+

j . A similar argument shows that

∫

D−
k

((∆ + λ2)f) |ϕλ| dV = −
∫

D−
k

((∆ + λ2)f)ϕλ dV =

∫

f ∂νϕλ dS =

∫

∂D−
k

f |∇ϕλ| dS,
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using in the last step that ϕλ increases as it crosses ∂D−
k from D−

k . If we sum these two
identities over j and k, we get
∫

M

((∆ + λ2)f) |ϕλ| dV =
∑

j

∫

D+
j

((∆ + λ2)f) |ϕλ| dV +
∑

k

∫

D−
k

((∆ + λ2)f) |ϕλ| dV

=
∑

j

∫

∂D+
j

f |∇ϕλ| dS +
∑

k

∫

∂D−
k

f |∇ϕλ| dS = 2

∫

Nλ

f |∇ϕλ| dS,

using the fact that Nλ is the disjoint union of the ∂D+
j and the disjoint union of the ∂D−

k .
If 0 is not a regular value of ϕλ we use the Gauss-Green formula for domains with rough

boundaries. The preceding argument yields
∫

D+
j

((∆ + λ2)f) |∇ϕλ| dV =

∫

∂D+
j

f |∇ϕλ| dS,

and a similar identity for the negative nodal domains. Since Nλ\Σ is the disjoint union of
each of the ∂D+

j and the ∂D−
k , we conclude that the same equation holds even when 0 is not

a regular value of ϕλ. �

The attractive feature of this formula is that it immediately gives rather strong results on
the measure with respect to |∇ϕλ|dS of the nodal set.

Lemma 1.1. For f ∈ C2(M), we have 2
∫

Nϕλ

f |∇ϕλ|dS = λ2
∫

M
f |ϕλ|dV +O(1),

Proof. Our main identity (4) gives, for any test function f ,

2

∫

Nϕλ

f |∇ϕλ|dS =

∫

M

|ϕλ|(λ2 +∆)fdV = λ2

∫

f |ϕλ|dV +O(1),

by the Schwartz inequality and the fact that ||ϕλ||L2 = 1. �

1.1. Proof of Proposition 2. We now prove Proposition 2:

Proof. Fix a function ρ ∈ S(R) having the properties that ρ(0) = 1 and ρ̂(t) = 0 if t /∈ [δ/2, δ],
where δ > 0 is smaller than the injectivity radius of (M, g). If we then set

Tλf = ρ(
√
−∆− λ)f,

we have that Tλϕλ = ϕλ. Also, by Lemma 5.1.3 in [So2], Tλ is an oscillatory integral operator
of the form

Tλf(x) = λ
n−1
2

∫

M

eiλr(x,y)aλ(x, y)f(y)dy,

with |∂α
x,yaλ(x, y)| ≤ Cα. Consequently, ||Tλϕλ||L∞ ≤ Cλ

n−1
2 ||ϕλ||L1, with C independent of

λ, and so

1 = ||ϕλ||2L2 = 〈Tϕλ, ϕλ〉 ≤ ||Tϕλ||L∞||ϕλ||L1 ≤ Cλ
n−1
2 ||ϕλ||2L1.

We can give another proof based on eigenfunction estimates in [So3], which say that

‖ϕλ‖Lp ≤ Cλ
(n−1)(p−2)

4p , 2 < p ≤ 2(n+1)
n−1

.
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If we pick such a 2 < p < 2(n+1)
n−1

, then by Hölder’s inequality, we have

1 = ‖ϕλ‖1/θL2 ≤ ‖ϕλ‖L1 ‖ϕλ‖
1
θ
−1

Lp ≤ ‖ϕλ‖L1

(

Cλ
(n−1)(p−2)

4p
)

1
θ
−1
, θ = p

p−1
(1
2
− 1

p
) = (p−2)

2(p−1)
,

which implies ‖ϕλ‖L1 ≥ cλ−n−1
4 , since (1− 1

θ
) (n−1)(p−2)

4p
= n−1

4
. �

We remark that this lowerbound for ‖ϕλ‖L1 is sharp on the standard sphere, since L2-
normalized highest weight spherical harmonics of degree k with eigenvalue λ2 = k(k+n−1)
have L1-norms which are bounded above and below by k(n−1)/4 as k → ∞. Similarly, the
Lp-upperbounds that we used in the second proof of this L1-lowerbound is also sharp because
of these functions.

