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ON THE NODAL SETS OF TORAL EIGENFUNCTIONS

JEAN BOURGAIN AND ZEÉV RUDNICK

Abstract. We study the nodal sets of eigenfunctions of the Laplacian
on the standard d-dimensional flat torus. The question we address is:
Can a fixed hypersurface lie on the nodal sets of eigenfunctions with ar-
bitrarily large eigenvalue? In dimension two, we show that this happens
only for segments of closed geodesics. In higher dimensions, certain
cylindrical sets do lie on nodal sets corresponding to arbitrarily large
eigenvalues. Our main result is that this cannot happen for hypersur-
faces with nonzero Gauss-Kronecker curvature.

In dimension two, the result follows from a uniform lower bound for
the L

2-norm of the restriction of eigenfunctions to the curve, proved in
an earlier paper [1]. In high dimensions we currently do not have this
bound. Instead, we make use of the real-analytic nature of the flat torus
to study variations on this bound for restrictions of eigenfunctions to
suitable submanifolds in the complex domain. In all of our results, we
need an arithmetic ingredient concerning the cluster structure of lattice
points on the sphere. We also present an independent proof for the
two-dimensional case relying on the “abc-theorem” in function fields.
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1. Introduction and statement of results

Our goal in this paper is to study the nodal sets of high-frequency eigen-
functions on the standard flat torus Td = Rd/Zd. The eigenvalues of the
Laplacian on Td are of the form 4π2λ2, with λ2 an integer, with correspond-
ing eigenfunctions which are trigonometric polynomials of the form

(1.1) ϕ(x) =
∑

|ξ|=λ

ξ∈Zd

aξe
2πi〈ξ,x〉

all of whose frequencies are integer points on the sphere |x| = λ. If λ 6= 0
then the mean value

∫
Td ϕ(x)dx = 0 vanishes. The nodal set is the locus

of zeros {ϕ(x) = 0}, which is a hypersurface (codimension one) in Td, nec-
essarily real-analytic, possibly with singularities. We would like to study
how the nodal sets vary when we increase the eigenvalue. It is known that
for any real-analytic Riemannian manifold, the volume of the nodal sets is
commensurable with λ [5]. In this paper, we address a different question:
As λ grows, can a fixed hypersurface lie on infinitely many nodal sets?

1.1. Dimension d = 2. In the flat torus in two dimensions, we can have
fixed curves where many eigenfunctions vanish, as in the case the line y =
0 which is on the nodal set of all the eigenfunction sin(2πmx) sin(2πny).
More generally, if Σ is a closed geodesic, one can easily construct an infinite
sequence of eigenvalues with eigenfunctions vanishing on Σ. However this
is essentially the only such possibility for the flat torus in two dimensions,
where we can settle this problem completely:

Theorem 1.1. Let Σ ⊂ T2 be a real-analytic curve. Then a necessary and
sufficient condition that there are eigenfunctions ϕλ with arbitrarily large
frequencies which vanish on Σ is that it be a segment of a closed geodesic.

Theorem 1.1 is an easy consequence of our uniform L2-restriction theorem
[1] on the torus, which shows that for any smooth curve Σ ⊂ T2 with
nowhere zero curvature, there is some λΣ > 0 and CΣ > 0 so that for all
eigenfunctions ϕλ with λ ≥ λΣ, we have

(1.2)

∫

Σ
|ϕλ|2 ≥ CΣ||ϕλ||2
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The restriction lower bound (1.2) can be used to show nonvanishing on
curves (Theorem 1.1) which are not segments of closed geodesics: Indeed,
since the curve is real-analytic, if it is not flat it has only finitely many
flat points, hence by shrinking it we may assume that it has nowhere-zero
curvature, and then non-vanishing follows from the lower bound (1.2). If Σ
is flat, but not a segment of a closed geodesic, then it is a segment of an
unbounded geodesic, in which case it is easy to check that no eigenfunction
can vanish on it (though we do not know the restriction bound (1.2) in this
case, see [14]).

We also have a completely different proof of Theorem 1.1 using an alge-
braic argument, relying on the “ABC theorem” of Brownawell-Masser [3]
and Voloch [16] which we present in Appendix A.

1.2. Higher dimensions. Suppose now that Σ ⊂ Td is a hypersurface
(codimension one). A special role is played by flat hypersurfaces, which on
the torus are affine hyperplanes. As in the two-dimensional case, if Σ is
flat and closed (a closed totally geodesic hypersurface), then it is contained
in the nodal set of eigenfunctions with arbitrarily large eigenvalues, e.g.
if Σ = {x ∈ Td : 〈ξ, x〉 = c} for some ξ ∈ Zd, then it is part of the
nodal set of the eigenfunctions ϕn(x) = sin 2πn(〈ξ, x〉 − c) for all n ≥ 1.
However, in more than two dimensions, we do have non-flat hypersurfaces
(that is such that not all principal curvatures vanish) contained in the nodal
set of eigenfunctions with arbitrarily large eigenvalues. For instance, let
ϕ0(x, y) be an eigenfunction on the two-dimensional torus with eigenvalue
λ20, and S0 ⊂ T2 a curved segment contained in its nodal set. For n ≥ 0
let ϕn(x, y, z) = ϕ0(x, y) cos 2πnz, which is an eigenfunction on T3 with
eigenvalue λ2n = λ20 + n2, whose nodal set contains the cylindrical set Σ =
S0 × S1. Thus if S0 is curved then Σ is not flat yet lies within the nodal set
of all the ϕn. A similar construction works to show that there are Σ ⊂ Td

which are cylindrical in the direction of any closed geodesic for which there
are eigenfunctions with arbitrarily large eigenvalues vanishing on Σ.

So assume that Σ has nowhere zero Gauss-Kronecker curvature, meaning
all principal curvatures are nowhere zero (see § 3 for a discussion). We then
show a higher-dimensional version of Theorem 1.1:

Theorem 1.2. Let Σ ⊂ Td be a real analytic (codimension one) hyper-
surface, with nowhere-vanishing Gauss-Kronecker curvature. Then there is
some λΣ > 0 so that if λ ≥ λΣ, then Σ cannot lie within the nodal set of
any eigenfunction ϕλ.

A key ingredient in this result deals with any hypersurface which is not
flat. As noted above, there are examples of such hypersurfaces contained
in the nodal set of eigenfunctions with arbitrarily large eigenvalues. Our
next result constrains the possible frequencies of such eigenfunctions, show-
ing that the Fourier coefficients aξ are negligible for frequencies ξ whose
directions ξ/|ξ| lie outside a fixed cap on the sphere:
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Theorem 1.3. Let Σ ⊂ Td be a real analytic hypersurface which is not
flat. Then there is a cap ΩΣ ⊂ Sd−1 so that for all eigenfunctions ϕλ which
vanish on Σ we have

(1.3) |aξ| ≪
||ϕλ||2
λN

, ∀N > 1

for all ξ ∈ E such that ξ/|ξ| ∈ ΩΣ.

Here and elsewhere we use the notation f ≪ g to mean that there is some
c > 0 so that f ≤ cg.

1.3. About the proofs. At this time we do not have an analogue of the
uniform restriction theorem (1.2) in arbitrary dimension (except dimension
three [2]). We refer to [4, 9] for upper bounds in a more general context.
We are also not able to use an analogue of the “abc theorem” as in § A.
However, we retain the feature of passing to the complex domain, combined
with some ideas from the L2-restriction theorem, to prove Theorem 1.3 in
arbitrary dimension. The idea is that the eigenfunctions ϕ are naturally
extended to holomorphic functions ϕC on the complexification Cd/Zd of Td,
and since Σ is real-analytic it too admits a complexification ΣC ⊂ Cd/Zd.
We then show in § 3 that there is a fixed cap of directions ΩΣ ⊂ Sd−1, and
τ = τΣ > 0 depending only on Σ, so that for v ∈ ΩΣ, there is a submanifold
Σ(v, τ) ⊂ ΣC such that for all Z ∈ Σ(v, τ) the imaginary part ImZ = tv is
parallel to v, and τ < t < 2τ . For frequencies ξ for which v := −ξ/|ξ| ∈ ΩΣ,
we give in § 5 a lower bound for the L2-restriction of ϕC(Z)e−2πi〈ξ,Z〉 to
Σ(v, τ) of the form

(1.4)

∫

Σ(v,τ)

∣∣∣ϕC(Z)e−2πi〈ξ,Z〉
∣∣∣
2
dµ(Z) ≫ |aξ|2 +O(

1

λN
)

where dµ is a smooth measure on Σ(v, τ). To compare with the restriction
theorem (1.2), note that in that case the RHS is

∑
ξ |aξ|2. That Σ is not

flat is used to guarantee decay of certain oscillatory integrals in § 4.2. On
the other hand, if ϕ vanishes on Σ then its holomorphic extension ϕC will
vanish on ΣC and in particular the LHS of (1.4) will vanish. This will prove
Theorem 1.3.

To get vanishing of all Fourier coefficients and hence Theorem 1.2, we
need all principal curvatures to be nonzero. The extra argument needed to
deduce it from Theorem 1.3 is given in § 6. In all of our results we need
an arithmetic ingredient, concerning the structure of lattice points on the
sphere, which is given in § 2.

