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COMPLEX ZEROS OF REAL ERGODIC EIGENFUNCTIONS

STEVE ZELDITCH

Abstract. We determine the limit distribution (as λ → ∞) of complex zeros for holomor-
phic continuations ϕC

λ to Grauert tubes of real eigenfunctions of the Laplacian on a real
analytic compact Riemannian manifold (M, g) with ergodic geodesic flow. If {ϕjk

} is an

ergodic sequence of eigenfunctions, we prove the weak limit formula 1

λj
[ZϕC

jk

] → i
π
∂∂|ξ|g,

where [ZϕC

jk

] is the current of integration over the complex zeros and where ∂ is with respect

to the adapted complex structure of Lempert-Szöke and Guillemin-Stenzel.

1. Introduction

A well-known problem in the geometry of Laplace eigenfunctions is to determine the
asymptotics of the volume of their nodal hypersurfaces in the limit of large eigenvalues. At
the present time, the best result for compact real analytic Riemannian manifolds (M, g) of
dimension m is the estimate

(1) c1λ ≤ Hm−1(Zϕλ
) ≤ C2λ.

due to Donnelly-Fefferman [DF]. Further background and references can be found in [DF, JL,
NPSo]. In this article we are concerned with the yet more difficult problem of the asymptotic
distribution of nodal hypersurfaces, i.e. with integrals of continuous functions over nodal
hypersurfaces (cf. (10)). This problem is much too difficult for real hypersurfaces, but it
turns out to simplify quite a bit if we complexify the problem, i.e. analytically continue the
eigenfunctions into the complexification of M . Our main results determine the asymptotic
distribution of complex nodal hypersurfaces for eigenfunctions of real analytic Riemannian
manifolds with ergodic geodesic flow, or more generally for any sequence of quantum ergodic
eigenfunctions.

To state our results, we need some notation. Let (M, g) be a real analytic Riemannian
manifold of dimension m, and consider an orthonormal basis of real eigenfunctions

∆gϕj = λ2
jϕj, 〈ϕj, ϕk〉L2(M,dvolg) =

∫

M

ϕj(x)ϕk(x)dvolg(x) = δjk

of its Laplacian ∆g. We use the sign convention for which the Laplacian is positive; we
often write ∆g as ∆ when the metric is understood. As reviewed in §2, a real analytic
manifold possesses a Bruhat-Whitney complexification MC, that is, a complex manifold in
which M embeds as a totally real submanifold. This complex manifold may be identified (by
means of the complexified exponential map) with a ball bundle B∗

ǫ0
M inside the cotangent

bundle T ∗M , equipped with a complex structure Jg adapted to the metric in the sense of
Guillemin-Stenzel [GS1, GS2] and Lempert-Szöke [LS1, LS2]. We denote by |ξ|2g =

∑

ij g
ijξiξj
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2 STEVE ZELDITCH

the norm-squared of ξ ∈ T ∗
xM with respect to the metric, and by ∂ the Cauchy-Riemann

operator with respect to Jg. The maximal ball bundle B∗
ǫ0M to which this complex structure

extends is known as the Grauert tube of (M, g). The natural symplectic form ω and the
complex structure Jg endow B∗

ǫ0M with the Kähler metric ωg = 1
i
∂∂|ξ|2g.

By a theorem due to Boutet de Monvel [Bou] (see also [GS2, GLS]) the eigenfunctions
possess analytic continuations ϕC

λ to the maximal Grauert tube. The complex nodal hyper-
surface of an eigenfunction is defined by

(2) ZϕC

λ
= {ζ ∈ B∗

ǫ0M : ϕC

λ(ζ) = 0}.
There exists a natural current of integration over the nodal hypersurface in any ball bundle
B∗
ǫM with ǫ < ǫ0 , given by

(3) 〈[ZϕC

λ
], ϕ〉 =

i

2π

∫

B∗
ǫM

∂∂̄ log |ϕC

λ |2 ∧ ϕ =

∫

Z
ϕC

λ

ϕ, ϕ ∈ D(m−1,m−1)(B∗
ǫM).

In the second equality we used the Poincaré-Lelong formula. The notation D(m−1,m−1)(B∗
ǫM)

stands for smooth test (m− 1, m− 1)-forms with support in B∗
ǫM.