1.2. Lower bounds on Hn−1(Nϕλ
). We now complete the proof of Theorem 1 along the

lines sketched in the introduction:

Proof. Corollary 2 follows from Propositions 1 and 2. It thus remains to prove Lemma 1.
We require the following standard bounds

||∇ϕλ||C0 ≤ C λ1+n−1
2 . (9)

The proof follows from the local Weyl law,
∑

j:λj≤λ

|∇ϕλ(x)|2 = Cnλ
n+2 +R(x, λ),

where R(x, λ) = O(λn+1). See, e.g., Proposition 2.3 of [Z]. It follows that |∇ϕλ(x)|2 ≤
|R(x, λ)| = O(λn+1). Hence,

∫

Nϕλ

|∇ϕλ|dS ≤ λ
n+1
2

∫

Nϕλ

dS.

We then divide by λ
n+1
2 , use the identity of Proposition 1 and then use the lower bound

of Proposition 2 to complete the proof of Theorem 1.
�

1.3. General level sets. The proof of Proposition 3 for general level sets is similar to that
for c = 0, so we will be brief.

Lemma 1.2. Suppose that {ϕλ = c} is a level set. Then (5) holds, i.e. we have

(∆ + λ2)|ϕλ − c|dV + λ2 c sgn(ϕλ − c) = |∇ϕλ|2δ(ϕλ − c).

Proof. When ϕλ(x) 6= c, we have

(∆ + λ2)|ϕλ − c|dV = −sgn(ϕλ − c)λ2cdV.

Hence the difference of the two sides is supported on N c
ϕλ
. We then repeat the calculation

in Proposition 1 with the sets |ϕλ − c| ≤ δ, to get
∫

M

f(∆+λ2)|ϕλ− c|dV = −
∫

|ϕλ−c|≥δ

f
(

sgn(ϕλ − c)λ2c
)

dV +

∫

|ϕλ−c|≤δ

f(∆+λ2)|ϕλ− c|dV.
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By Green’s theorem,
∫

|ϕλ−c|≤δ

f(∆+λ2)|ϕλ−c|dV−
∫

|ϕλ−c|≤δ

|ϕλ−c|(∆+λ2)fdV =

∫

|ϕλ−c|=δ

(f∂ν |ϕλ−c|−|ϕλ−c|∂νf)dS.

Letting δ → 0 we get

lim
δ→0

∫

|ϕλ−c|≤δ

f(∆ + λ2)|ϕλ − c|dV = lim
δ→0

∫

|ϕλ−c|=δ

f∂ν |ϕλ − c|dS.

We have

∂ν =
∇|ϕλ − c|
|∇|ϕλ − c|| · ∇ =

∇ϕλ

|∇ϕλ|
· ∇, (on {|ϕλ − c| = δ})

and as before,

lim
δ→0

∫

|ϕλ−c|=δ

f∂ν |ϕλ − c|dS = 2

∫

N c
ϕλ

f |∇ϕλ|dS.

�

We now prove Corollary 3:

Proof. The first statement follows by integrating ∆ by parts, and by using the identity,
∫

M
|ϕλ − c|+ c sgn(ϕλ − c) dV =

∫

ϕλ>c
ϕλdV −

∫

ϕλ<c
ϕλdV

= 2
∫

ϕλ>c
ϕλdV,

(10)

since 0 =
∫

M
ϕλdV =

∫

ϕλ>c
ϕλdV +

∫

ϕλ<c
ϕλdV .

Since for c > 0 we have
∫

ϕλ>−c
ϕλdV = −

∫

ϕλ<−c
ϕλdV =

∫

ϕλ<−c
|ϕλ|dV, we also have

λ2

∫

|ϕλ|≥c

|ϕλ|dV =

∫

N c
ϕλ

|∇ϕλ|dS +

∫

N−c
ϕλ

|∇ϕλ|dS, c > 0,

which yields the second part of the Corollary since |∇ϕλ| = O(λ
n+1
2 ). �

1.4. A curious identity. If we set f = ϕλk
in (4), we obtain

Lemma 1.3. (λ2
j − λ2

k)
∫

M
ϕλk

|ϕλj
|dV = 2

∫

Nϕλj

ϕλk
|∇ϕλj

|dS.

Corollary 1.4. Suppose that λj is a multiple eigenvalue and that λk = λj. Then
∫

Nϕλj

ϕλk
|∇ϕλj

|dS = 0.

For instance, on a circle we may consider the double eigenvalue −k2 with eigenfunctions
cos kx, sin kx, where we may verify the formula. Note that the nodal sets need not intersect.
More interesting examples include arithmetic flat tori and round spheres have eigenvalues of
high multiplicity (see §2).

By a similar calculation we have,

(λ2
j − λ2

k)

∫

M

|ϕλk
| |ϕλj

| dV = 2

∫

Nϕλj

|ϕλk
| |∇ϕλj

| dS − 2

∫

Nϕλk

|ϕλj
| |∇ϕλk

| dS,
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hence if λj is a multiple eigenvalue and λk = λj ,
∫

Nϕλj

|ϕλk
| |∇ϕλj

| dS =

∫

Nϕλk

|ϕλj
| |∇ϕλk

| dS.