1.4. The sphere and Legendre polynomials. One may investigate cor-
responding questions for the nodal sets of eigenfunctions on other manifolds.
However even in seemingly simple situations the problem is as yet open.
Consider the situation on the two-dimensional sphere S2 ⊂ R3, where the
Laplace-Beltrami operator has eigenvalues n(n + 1) with the dimension of
the corresponding eigenspace Hn being 2n+1. We use spherical coordinates:
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the colatitude θ ∈ [0, π] and longitude φ ∈ [0, 2π]. In these coordinates, we
may take as a basis of the eigenspace Hn the spherical harmonics

Y m
n (θ, φ) = Pmn (cos θ)eimφ, −n ≤ m ≤ n

where Pmn (x) are Legendre functions (to get real valued functions replace
eimφ by sine and cosine). In particular form = 0 one gets the zonal spherical
functions Yn(θ, φ) = Pn(cos θ) where Pn(x) are Legendre polynomials

(1.5) Pn(x) =
1

2n

⌊n/2⌋∑

j=0

(−1)j
(
n

j

)(
2n− 2j

n− 2j

)
xn−2j

which are orthogonal polynomials on the interval [−1, 1]. The Legendre
polynomial Pn(x) has n simple zeros xn,j ∈ [−1, 1].

The nodal set of the zonal spherical harmonic Y 0
n is the union of the

parallels θ = θn,j, j = 1, . . . , n where xn,j = cos θn,j are the zeros of the
Legendre polynomial Pn(x). Since Pn(−x) = (−1)nPn(x), for odd n we have
Pn(0) = 0, and so we find that the zonal spherical harmonics Y 0

n vanish on
the equator θ = π/2 for odd n.

The equator θ = 0 was singled out by our choice of coordinates, but
by symmetry a corresponding construction works for all rotations of the
equator. Thus every closed geodesic on the sphere lies within the nodal set
of eigenfunctions with arbitrarily large eigenvalues, as happens on the flat
torus.

A simple version of our results for the flat torus is to ask whether the
other parallels (besides the equator) lie on nodal sets of infinitely many
eigenfunctions. As a special case, one can conjecture that a parallel (other
than the equator) cannot lie within the nodal set of more than one zonal
spherical harmonic. This special case is equivalent to the conjecture of
Stieltjes [15] that Pm(x) and Pn(x) have no common roots except x = 0
when m,n are both odd. In fact, in the same letter [15], Stieltjes put forth
the stronger conjecture that P2n(x) and P2n+1(x)/x are irreducible. This
was taken up by Holt [8] in 1912, and by Schur and his student Hildegard Ille
[10], see also [17, 18]. Around 1960 irreducibility was known for all n ≤ 500
with a few exceptions (which nowadays are easily checked by computer).

Acknowledgments: We thank Aaron Levine for his comments on Appen-
dix A, and the anonymous referees for their comments and suggestions. J.B.
was supported in part by N.S.F. grants DMS 0808042 and DMS 0835373.
Z.R. was supported by the Oswald Veblen Fund during his stay at the In-
stitute for Advanced Study and by the Israel Science Foundation (grant No.
1083/10).
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2. Cluster structure of lattice points on the sphere

For R ≥ 1, we denote by E = ER = Zd ∩ RSd−1 the set of lattice points
on the sphere of radius R (assuming R2 is an integer):

ER := {ξ ∈ Zd : |ξ| = R}
As is well known, the number of points in E satisfies ER ≪ Rǫ for all ǫ > 0
in dimension d = 2, while in higher dimension #ER grows polynomially.
Jarnik’s theorem [11] places constraints on location of lattice points in small
caps:

Theorem 2.1 (Jarnik’s Theorem). There is some cd > 0 so that all lattice
points in the cap

E ∩ {|x| = R : |x− x0| < cdR
1

d+1 }
lie on an affine hyperplane.

We will need more information about the “cluster structure” of the set E .
We define recursively two sequences c(d), δ(d) with initial conditions

(2.1) δ(2) <
1

3
, c(2) = 0

and satisfying for d ≥ 3,

(2.2) c(d) = 2max

(
c(d − 1),

d

δ(d− 1)

)

(2.3) δ(d) =
1

2(d + 1)(1 + c(d))

Proposition 2.2. Let E ⊆ Zd ∩ {|x| = R} be a subset of the set of lattice

points on the sphere of radius R. If ρ < Rδ(d) then:
a) For any subset F ⊂ E, there is an overset F ⊆ F̃ ⊂ E satisfying

(2.4) diam(F̃) ≤ diam(F) + ρ1+c(d)

(2.5) dist(F̃ , E\F̃) > ρ

b) We may decompose E =
∐
α Eα into subsets satisfying

(2.6) dist(Eα, Eβ) > ρ, α 6= β

(2.7) diam Eα < ρ1+c(d)

To prove Proposition 2.2, we will need:

Lemma 2.3. If 1 < ρ < Rδ(d), and x0, . . . , xK ∈ E are distinct elements
satisfying

(2.8) dist(xi, xi+1) ≤ ρ, i = 0, . . . ,K − 1

then K ≪ ρc(d).
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Proof. We prove the claim by induction on the dimension d.
For d = 2, we note that by Jarnik’s theorem, there is some c2 > 0 such

that all lattice points in an arc {|x| = R : |x − x0| < c2R
1/3} are co-linear,

an in particular there can be at most two of them. Thus if ρ < 1
2c2R

1/3

then we cannot have a chain x0, x1, x2 with dist(xi, xi+1) < ρ since then we
would have three lattice point in cap of size c2R

1/3.
Now let d ≥ 3 and assume the contrary, that there is some chain x0, . . . xK

of length K > ρc(d). Let K ′ = ⌊ρc(d)⌋ and consider the initial chain C ′ =
{x0, . . . xK ′} of length K ′. The diameter of this chain is at most diam(C ′) ≤
K ′ρ ≪ ρc(d)+1 < Rδ(d)(1+c(d)) and hence by (2.3), diam(C ′) < R1/2(d+1) =

o(R1/(d+1)). Therefore by Jarnik’s theorem, this subchain is contained in
some hyperplane H, that is in the intersection of the sphere of radius R
with the hyperplane H, which is a (d−2)-dimensional sphere of some radius
R1 ≪ R.

Thus we get a ρ-chain of length K ′ in dimension d − 1. There are two
possibilities:

1) If ρ < R
δ(d−1)
1 then the inductive hypothesis allows us to conclude

K ′ < ρc(d−1) = o(ρc(d)) by (2.2) , contradicting K ′ ≈ ρc(d).

2) If ρ > R
δ(d−1)
1 then we bound the number of lattice points on a (d−2)-

dimensional sphere of radius R1 by (1+2R1)
d ≪ Rd1 by replacing the sphere

by a d-dimensional cube containing the sphere (this is crude but uniform

with respect to the hyperplane H). Hence K ′ ≪ Rd1 ≪ ρ
d

δ(d−1) , which

contradicts K ′ ≈ ρc(d) by (2.2). �

We may now prove Proposition 2.2:

Proof. We set F0 := F and define

Fi := F ∪ {x ∈ E : dist(x,Fi−1) ≤ ρ}
to be the set of lattice points at distance less than ρ from the previous set.
So we have an ascending sequence

F0 = F ⊆ F1 ⊆ F2 ⊆ . . .

If F0,F1, . . .Fk are all distinct then k < ρc(d) since then we can form a chain
x0, . . . xk of distinct elements xi ∈ Fi\Fi−1, with dist(xi, xi+1) ≤ ρ. Hence

by Lemma 2.3 we have k < ρc(d).
Thus for some 0 ≤ K < ρc(d) we must have FK = FK+1. Note that if

FK+1 = FK then FK+j = FK for all j ≥ 1 and by definition, if y ∈ E\FK
then dist(y,FK) > ρ. Thus taking F̃ := FK we get a set which is well

separated from its complement, that is (2.5) holds, and for any y ∈ F̃ there

is some x ∈ F with dist(x, y) < Kρ < ρ1+c(d), so that (2.4) holds.
To prove the second part, we take some lattice point x1 ∈ E and let

F = E ∩Ball(x1, ρ
1+c(d)). Using the first part we find an overset F ⊆ F̃ ⊆ E

satisfying (2.5) and (2.4) and set E1 = F̃ , so that diam E1 ≪ ρ1+c(d) and
dist(E1, E\E1) > ρ. Now replace E by E\E1 and continue the process. �
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3. Some geometric constructions

3.1. Background from differential geometry. Let Σ ⊂ Td be a real-
analytic hypersurface, which we assume is non-singular. We consider a small
parametric patch on Σ which we may assume looks like a graph, that is there
is a real-analytic function f(x1, . . . , xd−1) so that

γ(x) = (x, f(x)), |x| < δ

is a parametrization of Σ.
For each point p ∈ Σ, denote by TpΣ the tangent space to Σ at p. On Σ

we have the frame field

(3.1) Xj :=
∂γ

∂xj
= (0, . . . ,

j︷︸︸︷
1 , . . . , 0,

∂f

∂xj
)

which gives at each point p a basis of TpΣ. The general tangent vector may
be given as the linear combination

(3.2) v =

d−1∑

j=1

wjXj = (ω,∇f · ω), ω = (w1, . . . wd−1)

A choice of a unit normal field to the hypersurface Σ at the point p =
(x, f(x)) is given by

(3.3) Np :=
1√

1 + |∇f(x)|2
(−∇f(x), 1)

The unit normal field defines the Gauss map N : Σ → Sd−1. The shape op-
erator for the hypersurface Σ, determined by the choice (3.3) of unit normal,
is the linear map

(3.4) Sp : TpΣ → TpΣ, v 7→ −∇vNp

that is Sp is (minus) the derivative of the Gauss map.
The shape operator is self-adjoint:

(3.5) 〈Sp(u), v〉 = 〈u, Sp(v)〉
and associated to it one has a symmetric bilinear form, the second funda-
mental form

(3.6) IIp(u, v) = 〈Sp(u), v〉
The coefficients of the second fundamental form with respect to the frame
field {Xj} may be computed explicitly in terms of the derivatives

Xi,j =
∂2γ

∂xi∂xj
= (~0,

∂2f

∂xi∂xj
)

as

(3.7) 〈S(Xi),Xj〉 = 〈N,Xi,j〉 =
∂2f

∂xi∂xj√
|∇f |2 + 1



ON THE NODAL SETS OF TORAL EIGENFUNCTIONS 9

The eigenvalues of the shape operator are the principal curvatures of Σ,
and the determinant of S is called the Gauss-Kronecker curvature of Σ. The
hypersurface Σ is flat, i.e. is an affine hyper-plane, if and only if the unit
normal Np is constant, which happens if and only if all principal curvatures
vanish, that is the shape operator is identically zero.