The nodal hypersurface ZϕC

λ
also carries a natural volume form |ZϕC

λ
| as a complex hyper-

surface in a Kähler manifold. By Wirtinger’s formula, it equals the restriction of
ωm−1

g

(m−1)!
to

ZϕC

λ
. Hence, one can regard ZϕC

λ
as defining the measure

(4) 〈|ZϕC

λ
|, ϕ〉 =

∫

Z
ϕC

λ

ϕ
ωm−1
g

(m− 1)!
, ϕ ∈ C(B∗

ǫM).

We prefer to state results in terms of the current [ZϕC

λ
] since it carries more information.

We will say that a sequence {ϕjk} of L2-normalized eigenfunctions is quantum ergodic if

(5) 〈Aϕjk , ϕjk〉 →
1

µ(S∗M)

∫

S∗M
σAdµ, ∀A ∈ Ψ0(M).

Here, Ψs(M) denotes the space of pseudodifferential operators of order s, and dµ denotes
Liouville measure on the unit cosphere bundle S∗M of (M, g). More generally, we denote by
dµr the (surface) Liouville measure on ∂B∗

rM , defined by

(6) dµr =
ωm

d|ξ|g
on ∂B∗

rM.

Our main result is:

Theorem 1.1. Let (M, g) be real analytic, and let {ϕjk} denote a quantum ergodic sequence
of eigenfunctions of its Laplacian ∆. Let (B∗

ǫ0
M,J) be the maximal Grauert tube around M

with complex structure Jg adapted to g. Let ǫ < ǫ0. Then:

1

λj
[ZϕC

jk

] → i

π
∂∂|ξ|g =

1

2π|ξ|g
ωg +

d|ξ|2g ∧ α
4π|ξ|3g

, weakly in D′(1,1)(B∗
ǫM).

In other words, for any continuous test form ψ ∈ D′(m−1,m−1)(B∗
ǫM), we have

1

λj

∫

Z
ϕC

jk

ψ → i

π

∫

B∗
ǫM

ψ ∧ ∂∂|ξ|g.
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The limit (1, 1) form i
π
∂∂|ξ|g first arose in [LS1, GS1] for a different reason which is reviewed

in §2.1. As a corollary we obtain a similar result on the integrals of scalar functions against
the measures |ZϕC

jk

|: for any ϕ ∈ C(B∗
ǫM),

1

λj

∫

Z
ϕC

jk

ϕ
ωm−1
g

(m− 1)!
→ i

π

∫

B∗
ǫM

ϕ∂∂|ξ|g ∧
ωm−1
g

(m− 1)!
.

As is well-known, ergodic sequences of density one in the spectrum arise when the geodesic
flow is ergodic, and an entire orthonormal basis is ergodic when the Laplacian is quantum
uniquely ergodic [CV, Shn, Z, Z2]. Thus, we obtain the titled result:

Corollary 1.2. Let (M, g) be a real analytic with ergodic geodesic flow. Let {ϕjk} denote
a full density ergodic sequence. Then for all ǫ < ǫ0,

1

λjk
[ZϕC

jk

] → i

π
∂∂|ξ|g, weakly in D′(1,1)(B∗

ǫM).

By the unique quantum ergodicity result of E. Lindenstrauss [Lin], the zero currents
of the full sequence of Hecke eigenfunctions on arithmetic hyperbolic surfaces satisfy the
limit formula in Corollary 1.2. The Rudnick-Sarnak conjecture [RS] that negatively curved
compact manifolds are quantum uniquely ergodic would imply that the zero currents of the
full sequence of eigenfunctions should satisfy the limit formula on such spaces.

Theorem 1.1 also has implications for a general Riemannian manifold (M, g). The or-
thonormal basis of a general Riemannian manifold is not quantum ergodic and moreover
the complex zeros do not generally tend to the limit i

π
∂∂|ξ|g (a flat torus provides a simple

example where zeros concentrate on complex hypersurface). However, in a precise sense, a
random orthonormal basis of L2(M) (adapted to ∆g) has the quantum ergodic property, and
hence the complex zeros of the basis functions will satisfy the limit formula of Theorem 1.1.