The calculation follows from the fact, by Proposition 1, (∆ + λ2
j )|ϕλj

| is the measure
2|∇ϕλj

| dS supported on Nϕλj
.

2. Examples

(i) Flat tori

We first consider the eigenfunctions ϕk(x) = sin〈k, x〉 (k ∈ Z
n) on the flat torus T =

R
n/Zn. The zero set consists of the hyperplanes 〈k, x〉 = 0 mod 2π. Also, |∇ sin〈k, x〉|2 =

cos2〈k, x〉|k|2. Since cos〈k, x〉 = 1 when sin〈k, x〉 = 0 the integral is simply |k| times the
surface volume of the nodal set, which is known to be of size |k|. So the upper bound of
Corollary 2 is achieved in this example. Also, we have

∫

T
| sin〈k, x〉|dx ≥ C. Thus, our

method gives the sharp lower bound Hn−1(Nϕλ
) ≥ Cλ1 in this example.

(ii) Zonal spherical harmonics on S2

The spectral decomposition for the Laplacian is the orthogonal sum of the spaces of
spherical harmonics of degree N ,

L2(S2) =
∞
⊕

N=0

VN , ∆|VN
= λNId. (11)

The eigenvalues are given by λS2

N = N(N+1) and the multiplicities are given bymN = 2N+1.
A standard basis is given by the (complex valued) spherical harmonics Y N

m which transform
by eimθ under rotations preserving the poles.

We first consider zonal spherical harmonics Y N
0 on S2, which are real-valued and maxi-

mize sup norms among L2 normalized spherical harmonics. It is well known that Y N
0 (r) =

√

(2N+1)
2π

PN(cos r), where PN is the Nth Legendre function and the normalizing constant is

chosen so that ||Y N
0 ||L2(S2) = 1, i.e. 4π

∫ π/2

0
|PN(cos r)|2dv(r) = 1, where dv(r) = sin rdr is

the polar part of the area form. Its L1 norm can be derived from the asymptotics of Legendre
polynomials in Theorem 8.21.2 of [S],

PN(cos θ) =
√
2(πN sin θ)−

1
2 cos

(

(N +
1

2
)θ − π

4

)

+O(N−3/2)

where the remainder is uniform on any interval ǫ < θ < π − ǫ. We have

||Y N
0 ||L1 = 4π

√

(2N + 1)

2π

∫ π/2

0

|PN(cos r)|dv(r) ∼ C0 > 0,

i.e. the L1 norm is asymptotically a positive constant. Hence
∫

N
Y N
0

|∇Y N
0 |ds ≃ C0N

2. In

this example |∇Y N
0 |L∞ = N

3
2 saturates the sup norm bound. So the estimate of Lemma 1

produces the lower bound Hn−1(Nϕλ
) ≥ λ

1
2 . The accurate lower bound is λ, as one sees from

the rotational invariance and by the fact that PN has N zeros. The defect in the argument
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is that the bound |∇Y N
0 |L∞ = N

3
2 is only obtained on the nodal components near the poles,

where each component has length ≃ 1
N
.

Gaussian beams

A third example is that of real or imaginary parts of highest weight spherical harmonics
Y N
N or other Gaussian beams along a closed geodesic γ (such as exist on equators of convex

surfaces of revolution). We refer to [R] for background. Gaussian beams are Gaussian shaped

lumps which are concentrated on λ− 1
2 tubes T

λ− 1
2
(γ) around closed geodesics and have height

λ
n−1
4 . We note that their L1 norms decrease like λ− (n−1)

4 , i.e. they saturate Proposition

2. In such cases we have
∫

Nϕλ

|∇ϕλ|dS ≃ λ2||ϕλ||L1 ≃ λ2−n−1
4 . It is likely that Gaussian

beams are minimizers of the L1 norm among L2-normalized eigenfunctions of Riemannian
manifolds. Also, the gradient bound ||∇ϕλ||L∞ = O(λ

n+1
2 ) is far off for Gaussian beams,

the correct upper bound being λ1+n−1
4 . If we use these estimates on ||ϕλ||L1 and ||∇ϕλ||L∞ ,

our method gives Hn−1(Nϕλ
) ≥ Cλ1−n−1

2 , while λ is the correct lower bound for Gaussian
beams in the case of surfaces of revolution (or any real analytic case). The defect is again
that the gradient estimate is achieved only very close to the closed geodesic of the Gaussian
beam. Outside of the tube T

λ− 1
2
(γ) of radius λ− 1

2 around the geodesic, the Gaussian beam

and all of its derivatives decay like e−λd2 where d is the distance to the geodesic. Hence
∫

Nϕλ

|∇ϕλ|dS ≃
∫

Nϕλ
∩T

λ
−1

2
(γ)

|∇ϕλ|dS. Applying the gradient bound for Gaussian beams to

the latter integral givesHn−1(Nϕλ
∩T

λ− 1
2
(γ)) ≥ Cλ1−n−1

2 , which is sharp since the intersection

Nϕλ
∩ T

λ− 1
2
(γ) cuts across γ in ≃ λ equally spaced points (as one sees from the Gaussian

beam approximation).