Given a unit tangent vector u ∈ TpΣ, the normal curvature of Σ at p in
the direction u is defined as

k(u) = 〈Sp(u), u〉

If we cut the hypersurface Σ by the plane spanned by u and the unit normal
Np, we get a curve whose tangent at p is the vector u, and whose curvature
at p is k(u). For any nonzero tangent vector v given as in (3.2), the normal
curvature in direction v is

(3.8) k(v) = 〈S( v|v| ),
v

|v| 〉 =
1√

|∇f |2 + 1

ωTDx,xfω

|ω|2 + (∇f · ω)2

where Dx,xf = ( ∂2f
∂xi∂xj

) is the Hessian matrix of f .

Directions for which the normal curvature vanishes are called asymptotic
directions. Thus a tangent vector v as in (3.2) points in an asymptotic
direction if and only if

(3.9) ωTDx,xfω = 0

The set of asymptotic directions at a point p is called the asymptotic cone.
The hypersurface Σ is flat at the point p if and only if every direction is
asymptotic, that is the asymptotic cone coincides with the whole tangent
space.

Lemma 3.1. Suppose Σ is not flat. Then after shrinking Σ, we can find a
cap ΩΣ ⊂ Sd−1 of directions v = (ω,wd) so that:

i) There is a point p = γ(x) ∈ Σ so that v is tangent to Σ at p, equivalently
satisfies

(3.10) ∇f(x) · ω = wd

ii) The direction v is not an asymptotic direction for all p ∈ Σ, that is
for all x and all v = (ω,wd) ∈ ΩΣ we have

(3.11) ωTDxxf(x)ω 6= 0

Proof. Since Σ is not flat, the Hessian Dx,xf is not identically zero (if it
were, f(x) = a+ b · x would be linear hence Σ would be flat). Then we may
assume by further shrinking Σ that in fact the Hessian matrix Dx,xf(x) 6= 0
is nonzero for all |x| < δ.

Since Dx,xf(0) is not the zero matrix, the asymptotic cone

{ω ∈ Rd−1 : ωTDx,xf(0)ω = 0}
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has lower dimension and hence there is an open cone of directions for which
ωTDx,xf(0)ω 6= 0. Moreover, by continuity of x 7→ Dx,xf(x), we get some
δ > 0 and an open cone C so that

(3.12) ωTDx,xf(x)ω 6= 0, ∀|x| < δ, ∀ω ∈ C
Consider the map

V : Ball(~0, δ) × C → Rd

(x, ω) 7→ v =
d−1∑

j=1

wjXj = (ω,∇f(x) · ω)
(3.13)

We claim that the map V is a submersion, i.e. the Jacobian of V has
maximal rank for each (x, ω), hence the image of V contains an open set of
directions ΩΣ ⊂ Sd−1.

To see this, compute the Jacobian of V :

(3.14) Dx,ωV = (
∂V

∂ωi
,
∂V

∂xj
) =

(
Id−1 0d−1

∇f(x) Dx,xf(x) · ω

)

Since ωTDx,xf(x)ω 6= 0 for all x and ω ∈ C, hence Dx,xf(x) · ω 6= ~0, it
follows that the rank of Dx,ωV is d as claimed.

Thus for each unit vector v = (ω,wd) ∈ ΩΣ, there is a point p = γ(x) ∈ Σ
so that v is tangent to Σ at p, equivalently is orthogonal to the normal, so
satisfies

(3.15) ∇f(x) · ω = wd

Moreover, for all such x we have ωTDx,xf(x)ω 6= 0. �

Note that if v satisfies (3.10), (3.11) then so does −v.

3.2. The complexification of Σ and the submanifolds Σ(v). Since f is
real-analytic, there is a holomorphic extension F (z) of f to some neighbor-
hood U ⊂ Cd−1. This gives a holomorphic extension of the parametrization

(3.16) γC : z ∈ U 7→ (z, F (z))

and we define the image

(3.17) ΣC := {γC(x+ iy) = (z, F (z)), z ∈ U}
to be the holomorphic extension of the surface Σ.

Let v ∈ Sd−1 be a unit vector in the cap guaranteed by Lemma 3.1, so
there is some p = (x0, f(x0)) ∈ Σ with v ⊥ Np. For such v, we will define a

submanifold Σ(v) ⊂ ΣC so that

• If Z ∈ Σ(v) then ImZ = tv is parallel to v.
• Σ(v) ∩ Σ ⊆ {p ∈ Σ : Np ⊥ v}, i.e. at the real points p of Σ(v), the
normal vector Np is orthogonal to v, equivalently v is tangent to Σ
at p.
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To do so, write v = (ω,wd) and note that the vector-valued function Im γC(x+
itω)− t~v is real-analytic in t and vanishes at t = 0. Hence we can write

(3.18) Im γC(x+ itω)− t~v = t(~0, h(x, t))

with h(x, t) = hv(x, t) real analytic. We want to define Σ(v) by the vanishing
of h(x, t). To do so, we need:

Lemma 3.2. For v = (ω,wd) ∈ ΩΣ, let p = (x0, f(x0)) ∈ Σ be such that
v ∈ TpΣ. Then

(3.19) h(x0, 0) = 0

and

(3.20) ∇h(x0, 0) = (Dx,xf(x0)ω, 0) 6= ~0

Proof. Start at a point p = (x0, f(x0)) ∈ Σ with Np ⊥ v. To find the value
of the function h(x, t) at t = 0, expand

(3.21) ImF (x, tω) = ImF (x, 0) + t∇y ImF (x, 0) · ω +O(t2)

By the Cauchy-Riemann equations, ∇y ImF (x, 0) = ∇xReF (x, 0) = ∇f(x)
and since ImF (x, 0) = 0 we find

(3.22) h(x, 0) = lim
t→0

ImF (x, tω)

t
− wd = ∇f(x) · ω − wd

Since the normal direction to the surface Σ at p is given by the vector
(−∇f(x0), 1), we find that if Np ⊥ v then h(x0, 0) = 0.

To show (3.20), note that since f(x) is real-analytic, its holomorphic

extension F satisfies F (z) = F (z̄), that is

ReF (z̄) = ReF (z), ImF (z̄) = − ImF (z)

showing that ImF (x+ itω) is odd in t, hence h(x, t) is even in t. Therefore
we have

∂h

∂t
(x, 0) = 0

Moreover since ImF (x, tω) is odd in t,

ImF (x, tω) = t(∇y ImF )(x, 0) · ω +O(t3)

and hence

∇x
ImF (x, tω)

t
= Dxy ImF (x, 0) · ω +O(t2)

By Cauchy-Riemann, Dxy ImF (x0, 0) = DxxReF (x0, 0) = Dxxf(x0) and
hence we find

∇xh(x0) = Dxxf(x0) · ω
proving (3.20).

By construction of the cap ΩΣ in Lemma 3.1, we know that ωTDx,xf(x)ω 6=
0 for all x; in particular Dxx(f)(x0) ·ω 6= ~0 and therefore ∇h(x0, 0) 6= ~0. �
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Since ∇xh(x0, 0) = Dx,xf(x0)ω 6= ~0, we may use the Implicit Function
Theorem to guarantee that there is a neighborhood of (x0, 0) in the (x, t)

domain where ∇xh(x, t) 6= ~0 and the condition h(x, t) = 0 defines a smooth
(d− 1)-dimensional submanifold. After shrinking Σ and relabeling, we may
then assume that for all (x, t),

(3.23)
∂h

∂x1
(x, t) 6= 0

Using the Implicit Function Theorem, we can then write

(3.24) x1 = x1(t, x̂), x̂ := (x2, . . . , xd−1)

We then define

(3.25) Σ(v) := {γC((x1(t, x̂), x̂) + itω) : |t| < δ, |x̂| < δ}
Note that since v varies in a compact set, we may choose δ > 0 to work
uniformly for all such v. Hence for τ ≪ δ , Σ(v) contains the set

(3.26) Σ(v, τ) := {Z = γC((x1(t, x̂), x̂) + itω) ∈ Σ(v) : τ < t < 2τ, |x̂| < δ}
so that Z ∈ Σ(v, τ) implies that ImZ = tv, with t ∈ (τ, 2τ).

We define a smooth measure dµ on Σ(v, τ) by taking a smooth bump
function ψ(t, x̂), supported in t ∈ [τ, 2τ ], and setting
(3.27)∫

Σ(v,τ)
g(Z)dµ(Z) :=

∫

τ<t<2τ

∫

|x̂|<δ
g(γC((x1(t, x̂), x̂) + itω))ψ(t, x̂)dtdx̂

We will restrict ψ by requiring that its support is disjoint from the lower-
dimensional set of (t, x̂) satisfying

〈(∇xReF )(x, tω), ω〉 = wd

〈(∇y ReF )(x, tω), ω〉 = 0
(3.28)

This condition will be used in § 4.2 to ensure decay of an oscillatory integral.
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4. Using complexification

We start with an eigenfunction of the Laplacian with eigenvalue λ2

(4.1) ϕλ( ~X) =
∑

ξ∈E

aξe
2πi〈ξ, ~X〉, ~X ∈ Td

which we normalize by

(4.2)
∑

ξ

|aξ|2 = 1

We want to show that if Σ has nowhere zero Gauss-Kronecker curvature,
then for λ > λΣ, ϕλ cannot vanish on the fixed hypersurface Σ. We proceed
to do so by showing initially that the Fourier coefficients aξ are negligible
for all frequencies whose directions ξ/|ξ| lie in a cap ΩΣ depending only on
Σ. All that is required for this is that Σ not be flat:

Theorem 4.1. Assume Σ ⊂ Td is not flat. Then there is a cap ΩΣ ⊂ Sd−1

so that for all eigenfunctions ϕλ which vanish on Σ we have

(4.3) |aξ| ≪
1

λN
, ∀N > 1

for all ξ ∈ E such that −ξ/|ξ| ∈ ΩΣ.