To state the result, we recall the definition and results on these random orthonormal bases
from [Z3]. We partition the spectrum of

√

∆g into the intervals Ik = [k, k + 1] and denote

by Πk = E(k + 1) − E(k) the spectral projections for
√

∆g corresponding to the interval
Ik. We denote by N(k) the number of eigenvalues in Ik and put Hk = ranΠk (the range
of Πk). Hk consists of linear combinations

∑

j:λj∈Ik cjϕj of the eigenfunctions of
√

∆g with

eigenvalues in Ik. We define a random orthonormal basis {Ukϕj} of Hk by changing the basis

of
√

∆-eigenfunctions {ϕj} of ∆ in Hk by a random element Uk of the unitary group U(Hk)
(equipped with its normalized Haar measure dνk of the finite dimensional Hilbert space Hk.

We then define a random orthonormal basis of L2(M) (adapted to ∆g) by taking the prod-
uct over all the spectral intervals in our partition. That is, we define the infinite dimensional
unitary group

U(∞) = Π∞
k=1U(Hk)

of sequences (U1, U2, . . . ), with Uk ∈ U(Hk), and equip U(∞) with the product measure

dν∞ = Π∞
k=1dνk.

A random orthonormal basis Ψ = {(Ukϕj)} of L2(M) is thus an orthonormal basis obtained
by applying a random element U ∈ U(∞) to the orthonormal basis Φ = {ϕj} of eigenfunc-

tions of
√

∆.
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In [Z3], it is proved that random orthonormal bases satisfy the following variance asymp-
totics:

E
(

∑

j:λj∈Ik |(AUϕj , Uϕj) − ω(A)|2
)

∼ (ω(A∗A) − ω(A)2).

To be precise, in [Z3] it is assumed that the widths of the intervals Ik increase to infinity, but
the more recent strong Szegö asymptotics of [GO, LRS] allow one to prove the same result
for intervals of bounded width such as the Ik above. By the strong law of large numbers (see
[Z3]) it follows that with probability one, a random orthonormal basis of L2(M) is quantum
ergodic. We thus have:

Corollary 1.3. Let (M, g) be any real analytic compact Riemannian manifold. Then with
probability one, a random orthonormal basis {ψj = Uϕj} of L2(M) as defined above satisfies

1

λjk
[ZψC

jk

] → i

π
∂∂|ξ|g, weakly in D′(1,1)(B∗

ǫM),

for a full density subsequence {ψjk}.
This gives a kind of almost sure improvement of the complexification of Theorem 14.3 of

Jerison-Lebeau [JL] from an inequality to an asymptotic formula.

1.1. Discussion and outline of the proof. In summary, the complex zeros of a quantum
ergodic sequence become equidistributed with respect to the (1, 1) form i

π
∂∂|ξ|g. As men-

tioned above, the Kähler form on B∗
ǫ0
M associated to g is the (1,1)-form ωg = 1

i
∂∂|ξ|2g. We

observe that ∂∂|ξ|g is singular relative to the Kähler form along the zero section, i.e. the to-
tally real submanifold M (the geometry will be reviewed in §2). This singular concentration
could be attributed to the fact that the Laplacian is time reversal invariant (i.e. invari-
ant under complex conjugation), so that the eigenfunctions are usually real-valued on the
real submanifold M . Hence their complex zero sets are invariant under the (time reversal)
involution σ : (x, ξ) → (x,−ξ) (the classical limit of complex conjugation).

As a simple example of Theorem 1.1, consider the circle S1. The geodesic flow is ergodic
modulo the symmetry (x, ξ) → (x,−ξ). The real eigenfunctions sin 2πkx, cos 2πkx are there-
fore quantum ergodic. They complexify to the cylinder as sin 2πkz, cos 2πkz. The complex
zero set of these holomorphic functions lies entirely on the set ℑz = 0 and become uniformly
distributed with respect to 2dθ as k → ∞. It will be checked in §5 that the coefficient agrees
with the result of Theorem 4.1. Note however that the complex eigenfunctions e±2πikx are
not quantum ergodic and have no complex zeros (see §5 for further discussion).