3. Potential improvements

As mentioned above, Theorem 1 is based on the identity in Proposition 1 together with a
lower bound on ||ϕλ||L1 and an upper bound on |∇ϕλ|. Potential improvements could come
from modifying any of these three inputs. The weakest link is the sup norm estimate on
|∇ϕλ|. As we have seen in examples, it is rarely achieved anywhere on M , and even when it
is, it is only achieved on a small portion of Nϕλ

.
The first potential improvement is to use test functions f other than f ≡ 1 to generate

further identities. For instance if f = |∇ϕλ|2, then we get the identity
∫

M

|∇ϕλ|2(∆ + λ2)|ϕλ|dV =

∫

Nϕλ

|∇ϕλ|3dS.

Bochner’s identity can be used to simplify the left side. In this way one may try to use Lp

estimates rather than sup norm estimates of |∇ϕλ|.
The lower bound of Proposition 2 is sharp among the class of all (M, g) since it is achieved

by highest weight spherical harmonics and other Gaussian beams. However, most (M, g) do
not have Gaussian beams (which require existence of stable elliptic closed geodesics), and
one might hope to improve Proposition 2 on manifolds with special geometries. It would
be particularly interesting to determine the (M, g) or the eigenfunction sequences for which
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||ϕλ||L1 ≥ C > 0. For such eigenfunctions, we would have

(i) C λ2 ≤
∫

Nϕλ

|∇ϕλ|dS ≤ c λ2 V ol(M)1/2, (ii) Hn−1(Nϕλ
) ≥ Cλ2−n+1

2 . (12)

Thus, in such cases, the upper and lower bounds of (i) have the order of magnitude. As we
have seen, the usual exponential eigenfunctions on flat tori or for zonal spherical harmonics
on the standard sphere satisfy these lower bounds. It seems interesting to ask whether
||ϕλ||L1 ≥ C for eigenfunctions on negatively curved manifolds (for instance). Indeed, in
that case almost the whole sequence of eigenfunctions satisfies |ϕλj

|2 → 1 (weak *) and
||ϕλj

||L1 → 0 would indicate (roughly speaking) that the eigenfunctions have a more and
more equidistributed set of high and narrow peaks separated by low troughs. This need not
contradict quantum ergodicity but it may be a rare phenomenon. We refer to [Z2] for further
discussion.

We note that minor improvements are also possible using the argument of [SoZ], which
shows that the bound above on ||∇ϕλ||L∞ is rarely obtained anywhere for metrics on M ,
and could be improved by a factor of 1

log λ
if (M, g) is negatively curved.

3.1. Estimates on small balls. Another potential source of improvements is to decompose
M into small balls or cubes and to used scaled identities on each ball or cube. More precisely,
we could use test functions f = χ(λ(x−x0)) where χ ∈ C∞

0 (Rn) is a smooth cutoff function,
equal to one near 0. We let Dx0

λ denote the local dilation operator Dx0
λ u(x0+y) := u(x0+

y
λ
)

with respect to some local coordinates. It converts a high frequency eigenfunction into a low
frequency eigenfunction. Then χ(λ(x − x0)) = (Dx0

λ )−1χ(x − x0), and D−1
λ ∆Dλ ∼ λ2∆x0

0

(the Euclidean Laplacian with coordinates frozen at x0 in the local coordinates). Hence
∆χ(λ(x− x0)) ≃ λ2Dx0

λ (∆x0
0 χ) and from (4) we have

∫

Nϕλ
∩B(x0,

C
λ
)
χ(λ(x− x0))|∇ϕλ|dS ≃ λ2

∫

B(x0,
C
λ
)
(Dx0

λ (I +∆x0
0 )χ) |ϕλ|dV. (13)

One can produce similar inequalities on larger scaled balls. We can then cover the manifold
with such balls and partition the balls into the class of small balls where |∇ϕλ| is of average
size λ and those where it is of the much larger size λ

n+1
2 in our sup norm estimate. The

latter balls are quite rare. However, we leave this for future investigation.
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