4.1. The strategy. Fix ξ0 ∈ E so that

(4.4) v0 = − ξ0
|ξ0|

∈ ΩΣ

lies in the set of directions guaranteed by Lemma 3.1.

We have a holomorphic extension ϕC(~Z) of ϕ by replacing ~X by ~Z =
~X + i~Y ∈ Cd, which is a function on Cd/Zd. We will give a lower bound for
the mean square of ϕC(Z)e−2πi〈ξ0,Z〉 restricted to the submanifold Σ(v0, τ):

(4.5)

∫

Σ(v0,τ)

∣∣∣ϕC(Z)e−2πi〈ξ0,Z〉
∣∣∣
2
dµ(Z) ≫ |aξ0 |2 +O(

1

λN
)

where dµ is the smooth measure on Σ(v0) constructed in (3.27).

On the other hand, vanishing of ϕ on Σ implies vanishing of ϕC(~Z) on the
holomorphic extension ΣC of our surface Σ. In particular, the mean square
of ϕC(Z)e−2πi〈ξ0,Z〉 along Σ(v0, τ) vanishes:

(4.6)

∫

Σ(v0,τ)

∣∣∣ϕC(Z)e−2πi〈ξ0,Z〉
∣∣∣
2
dµ(Z) = 0

and combining with the lower bound (4.5), this will prove Theorem 4.1.
To prove the lower bound on the mean square (4.5), we show that on

Σ(v0, τ) we may represent ϕC(Z)e−2πi〈ξ0,Z〉 up to negligible error by a sum
over frequencies in a small cap:

ϕC(~Z)e−2πi〈ξ0, ~Z〉 =
∑

E ′

aξe
2πi〈ξ−ξ0,Z〉 +O(

1

λN
), Z ∈ Σ(v0, τ)
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where the sum is over a certain set E ′ of frequencies contained in a cap of
size ≈

√
λ log λ around ξ0.

On squaring out the sum in we will be faced with oscillatory integrals of
the form

(4.7) Jξ,ξ′ :=

∫

Σ(v0,τ)
e2πi(〈ξ−ξ0,Z〉−〈ξ′−ξ0,Z̄〉)dµ(Z)

We will bound these integrals by

(4.8) Jξ,ξ′ ≪
1

|ξ − ξ′|N , ξ 6= ξ′ ∈ E ′

Here the fact that Σ is not flat is crucial. Armed with this estimate, we will
prove (4.5) by using the cluster structure of the set of frequencies E shown
in § 2.

4.2. An oscillatory integral. We want to bound the oscillatory integral
Jξ,ξ′ in (4.7), or writing out explicitly,

(4.9) Jξ,ξ′ =

∫
e2πi|ξ−ξ

′|φu(t,x̂)Aξ,ξ′(t, x̂)dtdx̂

where we write u = ξ−ξ′

|ξ−ξ′| and for any vector u = (u1, . . . , ud) the phase

function φu is defined by

(4.10) φu(t, x̂) = 〈u,G(t, x̂)〉 = 〈u, (x,ReF (x, tω))〉
x̂ = (x2, . . . , xd−1), x = (x1, x̂)

G(t, x̂) = Re γC(x+ itω) = (x,ReF (x, tω))

and with amplitude

(4.11) Aξ,ξ′(t, x̂) = e−2πt(A(ξ)+A(ξ′))ψ(t, x̂)

(4.12) A(ξ) = 〈ξ − ξ0, v0〉
and ψ(t, x̂) is a bump function. The region of integration in the (t, x̂) domain
is a small ball such that τ < t < 2τ .

Lemma 4.2. Let v0 = (ω,wd) be as given in (4.4). Then for all unit
vectors u orthogonal to v0, the phase function φu(t, x̂) is non constant, and
the stationary points of φu lie on a subset of lower dimension, which is
independent of u, namely the points (t, x̂) where

〈(∇xReF )(x, tω), ω〉 = wd

〈(∇y ReF )(x, tω), ω〉 = 0
(4.13)

Proof. Write out the phase function explicitly as

(4.14) φu(t, x̂) = u1x1(t, x̂) +

d−1∑

j=2

ujxj + udReF (x1, x̂, tω)
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Assume first that
∂x1
∂t

6= 0

on the domain of integration.
We first dispose of the possibility that ud = 0. In that case,

(4.15) φu(t, x̂) = u1x1(t, x̂) +

d−1∑

j=2

ujxj

At a stationary point,

(4.16) 0 =
∂φu
∂t

= u1
∂x1
∂t

and since ∂x1
∂t 6= 0 on the support of ψ, we find u1 = 0 so that u =

(0, u2, . . . , ud−1, 0) and φu =
∑d−1

j=2 ujxj is linear, ∇φu = u and φu has
no stationary points.

Assume from now that ud 6= 0. Consider the differential operator

(4.17) L =
w1
∂x1
∂t

∂

∂t
+

d−1∑

j=2

wj(
∂

∂xj
−

∂x1
∂xj
∂x1
∂t

∂

∂t
) = A

∂

∂t
+

d−1∑

j=2

wj
∂

∂xj

with

A =
1
∂x1
∂t

(w1 −
d−1∑

j=2

wj
∂x1
∂xj

)

A calculation using the chain rule shows that for a function of the form
H(x, tω) we have

(4.18) L{H(x, tω)} = 〈∇xH,ω〉+A〈∇yH,ω〉
Applying L to the phase function φu, using Lxj = wj , gives

(4.19) Lφu =

d−1∑

j=1

ujwj + ud(〈∇xReF, ω〉+A〈∇y ReF, ω〉)

Hence at a stationary point, where Lφu = 0, we find on using the orthogo-
nality of u and v0, that

(4.20) ud(〈∇x ReF, ω〉+A(〈∇y ReF, ω〉) = −
d−1∑

j=1

ujwj = udwd

and since ud 6= 0 we get

(4.21) 〈∇xReF, ω〉+A〈∇y ReF, ω〉 = wd

Likewise, applying L to the relation ImF (x, tω) = twd we get on using
Lt = A that

(4.22) 〈∇x ImF, ω〉+A〈∇y ImF, ω〉 = Awd
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Applying the Cauchy-Riemann equations ∇x ImF = −∇y ReF , ∇y ImF =
∇xReF gives

(4.23) A〈∇xReF, ω〉 − 〈∇y ReF, ω〉 = Awd

The unique solution of the system (4.21), (4.23) is then

(4.24) 〈∇xReF, ω〉 = wd , 〈∇y ReF, ω〉 = 0

Now assume that φu is constant, so that (4.24) holds for all t, x̂. Then we
may apply the differential operator L to (4.24) to get

(4.25) L〈∇xReF, ω〉 = ωT∇x,xReFω +AωT∇x,y ReFω = 0

and

(4.26) L〈∇y ReF, ω〉 = ωT∇x,y ReFω +AωT∇y,y ReFω = 0

By the Cauchy-Riemann equations, ∇y,y ReF = −∇x,xReF and we find

(4.27) ωT∇x,y ReFω −AωT∇x,xReFω = 0

The unique solution of the system (4.25), (4.27) is

(4.28) ωT∇x,xReFω = 0 = ωT∇x,y ReFω

which assuming that φu is constant on Σ(v0), holds throughout Σ(v0) and
in particular on the real locus t = 0, where ReF (x, 0) = f(x), where we find

(4.29) ωT∇x,xf(x)ω = 0, ∀x ∈ Σ(v0) ∩ Σ

This contradicts (3.11), that is that v0 is not an asymptotic direction at any
point on Σ. Thus φu is non-constant, and being real-analytic its stationary
points (where ∇φu = ~0) lie on a lower-dimensional subset Crit(u) of Σ(v0).

Since (4.13) holds at the stationary points, which is independent of u,
Crit(u) are confined to lie inside a lower-dimensional subset which is inde-
pendent of u.

Next consider the case ∂x1
∂t ≡ 0 on the support of ψ. We claim that still

(4.13) holds.

We first dispose of the case ud = 0 when φu = u1x1 +
∑d−1

j=2 ujxj with

u · w =
∑d−1

j=1 ujwj = 0. (We leave the case d = 2 as an exercise). If
u1 = 0 then φu is a non-zero linear function and has no stationary points.
Otherwise, at a stationary point,

(4.30) 0 =
∂φu
∂xj

= u1
∂x1
∂xj

+ uj

Differentiating the relation ImF (x, tω) = twd with respect to xj gives

(4.31) 0 =
∂x1
∂xj

∂ ImF

∂x1
+
∂ ImF

∂xj
= −∂x1

∂xj

∂ ReF

∂y1
− ∂ ReF

∂yj
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by the Cauchy-Riemann equations. Hence

〈∇y ReF, ω〉 = w1
∂ ReF

∂y1
+

d−1∑

j=2

wj
∂ ReF

∂yj

= w1
∂ ReF

∂y1
−

d−1∑

j=2

wj
∂x1
∂xj

∂ ReF

∂y1

=
∂ReF

∂y1
(w1 +

d−1∑

j=2

wj
uj
u1

) = 0

since by orthogonality of u and v0 and vanishing of ud, we have w1 +∑d−1
j=2 wj

uj
u1

= 0.
Assume now that ud 6= 0. Then at a stationary point,

(4.32) 0 =
∂φu
∂t

= ud〈∇y ReF, ω〉

and ud 6= 0 implies 〈∇y ReF, ω〉 = 0. Differentiating the relation ImF (x, tω) =
twd with respect to t, using independence of x1 relative to t, gives

(4.33) wd = 〈∇y ImF, ω〉 = 〈∇x ReF, ω〉
by the Cauchy-Riemann equations. Thus in all cases (4.13) hold at a sta-
tionary point.