We now outline the main steps of the proof. As mentioned above, eigenfunctions ϕλ
of Laplcians of real analytic Riemannian manifolds admit holomorphic extensions ϕC

λ to
a maximal Grauert tube in the complexification MC of M , which we will identify with a
maximal ball bundle B∗

ǫ0M on which the adapted complex structure is defined. The square

|ξ|2g of metric norm function |ξ|g =
√

∑m
i,j=1 g

ij(x)ξiξj is a smooth, strictly plurisubharmonic

exhaustion function on B∗
ǫ0M . For 0 < ǫ ≤ ǫ0 the sphere bundles S∗

ǫM = ∂B∗
ǫM are strictly

pseudoconvex CR manifolds. We denote by O(B∗
ǫ (M)) the class of holomorphic functions

on this domain, and by O(∂B∗
ǫ (M)) the space of boundary values of holomorphic functions,

i.e. the CR holomorphic functions. For each 0 < ǫ < ǫ0, the restriction ϕC

λ |∂B∗
ǫ (M) thus lies

in the Hardy space O0(∂B∗
ǫ (M)) of square integrable CR functions.
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A key object in the proof is the sequence of functions Uλ(x, ξ) ∈ C∞(B∗
ǫM) defined by

(7)











Uλ(x, ξ) :=
ϕC

λ(x,ξ)

ρλ(x,ξ)
, (x, ξ) ∈ B∗

ǫM, where

ρλ(x, ξ) := ||ϕC

λ |∂B|ξ|g ||L2(∂B∗
|ξ|gM)

Thus, ρλ(x, ξ) is the ‘moving’ L2-norm of ϕC

λ as it is restricted to the one-parameter family
{∂B∗

ǫM} of strictly pseudo-convex CR manifolds. Uλ is of course not holomorphic, but its
restriction to each sphere bundle is CR holomorphic there, i.e.

(8) uǫλ = Uλ|∂B∗
ǫM ∈ O0(∂B∗

ǫ (M).

Our first result gives an ergodicity property of holomorphic continuations of ergodic eigen-
functions.

Lemma 1.4. Assume that {ϕλ} is a quantum ergodic sequence of ∆-eigenfunctions on M in
the sense of (5). Then for each 0 < ǫ < ǫ0,

|Uλ|2 →
1

µ1(S∗M)
|ξ|−m+1

g , weakly in L1(B∗
ǫM,ωm).

We note that ωm = rm−1drdωdvol(x) in polar coordinates, so the right side indeed lies in
L1. The actual limit function is otherwise irrelevant. The next step is to use a compactness
argument from [SZ] (see also [NV]) to obtain strong convergence of the normalized logarithms
of the sequence {|Uλ|2}. The first statement of the following lemma immediately implies the
second.

Lemma 1.5. Assume that |Uλ|2 → 1
µ1(S∗M)

|ξ|−m+1
g , weakly in L1(B∗

ǫM,ωm). Then:

(1) 1
λj

log |Uj |2 → 0 strongly in L1(B∗
ǫM).

(2) 1
λj
∂∂̄ log |Uj |2 → 0, weakly in D′(1, 1)(B∗

ǫM).

Separating out the numerator and denominator of |Uj|2, we obtain that

(9)
1

λj
∂∂̄ log |ϕC

λ |2 −
2

λj
∂∂̄ log ρλj

→ 0, (λj → ∞).

The next lemma shows that the second term has a weak limit:

Lemma 1.6. For 0 < ǫ < ǫ0,

1

λ
log ρλ(x, ξ) → |ξ|gx, in L1(B∗

ǫM) as λ→ ∞.

Hence,
1

λj
∂∂̄ log ρλj

→ ∂∂̄|ξ|gx, (λj → ∞) weakly in D′(B∗
ǫM).

It follows that the left side of (9) has the same limit, and that will complete the proof of
Theorem 1.1.

The proofs of the lemmas are based on the properties of the analytic continuation of
the wave kernel as a complex Fourier integral associated to the complexified exponential
map [Bou, GS2, GLS]. Since ϕC

λ |∂B∗√
ρ
M = e−λ

√
ρE(i

√
ρ)ϕλ, the analytic continuation of ϕλ

is obtained by applying a complex Fourier integral operator of known order and symbol.
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This allows us to connect growth and distribution of zeros in tubes to the dynamics of the
geodesic flow. Although this paper treats only the ergodic case, it would be of interest to
investigate complex zeros of ∆-eigenfunctions under other dynamical hypotheses such as
complete integrability. It would also be interesting to investigate analogues for boundary
value problems.