Now differentiate the relation 〈∇y ReF (x, tω), ω〉 = 0 with respect to t,
keeping in mind that x1 is independent of t, to get ωT∇y,y ReFω = 0 and
using the Cauchy-Riemann equation we get ωT∇x,xReFω = 0. Specializing
to the real locus t = 0 again gives a contradiction. �

Lemma 4.3. Let v0 be as in (4.4), and set D = (log λ)2. Then for all ξ 6= ξ′

lying in a cap of size
√
λD around λv0 we have

(4.34) |Jξ,ξ′ | ≪
1

|ξ − ξ′|r , ∀r ≥ 1

Proof. Write

Jξ,ξ′ =

∫
e2πi|ξ−ξ

′|Φξ,ξ′ (t,x̂)Aξ,ξ′(t, x̂)dtdx̂dx

where

(4.35) Φξ,ξ′(t, x̂) := 〈 ξ − ξ′

|ξ − ξ′| , G(t, x̂)〉

We claim that there is some C > 0 for which for all ξ 6= ξ′ in our cap, the
phase functions satisfy

(4.36) ||∇Φξ,ξ′(t, x̂)|| ≥ C

Indeed, decompose ξ − ξ′ into components along v0 and orthogonal to it:

ξ − ξ′ = ku+ 〈ξ − ξ′, v0〉v0 , u ⊥ v0, ||u|| = 1
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Since ξ, ξ′ lie in a cap of size
√
λD on the sphere of radius λ, the difference

ξ − ξ′ is almost orthogonal to v0 and we claim that

(4.37)

∣∣∣∣〈
ξ − ξ′

|ξ − ξ′| , v0〉
∣∣∣∣ ≪

√
λD

λ
= o(1)

Indeed, writing ξ = ξ0 + η, ξ′ = ξ0 + η′, with |η|, |η′| ≤
√
λD we get

2〈η, ξ0〉+ |η|2 = 0 = 2〈η′, ξ0〉+ |η′|2

and since ξ0 = −λv0,∣∣∣∣〈
ξ − ξ′

|ξ − ξ′| , v0〉
∣∣∣∣ =

∣∣∣∣〈
η − η′

|η − η′| , v0〉
∣∣∣∣ =

∣∣∣∣
|η|2 − |η′|2
2λ|η − η′|

∣∣∣∣ ≤
|η|+ |η′|

2λ
=

√
λD

λ

as claimed. Likewise we have

(4.38) A(ξ), A(ξ′) ≤ D

2
because

A(ξ) = 〈η, v0〉 = −〈η, ξ0
λ
〉 = |η|2

2λ
≤ D

2
Therefore we find

(4.39) |k| ∼ |ξ − ξ′|
Thus

Φξ,ξ′(t, x̂) =
k

|ξ − ξ′|φu(t, x̂) + o(1)〈v0, G(t, x̂)〉

By our choice (3.28) of ψ and as a consequence of Lemma 4.2, we know
that φu has no critical point in suppψ for all u ⊥ v0 and so there is some
C > 0 so that |∇φu(t, x̂)| > 2C for all u ⊥ v0 and all (t, x̂) ∈ suppψ.
Therefore (recalling that |k| ∼ |ξ − ξ′|) for λ≫ 1 we have

|∇Φξ,ξ′(t, x̂)| > C

as claimed.
Integrating by parts we get that

(4.40) Jξ,ξ′ ≪ ||Aξ,ξ′ ||Cr
1

|ξ − ξ′|r , ∀r ≥ 1

Since 0 ≤ A(ξ), A(ξ′) ≤ D, and τ ≤ t ≤ 2τ on suppψ, we may bound the

Cr-norm of the amplitude function Aξ,ξ′ = e−2πt(A(ξ)+A(ξ′))ψ(t, x̂) by

(4.41) ||Aξ,ξ′||Cr ≪ψ (1 +A(ξ) +A(ξ′))r+1e−2πτ(A(ξ)+A(ξ′)) = O(1)

(the implied constant depends only on ψ, τ and r, not on ξ, ξ′), which gives
the required estimate. �
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5. A lower bound for the mean-square of ϕC(Z)e−2πi〈ξ0,Z〉

5.1. Representing ϕC on Σ(v0, τ) by a short sum. We show that for

Z ∈ Σ(v0, τ) we may represent ϕC(~Z)e−2πi〈ξ0, ~Z〉 by the part of its Fourier
expansion whose frequencies lie in a small cap around ξ0, up to a negligible
error.

For ξ ∈ E , set
(5.1) A(ξ) = 〈ξ − ξ0, v0〉
Observe that since all vectors ξ ∈ E lie on a sphere, and thus no two vectors
can lie on the same positive ray, we have 〈ξ, ξ0〉 < 〈ξ0, ξ0〉 for all vectors
ξ 6= ξ0 and hence

(5.2) A(ξ) > 0, ξ 6= ξ0 , A(ξ0) = 0

Let

(5.3) D ≈ (log λ)2

The set

(5.4) E ′ := {ξ ∈ E : A(ξ) < D}
is contained in a cap of size ≈

√
λD centered at ξ0. Note that for ξ in this

cap, ξ − ξ0 is almost perpendicular to v0.

Lemma 5.1. For ~Z = ~X + i~Y ∈ Σ(v0, τ), we have

(5.5) ϕC(~Z)e−2πi〈ξ0, ~Z〉 =
∑

A(ξ)≤D

aξe
2πi〈ξ−ξ0, ~X〉e−2πtA(ξ) +O(

1

λN
)

for all N ≥ 1.

Proof. We define a subset T (v0) ⊂ Cd/Zd by

(5.6) T (v0) := {~Z ∈ Cd : Im ~Z = | Im ~Z|v0}
that is the complex vectors whose imaginary parts point along the ray in
the direction of v0. Restricting ϕ

C to T (v0), we have

(5.7) ϕC(~Z)e−2πi〈ξ0, ~Z〉 =
∑

ξ

aξe
2πi〈ξ−ξ0, ~X〉e−2πtA(ξ) , t := | Im ~Z|

Now restrict ~Z further by assuming that it lies in the set

T (v0; τ) := {~Z ∈ T (v0) : τ < | Im ~Z| < 2τ}
Then for ~Z ∈ T (v0; τ) we have

(5.8) |
∑

A(ξ)>D

aξe
2πi〈ξ−ξ0, ~Z〉| ≤

∑

A(ξ)>D

|aξ |e−2π| Im ~Z|D

≪ (#E)1/2e−2πτD ≪ 1

λN
, ∀N > 1

using
∑

ξ |aξ|2 = 1, #E ≪ λd−2+ǫ and A(ξ) ≥ D, | Im ~Z| > τ .
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Hence for ~Z ∈ T (v0; τ) we have

(5.9) ϕC(~Z)e−2πi〈ξ0, ~Z〉 =
∑

A(ξ)≤D

aξe
2πi〈ξ−ξ0, ~X〉e−2πtA(ξ) +O(

1

λN
)

In particular, since Σ(v0, τ) ⊂ T (v0, τ) we proved (5.5). �

5.2. Proof of the lower bound on the mean square. We now want to
prove the lower bound (4.5) for the mean square, namely that

∫

Σ(v0,τ)
|ϕC(Z)e−2πi〈ξ0,Z〉|2dµ(Z) ≫ |aξ0 |2 +O(

1

λN
)

Hence what we need follows from the following Lemma, once we recall that
A(ξ) ≥ 0 for all ξ ∈ E ′ and that A(ξ0) = 0:

Proposition 5.2. There is some C > 0 so that

(5.10)

∫

Σ(v0,τ)

∣∣∣∣∣∣

∑

ξ∈E ′

aξe
2πi〈ξ−ξ0,Z〉

∣∣∣∣∣∣

2

dµ(Z) ≥ C
∑

ξ∈E ′

|aξ|2e−8πτA(ξ) +O(
1

λN
)

for all N > 1.

Proof. We note that for Z ∈ Σ(v0, τ),

〈ξ − ξ0, Z〉 = 〈ξ − ξ0, G(t, x̂)〉+ itA(ξ)

where

(5.11) G(t, x̂) = Re γC((x1, x̂) + itω) = (x1, x̂,ReF ((x1, x̂) + itω))

and so we need to show that
(5.12)
∫ ∣∣∣∣∣∣

∑

ξ∈E ′

aξe
−2πtA(ξ)e2πi〈ξ−ξ0,G(t,x̂)〉

∣∣∣∣∣∣

2

dµ(t, x̂) ≥ C
∑

ξ∈E ′

|aξ|2e−8πτA(ξ)+O(
1

λN
)

for all N > 1, where dµ(t, x̂) = ψ(t, x̂)dtdx̂.
Let d(E ′) be the minimal dimension of an affine hyperplane which contains

all the frequencies E ′, so d(E ′) ≤ d. We show by induction on d′ = d(E ′)
that (5.12) holds.

The case d′ = 1: This means all frequencies lie on a line, and hence (since
they lie on a sphere) there are at most two of them. If there is exactly one
frequency the claim is clear, so we need to treat the case E ′ = {ξ, ξ′} consists
of two distinct frequencies. That is we want to show that

(5.13)

∫ ∣∣∣aξe2πi〈ξ−ξ0,G(t,x̂)〉e−2πtA(ξ) + aξ′e
2πi〈ξ′−ξ0,G(t,x̂)〉e−2πtA(ξ′)

∣∣∣
2
dµ

≥ C(|aξ|2e−8πτA(ξ) + |aξ′ |2e−8πτA(ξ′))

Write

Aξ(t) = |aξ|e−2πtA(ξ) , aξ = |aξ |e2πiαξ
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Then we want to give a lower bound for

(5.14)

∫ ∣∣∣Aξ(t)e
2πi(αξ+〈ξ−ξ0,G(t,x̂)〉) +Aξ′(t)e

2πi(αξ′+〈ξ′−ξ0,G(t,x̂)〉)
∣∣∣
2
dµ

We have

(5.15)
∣∣∣Aξ(t)e

2πi(αξ+〈ξ−ξ0,G(t,x̂)〉) +Aξ′(t)e
2πi(αξ′+〈ξ′−ξ0,G(t,x̂)〉)

∣∣∣
2

= Aξ(t)
2 +Aξ′(t)

2 + 2Aξ(t)Aξ′(t) cos 2πφ(t, x̂)

where the phase function is

(5.16) φ(t, x̂) = αξ−αξ′+|ξ−ξ′|Φξ,ξ′(t, x̂) , Φξ,ξ′(t, x̂) = 〈 ξ − ξ′

|ξ − ξ′| , G(t, x̂)〉

Let

Sδ = {(t, x̂) ∈ suppψ : cos 2πφ(t, x̂) ≥ −1 + δ}
According to (4.36),

(5.17) |∇φ(t, x̂)| ≥ |ξ − ξ′|C ≥ C

for all (t, x̂) ∈ suppψ and all ξ 6= ξ′ ∈ E ′ (using integrality for |ξ − ξ′| ≥ 1).
Therefore since the phase varies by at least a fixed amount, there is some
δ > 0 and C > 0 (independent of ξ, ξ′) so that

(5.18)

∫

Sδ

dµ ≥ C

δ

On the set Sδ we have

Aξ(t)
2 +Aξ′(t)

2 + 2Aξ(t)Aξ′(t) cos 2πφ(t, x̂)

≥ Aξ(t)
2 +Aξ′(t)

2 + (−1 + δ)2Aξ(t)Aξ′(t)

= δ(Aξ(t)
2 +Aξ′(t)

2) + (1− δ)
∣∣Aξ(t)−Aξ′(t)

∣∣2

≥ δ(|aξ |2e−8πτA(ξ) + |aξ′ |2e−8πτA(ξ′))

Therefore we find that

(5.14) =

∫ {
Aξ(t)

2 +Aξ′(t)
2 + 2Aξ(t)Aξ′(t) cos 2πφ(t, x̂)

}
dµ

≥
∫

Sδ

{
Aξ(t)

2 +Aξ′(t)
2 + 2Aξ(t)Aξ′(t) cos 2πφ(t, x̂)

}
dµ

≥ δ(|aξ |2e−8πτA(ξ) + |aξ′ |2e−8πτA(ξ′))

∫

Sδ

dµ

≥ C(|aξ|2e−8πτA(ξ) + |aξ′ |2e−8πτA(ξ′))

as claimed.
The case d′ ≥ 2: By Proposition 2.2 we may partition E ′ =

∐ Eα where

(5.19) diam Eα ≪ λ
1

d+1 , dist(Eα, Eβ) ≫ λ
1

(d+1)(1+c(d)) , α 6= β
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Then

∫ ∣∣∣∣∣∣

∑

ξ∈E ′

aξe
2πi〈ξ−ξ0,G(t,x̂)〉e−2πtA(ξ)

∣∣∣∣∣∣

2

dµ

=
∑

α

∫ ∣∣∣∣∣∣

∑

ξ∈Eα

aξe
2πi〈ξ−ξ0,G(t,x̂)〉e−2πtA(ξ)

∣∣∣∣∣∣

2

dµ+
∑

α6=β

∑

ξ∈Eα

∑

ξ′∈Eβ

aξaξ′Jξ,ξ′

where the oscillatory integral Jξ,ξ′ is given in (4.9). By Lemma 4.3 we have

(5.20) |Jξ,ξ′ | ≪
1

|ξ − ξ′|r ≪ 1

λN
, ∀N > 1

since |ξ − ξ′| ≫ λ
1

(d+1)(1+c(d)) for ξ ∈ Eα, ξ′ ∈ Eβ with α 6= β. Hence we have
an upper bound for the off-diagonal terms

(5.21)
∑

α6=β

∑

ξ∈Eα

∑

ξ′∈Eβ

aξaξ′Jξ,ξ′ ≪
1

λN

∑

ξ∈E ′

|aξ|2 ≤
1

λN
, ∀N > 1

taking into account the normalization
∑

ξ |aξ|2 = 1.
We now want to derive a lower bound for the diagonal terms. By Jarnik’s

theorem, since diam Eα ≪ λ
1

d+1 , the set Eα is contained in an affine hyper-
plane Hα and hence d(Eα) ≤ d − 1. Thus by the induction hypothesis we
have
(5.22)

∫ ∣∣∣∣∣∣

∑

ξ∈Eα

aξe
2πi〈ξ−ξ0,G(t,x̂)〉e−2πtA(ξ)

∣∣∣∣∣∣

2

dµ ≥ C
∑

ξ∈Eα

|aξ|2e−8πτA(ξ) +O(
1

λN
)

Combining with the upper bound (5.21) for the off-diagonal terms and sum-
ming over α we get the required lower bound (5.12). �
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6. Non-zero curvature: Proof of Theorem 1.2

Assume now that the hypersurface Σ has nowhere zero Gauss-Kronecker
curvature, i.e. all principal curvatures are nowhere zero. (The condition that
Σ is not flat means that at least one of the principal curvatures is nonzero).
We will use Theorem 4.1 to prove Theorem 1.2, namely that for λ > λΣ, an
eigenfunction ϕλ cannot vanish identically on Σ.

6.1. The strategy. We keep the normalization
∑

ξ |aξ|2 = 1. We assume
that there is some cap

(6.1) Ω0 = Cap(w0, θ0) ⊂ Sd−1

around w0, with opening angle θ of size O(1) so that

(6.2) |aξ| <
1

λN
, ∀ ξ

|ξ| ∈ Ω0

guaranteed by Theorem 4.1. We shall call such frequencies “negligible”.
We aim to show that there is a larger cap

Ω1 = Cap(w1, θ1) ⊂ Sd−1

for which all frequencies E1 := λΩ1 ∩ E in direction Ω1 are negligible. Here
“larger” means that say

(6.3) θ1 ≥ θ0 + δ0

for some fixed δ0 > 0 (independent of λ). We will show that all frequencies
in E1 are “negligible”. Proceeding in this way we will eventually show that
all frequencies are “negligible”, contradicting

∑
ξ |aξ|2 = 1.

6.2. An oscillatory integral. Since Σ has non-vanishing curvature, the
unit normals to Σ sweep out at least a cap Cap(u0, δ1) for some δ1 > 0. If

δ0 < δ1/2, then for any u ∈ Cap(u0,
δ1
2 ) we have

(6.4) Cap(u, δ0) ⊂ Cap(u0, δ1)

We choose δ0 sufficiently small so that for any such u, we have a patch
Σu ⊂ Σ on the surface so that the Gauss map

(6.5) N : Σu → Cap(u, δ0)

is a diffeomorphism.
Fix a bump function ψ supported in the cap Cap(u0, δ0), from which we

get a smooth measure dµ on the cap; applying rotations give smooth measure
on any cap Cap(u, δ0), and pulling back to the patch Σu via the Gauss map
N we get a smooth measure µu on Σu, which depends in a bounded way on
u ∈ Cap(u0, δ1/2). Denote by

(6.6) µ̂u(ξ) :=

∫

Σu

e−2πi〈ξ,x〉dµu(x)

its Fourier transform.
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Fourier transforms of surface-carried measure are known to decay poly-
nomially in the presence or curvature [7, 6], in fact if the surface is not flat
[12]. However there is faster decay in directions which are disjoint from the
image of the Gauss map. We use this to prove:

Lemma 6.1. For all vectors y 6= 0 which do not lie in the direction of the
bigger cap Cap(u, 2δ0), we have

(6.7) µ̂(y) ≪N
1

|y|N ,
y

|y| /∈ Cap(u, 2δ0), ∀N > 0

where the implied constants can be taken uniform in u ∈ Cap(u0, δ1/2)

Proof. We take a regular parametrization X : t = (t1, . . . , td−1) 7→ X(t) of
the patch Σu. Then the Fourier transform becomes

µ̂u(y) =

∫

Rd−1

e−2πi|y|φ(t)Ψ(t)dt

for a suitable amplitude Ψ ∈ C∞
c (Rd−1) and with phase function

φ(t) = 〈ŷ,X(t)〉, ŷ :=
y

|y|
Our claim will follow by integration by parts if we give a uniform lower
bound for the gradient of the phase function

(6.8) |∇φ| ≥ C > 0

The gradient of the phase function is given by

∇φ = DX(t)ŷ

where we think of ŷ ∈ Sd−1 as a column vector and the derivative DX =
(∂Xi

∂tj
) is a (d − 1) × d matrix. Choose a row vector ω ∈ Rd−1 for which

ωDX(t) is the orthogonal projection P (ŷ) of ŷ on the tangent space TX(t)Σ.
Thus

ω∇φ(t) = ωDX(t)ŷ = P (ŷ) · ŷ
Let α be the angle between the unit normal NX(t) and ŷ. Then α > δ0

since by assumption NX(t) ∈ Cap(u, δ0) while ŷ /∈ Cap(u, 2δ0). Therefore

|P (ŷ)| = |ŷ| sinα = sinα ≥ sin δ0

and therefore
ω∇φ(t) = P (ŷ) · ŷ = |P (ŷ)|2 ≥ (sin δ0)

2

On the other hand,
|ω∇φ(t)| ≤ |ω||∇φ(t)|

and so we find

|∇φ| ≥ (sin δ0)
2

|ω|
and it remains to give an upper bound for |ω|.