Let us compare the results of this paper to earlier results of B. Shiffman-S. Zelditch [SZ]
and of S.Nonnemacher- A. Voros [NV] (see also [R]) on complex zeros of eigenfunctions
of ergodic quantum maps in Kähler phase spaces. These articles were concerned with the
complex zeros of eigenfunctions of ergodic quantum maps acting on spaces H0(M,LN ) of
sections of powers of a holomorphic line bundle over a a Kähler manifold (M,ω). The role
of the Grauert tube was played by the disc bundle D∗ ⊂ L∗ of the dual line bundle, and the
role of the CR manifolds S∗

ǫM was played by the circle bundle X = ∂D∗, which is a strictly
pseudoconvex CR submanifold of L∗. The norm function |ξ|g of (M, g) is thus analogous
to the hermitian metric of (L, h), but the analogy is not very close. Indeed, the role of the
geodesic role in the (M, g) setting was split in the Kähler setting between two dynamical
systems: the S1 action on the circle bundle X → M (which is the direct analogue of the
geodesic flow in the Riemannian setting but is of course not ergodic); and an auxiliary ergodic
symplectic transformation χ of the Kähler manifold M . Ergodicity of joint eigenfunctions
{sN,j} of the S1 action and of the quantum map associated to χ gave ||sN,j(z)||2hN → 1 in
the weak sense (as in Theorem 1.4), where the norm is the pointwise norm relative to a
hermitian metric on L with curvature equal to the Kähler form ω. Weak convergence of the
zero currents as in Lemma 1.5 showed that 1

N
ZsN,j

→ ω, proving equidistribution of zeros
relative to the Kähler form. In comparison, Theorem 1.1 shows that complex zeros of real
ergodic eigenfunctions are not equidistributed relative to the analogous Kähler form ωg in
the Riemannian setting, but rather to the relatively singular form stated in the theorem.
The difference can be traced to Lemma 1.6, which indicates that the moving L2-norm ρλ
ends up playing the key role of the hermitian metric.

1.2. A conjecture on ergodic real nodal hypersurfaces. We close the introduction
by stating a conjecture on the real nodal hypersurfaces Zϕj

= {x ∈ M : ϕj(x) = 0} on
Riemannian manifolds with ergodic geodesic flow. We define the distribution of real zeros of
ϕλ by integration

(10) 〈[Zϕj
], f〉 =

∫

Zϕj

f(x)dHm−1,

with respect to (m − 1)-dimensional Haussdorf measure dHm−1 on the nodal hypersurface
induced by the Riemannian metric of (M, g).

Conjecture 1.7. Let (M, g) be a real analytic Riemannian manifold with ergodic geodesic
flow, and let {ϕj} be the density one sequence of ergodic eigenfunctions. Then,

〈[Zϕj
], f〉 ∼ {

∫

M

fdV olg}λ.

More generally, we conjecture the same limit result for any quantum ergodic sequence of
eigenfunctions. In the case of random spherical harmonics, the limit formula was proved
in the PhD thesis of J. Neuheisel [Ne]. We believe that (in a straightforward way) it can
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be extended to random orthonormal bases on any compact Riemannian manifold as defined
above, which would give the asymptotic strengthening of [JL] in the real domain.

There is of course a very wide gap between the equidistribution Conjecture 1.7 and the
best known result on volumes (1). Due to the singular concentration along the real zero set,
it seems possible that Corollary 1.4 could have implications for the distribution of real zeros
in the ergodic case.

Acknowledgements This work developed out of joint work with B. Shiffman on line bun-
dles. A preliminary version was presented at the Newton Institute workshop on quantum
chaos in June, 2004 and the final version was complete at the IHP program Time at Work
in June 2005. We thank these institutions for their support. We would also like to thank
Z. Rudnick, M. Sodin for suggesting improvements in the exposition and D. Jerison for
encouragement to include Corollary 1.3.

2. Analytic continuation to a Grauert tube

In this section, we recall the relevant known results on analytic continuation of the wave
kernel and ∆- eigenfunctions of a real analytic (M, g) to a Grauert tube.