We have
|P ŷ|2 = |ωDX|2 = ωDXDXTωT
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Now P (ŷ) has length at most |ŷ| = 1, being the orthogonal projection of the
unit vector ŷ, and so we find

1 ≥ ωDX(t)DX(t)TωT

The rows of DX(t) are linearly independent since we assume that X is a reg-
ular parametrization. Hence the quadratic form DX(t)DX(t)T is positive
definite (it is the first fundamental form of the hypersurface) and so

ωDX(t)DX(t)TωT ≥ c(t)|ω|2

for some c(t) > 0, and taking c := min{c(t)} > 0 we find 1 ≥ c|ω|2, that is

|ω| ≤ 1√
c

Thus

(6.9) |∇φ| ≥ (sin δ0)
2

√
c

giving the required lower bound. �

6.3. Geometric considerations. For a unit vector u ∈ Sd−1 let

(6.10) τu(x) = x− 2〈x, u〉u
be the reflection in the hyperplane orthogonal to u.

Fix u0 ∈ Sd−1, and δ > 0. Then there is some ǫ = ǫd(δ) > 0 so that for
every w ∈ Sd−1, the set of reflected points τuw, for u ranging over all points
in the cap Cap(u0, δ), contains a cap Cap(w1, ǫ):

(6.11) ∀w ∃w1 such that Cap(w1, ǫ) ⊆ {τuw : u ∈ Cap(u0, δ)}
By symmetry, ǫ is independent of the base point u0, and depends only on
the dimension d and on δ.

Now let u0 ∈ Sd−1, δ1 > 0 be as in § 6.2. We fix δ0 > 0, with δ0 < δ1/2
sufficiently small so that the Gauss map gives a diffeomorphism (6.5), and
Lemma 6.1 holds. In addition we require

(6.12) δ0 <
1

6
ǫd(

δ1
2
)

Recall that Cap(w0, θ0) = Ω0 is a cap where we assume the Fourier coef-
ficients aξ ≈ 0 are negligible for all frequencies with ξ/|ξ| ∈ Ω0.

Lemma 6.2. Let u ∈ Cap(u0, δ1/2) and B ⊂ τuCap(w0, θ0 − 4δ0). Then
for all unit vectors y /∈ B, either y ∈ Ω0 = Cap(w0, θ0) or else

(6.13)
x− y

|x− y| /∈ Cap(u, 2δ0), ∀x ∈ τuCap(w0, θ0 − 4δ0), x 6= y

Proof. Let y ∈ Sd−1\B and assume that (6.13) fails, that is there is some
x ∈ τuCap(w0, θ0 − 4δ0) and u1 ∈ Cap(u, 2δ0) so that

(6.14) y = x− |x− y|u1
We then need to show that y ∈ Ω0.
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The condition (6.14) means that

(6.15) y = τu1(x)

This is because y lies on the intersection of the sphere with the line through
x ∈ Sd−1 in the direction of u1; that intersection contains (at most) two
points, one of them being x, which we assume is distinct from y. Clearly
the reflection τu1(x) also has this properties, so that y = τu1(x). Hence we
find that

y = τu1x ∈ τu1 ◦ τuCap(w0, θ0 − 4δ0)

The composition of two distinct reflections τu ◦ τu1 is a rotation in the
plane spanned by the two vectors u, u1 (assumed not to be co-linear) by an
angle which is twice the angle α between the two vectors. In our case, since
u1 ∈ Cap(u, 2δ0) lies in cap centered at u, we have α ≤ 2δ0. Hence

τu1 ◦ τuCap(w0, θ0 − 4δ0) ⊆ Cap(w0, θ0 − 4δ0 + 2α) ⊆ Cap(w0, θ0)

so that y ∈ Ω0 as claimed. �

6.4. Vanishing of Fourier coefficients in the larger caps. For each
u ∈ Cap(u0, δ1/2), apply the reflection τu to the cap Cap(w0, θ0 − 5δ0) to
get a cap

(6.16) Ω1(u) := τuCap(w0, θ0 − 5δ0) = Cap(τuw0, θ0 − 5δ0)

We now claim that the Fourier coefficients aξ for frequencies whose directions
lie in the cap Ω1(u) are negligible:

Proposition 6.3. If ξ/|ξ| ∈ Ω1(u) then

(6.17) |aξ| ≪
1

λN
, ∀N ≥ 1

Proof. Let

(6.18) F = λΩ1(u) ∩ E
and use Proposition 2.2 with ρ = λδ(d) to get an overset F̃ , F ⊆ F̃ ⊂ E so
that

(6.19) dist(F̃ , E\F̃ ) > λδ(d)

and

(6.20) diam F̃ ≤ diamF + λ
1

2(d+1) ≤ λdiamΩ1(u){1 +O(λ
−1+ 1

2(d+1) )}
Since 1

λ F̃ ⊃ 1
λF ⊂ Ω1(u) = τuCap(w0, θ0 − 5δ0), condition (6.20) implies

that for λ sufficiently large,

(6.21)
1

λ
F̃ ⊂ τuCap(w0, θ0 − 4δ0)

Set

(6.22) E1(u) = F̃
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so that

(6.23) dist(E1(u), E\E1(u)) > λδ(d)

and

(6.24)
1

λ
E1(u) ⊂ τuCap(w0, θ0 − 4δ0)

Consider the integral

(6.25) 0 =

∫

Σu

ϕ(x)
∑

ξ∈E1(u)

aξe
2πi〈ξ,x〉dµu(x)

which equals zero, since we assume ϕ = 0 on Σ.
On the other hand, expanding

ϕ =
∑

ξ∈E1(u)

aξe
2πi〈ξ,x〉 +

∑

ξ /∈E1(u)

aξe
2πi〈ξ,x〉

gives a sum of “diagonal” and “off-diagonal” terms:

0 =

∫

Σu

∣∣∣∣∣∣

∑

ξ∈E1(u)

aξe
2πi〈ξ,x〉

∣∣∣∣∣∣

2

dµu(x) +
∑

ξ∈E1(u)

∑

η/∈E1(u)

aξaηµ̂u(η − ξ)

= diagonal + off-diagonal

The diagonal term can be bounded from below:

(6.26)

∫

Σu

∣∣∣∣∣∣

∑

ξ∈E1(u)

aξe
2πi〈ξ,x〉

∣∣∣∣∣∣

2

dµu(x) ≥ C
∑

ξ∈E1(u)

|aξ |2

by arguing as in Proposition 5.2 (in fact by using it in the special case
A(ξ) = 0).

We will show that the off-diagonal part is “negligible” which will give the
required upper bound (6.17). To do so, decompose the off-diagonal term as

off-diagonal =
∑

ξ∈E1(u)

∑

η∈E0\E1(u)

aξaηµ̂u(η − ξ)

+
∑

ξ∈E1(u)

∑

η∈E\(E0∪E1(u))

aξaηµ̂u(η − ξ)

The first term is negligible because all the coefficients aη ≈ 0 are negligible
for η ∈ E0.

In the second term, we claim that all Fourier transforms µ̂u(ξ − η) ≈ 0
are negligible for ξ ∈ E1(u), η /∈ E1(u) ∪ E0: Indeed, denoting by x = ξ/|ξ|
and y = η/|η| (note x 6= y), apply Lemma 6.2 with

B =
1

λ
E1(u) ⊂ τuCap(w0, θ0 − 4δ0)
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Then y /∈ Ω0 since η /∈ E0 hence

x− y

|x− y| /∈ Cap(u, 2δ0)

Since |ξ| = |η| = λ, we have ξ−η
|ξ−η| =

x−y
|x−y| . Therefore

ξ − η

|ξ − η| =
x− y

|x− y| /∈ Cap(u, 2δ0)

and hence by the non-stationary phase lemma 6.1, we have

µ̂u(η − ξ) ≪ 1

|ξ − η|M , ∀M ≥ 1

Moreover, since ξ ∈ E1(u) and η /∈ E1(u),
|ξ − η| ≥ dist(E1(u), E\E1(u)) > λδ(d)

Hence we get

(6.27) µ̂(η − ξ) ≪ 1

λN
, ξ ∈ E1(u), η /∈ E1(u) ∪ E0

that is the Fourier transforms are negligible as required. Thus the off-
diagonal term is negligible, which shows that

∑
ξ∈E1(u)

|aξ|2 is negligible.

Since 1
λF = Ω1(u) ∩ 1

λE ⊂ 1
λE1(u), we get |aξ| ≪ 1

λN
if ξ/|ξ| ∈ Ω1(u). �

Finally, we claim

Proposition 6.4. There is a cap Ω1 = Cap(w1, θ0 + δ0) for which all fre-
quencies ξ in direction Ω1, the Fourier coefficients aξ are negligible

Proof. We note that the union

(6.28)
⋃

u∈Cap(u0,δ1/2)

Ω1(u) =
⋃

u∈Cap(u0,δ1/2)

Cap(τuw0, θ0 − 5δ0)

contains a cap Ω1 = Cap(w1, θ1) with θ1 ≥ θ0 + δ0.
This follows since the set of reflected centers

{τuw0 : u ∈ Cap(u0, δ1/2)}
contains a cap Cap(w1, ǫd(

δ1
2 )), where ǫd(δ) is defined in (6.11), since we

chose δ0 sufficiently small so that ǫd(
δ1
2 ) > 6δ0, and hence

(6.29)
⋃

u∈Cap(u0,δ1/2)

Ω1(u) ⊃ Cap(w1, θ0− 5δ0+ ǫd(
δ1
2
)) ⊃ Cap(w1, θ0+ δ0)

Therefore for all frequencies in direction Ω1 the Fourier coefficients aξ are
negligible, since the same holds for each of the small caps Ω1(u) containing
Ω1. �

By continuing this process, we see that all coefficients aξ are negligible,
contradicting the normalization

∑
ξ |aξ|2 = 1. This concludes the proof of

Theorem 1.2.
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Appendix A. The two-dimensional case: Using the ABC theorem

In this section we give a proof of Theorem 1.1 using the function-field “abc
theorem” of Brownawell-Masser [3] and Voloch [16]. We recall the statement:
Let K = C(X) be the function field of an algebraic curve of genus g over
the complex numbers, S a finite set of places of K, and u1, . . . um ∈ K a
set of S-units, that is rational functions whose zeros and poles lie in S. The
degree, or height, of a non-constant rational function x ∈ K is defined as
the degree of K over the field extension C(x): H(x) = [K : C(x)], which is
the number of zeros (or poles) of x, counted with multiplicities.

Theorem A.1 ([3], [16]). Let u1, . . . , um ∈ K be non-constant S-units,
linearly independent over C, satisfying

(A.1)

m∑

j=1

uj = 1

Then

(A.2) max
j
H(uj) ≤

m(m− 1)

2
(2g − 2 + #S)

This result improves that of R.C. Mason [13], where the quadratic term
m(m−1)/2 is replaced by a term exponential in m, which is not sufficiently
strong for our purposes.

A.1. Complexification. Let ϕ be an eigenfunction, −∆ϕ = 4π2λ2ϕ, which
vanishes on the curve Σ. Write

(A.3) ϕ(x) =
∑

ξ

aξe
2πi〈ξ,x〉

Let

(A.4) supp ϕ̂ = {ξ : aξ 6= 0}
be the set of frequencies of ϕ, and set

(A.5) r = #supp ϕ̂

to be the number of frequencies; necessarily r ≥ 2.
We can embed the torus T2 ≃ S1 × S1 in C2 via the map (x, y) 7→

(z1, z2) = (e2πix, e2πiy). This allows us to associate with each trigonometric
polynomial (A.3) a Laurent polynomial

(A.6) F (z) =
∑

ξ

aξz
ξ

where for z = (z1, z2) ∈ C2 and ξ = (n1, n2) ∈ Z2 we denote

zξ := zn1
1 zn2

2

We can further write

(A.7) F (z1, z2) =
P (z1, z2)

za11 z
a2
2
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for a unique polynomial P ∈ C[z1, z2] so that z1 ∤ P , z2 ∤ P . If ϕ 6= ae2πi〈ξ,x〉

is not composed of a single frequency (which it cannot if we assume that it is
real-valued) then P is non-constant. Thus to each trigonometric polynomial
ϕ (not a single exponential) we associate the plane curve

XP = {z : P (z) = 0} ⊂ C2

which is possibly reducible and singular.
The nodal set of ϕ must be contained in XP , since zi do not vanish on

T2 = S1 × S1 ⊂ C2. Thus if ϕ vanishes on the (real) smooth curve Σ ⊂ T2,
then Σ must be contained in an irreducible component of XP (possibly in
more than one component). Thus we get an irreducible component (possibly
singular)

XD = {z : D(z) = 0}
containing Σ. Here D ∈ C[z1, z2] is an irreducible divisor of P of positive
degree. Note that in that case D(z1, z2) cannot depend only on one of the
variables, say on z1. Indeed in that case D(z1) is a one-variable polynomial,
and is then irreducible only in the case that it is linear: D(z1) = z1 − c,
whose zero set is a closed geodesic, contradicting our choice of Σ.

Let λ0 be minimal where an eigenfunction ϕ0 with eigenvalue 4π2λ20 van-
ishes on Σ. We can choose an irreducible D0 ∈ C[z1, z2] so that Σ ⊂ XD0 =:
X0. Let C(X0) be the function field of the curve X0, that is the field of frac-
tions of the integer domain C[z1, z2]/(D0). The curve X0 is irreducible but
possibly singular. Let X → X0 be its normalization, whose ring of regular
functions is the integral closure of C[z1, z2]/(D0), and has the same function
field as X0. The map X → X0 is one-to-one outside of finitely many points.

Restricting the monomials zξ (ξ ∈ Z2) to X0 gives rational functions
which we still denote by zξ, in C(X0) = C(X), which have all their zeros
and poles in the set S0 given by

(A.8) S0 = X0 ∩ {(z1, z2) ∈ P2 : zi = 0,∞}
Note that S0 is finite because X0 is not a line of the form zi = 0,∞, since
D(z1, z2) depends on both variables. By pulling back to the normalization
X, we get rational functions, still denoted by zξ, on X which are S-units
for the pullback S of S0 to X.

A.2. A lower bound for the height of monomials. In order to apply
Theorem A.1, we need to compute the height of the monomials zξ as rational
functions on the curveX. The assumption that Σ is not a segment of a closed
geodesic allows us to obtain a useful lower bound:

Lemma A.2. Suppose that Σ is not a segment of a closed geodesic. Then
there is some constant cΣ > 0 so that

H(zn1
1 zn2

2 ) ≥ cΣmax(|n1|, |n2|)
for all (n1, n2) ∈ Z2.
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Proof. Let divX be the vector space of divisors of X, that is of (finite)
formal sums

∑
P∈X nPP (we include points at infinity). The degree of such

a divisor is
∑

P np. For a rational function u on X, we have an associated
principal divisor div u = div0 u − div∞ u where div0 u and div∞ u are the
divisors of zeros and poles. Then the degree of a principal divisor is zero:
deg div u = deg div0 u− deg div∞ u = 0 and the height of u equals

H(u) = deg div0 u = deg div∞ u

On the vector space divX we have the ℓ1-norm

||
∑

P

nPP ||1 :=
∑

P

|nP |

which for a principal divisor equals twice the height of u.

||div u||1 = deg div0 u+ deg div∞ u = 2H(u)

We claim that if Σ is not a segment of a closed geodesic, then div z1
and div z2 are linearly independent elements of divX. Indeed, a linear
dependence means that there are integers a1, a2 ∈ Z for which

a1 div z1 = a2 div z2

or equivalently that za11 /z
a2
2 ≡ c is the constant function when restricted to

the curve X0. That means that on Σ, we have

e2πi(a1x1−a2x2) = c

whose zero set is a union of closed geodesics. Hence div z1 and div z2 are
linearly independent.

Since div z1 and div z2 are linearly independent, their span V is a two-
dimensional vector space in divX. On V we then have two norms: The
restriction of the ℓ1-norm and the ℓ∞-norm

||div(zn1
1 zn2

2 )||∞ = ||n1 div z1 + n2 div z2||∞ = max(|n1|, |n2|)

which is indeed a norm since div z1 and div z2 are linearly independent.
Since on any finite-dimensional vector space all norms are equivalent, we
find that there is some c = cV > 0 for which

||div(zn1
1 zn2

2 )||1 ≥ c|div(zn1
1 zn2

2 )||∞ = cmax(|n1|, |n2|)

for all n ∈ Z2, and hence

H(zn1
1 zn2

2 ) =
1

2
||div(zn1

1 zn2
2 )||1 ≥ 1

2
cmax(|n1|, |n2|)

as claimed. �
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A.3. Proof of Theorem 1.1. We assume that Σ is not a segment of a
closed geodesic. We choose λ sufficiently large so that

(A.9) λ≫ (#S + 2gX − 2)1+ǫ

and show that no eigenfunction ϕ with eigenvalue 4π2λ2 can vanish on Σ.
Suppose λ admits an eigenfunction (A.3) which vanishes on Σ. Among

such eigenfunctions, choose such ϕ with the number of frequencies r being
minimal. If r = 2 then after scaling,

ϕ(x) = e2πi〈ξ,x〉 − ae2πi〈ξ
′,x〉, a ∈ C

and for its nodal set to contain a real point, we need |a| = 1, that is a = e2πiα,
α ∈ R. In that case the nodal set consists of x ∈ T2 with

〈ξ − ξ′, x〉 ∈ α+ Z

which is a union of straight lines with rational slopes, i.e. closed geodesics.
So we may assume r ≥ 3.

In the expansion (A.3), choose one of the frequencies ξ0 and divide all

terms in (A.3) by aξ0e
2πi〈ξ0,x〉 to get a relation:

(A.10)
∑

ξ0 6=ξ∈supp ϕ̂

− aξ
aξ0

zξ−ξ0 = 1

Set

(A.11) uξ := − aξ
aξ0

zξ−ξ0 ∈ C(X0)

Then we get a relation in C(X0) = C(X) (an S-unit equation)

(A.12)
∑

ξ∈supp ϕ̂
ξ 6=ξ0

uξ = 1

where uξ are linearly independent, by the minimality assumption on ϕ. To
the relation (A.12) we apply the “abc-Theorem” (Theorem A.1) which says
that if r ≥ 3 then

(A.13) max(H(uξ) : ξ0 6= ξ ∈ supp ϕ̂) ≤ (r − 1)(r − 2)

2
(#S + 2gX − 2)

where gX is the genus of the smooth curve X. Since

H(uξ) = H(zξ−ξ0) ≥ cΣ||ξ − ξ0||∞
by Lemma A.2, we find that

(A.14) max
ξ 6=ξ0

||ξ − ξ0||∞ ≪ (r − 1)(r − 2)

2
(#S + 2gX − 2)

Now the number of frequencies r is at most the total number of lattice
points on the circle |x| = λ, hence is bounded by r ≪ λǫ for all ǫ > 0. Thus
by (A.14) we find that all frequencies of ϕ are contained in a box of size

≪ λǫ around ξ0. By Jarnik’s theorem (Theorem 2.1), any arc of size ≪ λ1/3
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contains at most two lattice points, hence this forces r = 2 contradicting our
assumption r ≥ 3. This gives a contradiction for λ sufficiently large. �
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