A real analytic manifold M always possesses a complexification MC, i.e. a complex man-
ifold of which M is a totally real submanifold (Bruhat-Whitney [BW]). The germ of MC

along M is unique. In [G], Grauert constructed plurisubharmonic exhaustion functions ρ on
MC, which define the Grauert tubes Mǫ = {ρ < ǫ} relative to ρ.

In [GS1, GS2, LS1, LS2, GLS], the complex geometry of Grauert tubes was brought into
contact with the symplectic geometry of the cotangent bundle T ∗M and with the Riemannian
geometry of real analytic metrics g. The key results (for the purposes of this article) are
the following: First, a metric g determines a canonical plurisubharmonic function ρg on MC.
It is defined on a maximal Grauert tube whose radius ǫ0 is often called the ‘radius of the
Grauert tube’. There is a symplectic diffeomorphism

ψ : Mǫ → B∗
ǫM

of the Grauert tubes with respect to ρg to the ball bundles B∗
ǫM ⊂ T ∗M with respect to g,

which identifies ρg with |ξ|2g. As pointed out in [LS1] (see also [GLS]), one may take ψ−1 to
be the complexified exponential map

(x, ξ) ∈ B∗M → expx
√
−1ξ ∈Mǫ.

The map ψ endows B∗
ǫM with a complex structure Jg adapted to g.

Proposition 2.1. [LS1, GLS] The adapted complex structure is uniquely characterized by
the property that the complexified exponential map,

(x, ξ) ∈ B∗
ǫM → expx

√
−1ξ ∈Mǫ

is a biholmorphism for 0 < ǫ < ǫ0.

The domains B∗
ǫM are strictly pseudoconvex for ǫ < ǫ0, hence their boundaries S∗

ǫM =
∂B∗

ǫM are strictly pseudoconvex CR manifolds. We use the notation ∂B∗
ǫM to emphasize

the role of sphere bundles as boundaries of domains. The restrictions

ψǫ = exp(iǫ)−1 : ∂Mǫ → ∂B∗
ǫ

of ψ are then CR holomorphic diffeomorphisms.
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As mentioned above, the metric norm function |ξ|g pulls back under ψǫ to the function
√
ρ

on MC, which is known as the Monge-Ampére function [GS1]. It equals rC(z, z̄) where rC

is the holomorphic extension of the distance function. In the cotangent picture, the metric
norm function |ξ|g is smooth on B∗

ǫ0
M\M and solves the homogeneous complex Monge-

Ampère equation (∂∂̄|ξ|g)m = 0 there. In fact, the form ∂∂̄|ξ|g has rank m− 1 on B∗
ǫ0
M\M ,

and its kernel is a smooth rank 1 sub-bundle of T (B∗
ǫ0
M\M). The leaves of the associated

(‘Monge-Ampère’ or Riemann) foliation are the complex curves t+ iτ → τ γ̇(t), where γ is a
geodesic, where τ > 0 and where τ γ̇(t) denotes multiplication of the tangent vector to γ by
τ . We refer to [LS1] for further discussion.

2.1. Model examples. To better understand complexifications and Monge-Ampére func-
tions, and in particular the limit form in Theorem 1.1, we go over several (well-known) model
examples. We note that these examples do not have ergodic geodesic flow, so they do not
exemplify Theorem 1.1, but only the objects involved in it.

(i) Complex tori:

The complexification of the torus M = R
m/Zm is MC = C

m/Zm. The adapted complex
structure to the flat metric on M is the standard (unique) complex structure on Cm. The
complexified exponential map is expCx(iξ) = z := x+iξ, while the distance function r(x, y) =

|x − y| extends to rC(z, w) =
√

(z − w)2. Then
√
ρ(z, z̄) =

√

(z − z̄)2 = ±2i|ℑz| = ±2i|ξ|.
Thus, the limit form is i

π
∂∂̄|ℑz|.

(ii) Sn [PW, GS1] The unit sphere x2
1 + · · ·+x2

n+1 = 1 in Rn+1 is complexified as the complex
quadric

S2
C = {(z1, . . . , zn) ∈ C

n+1 : z2
1 + · · ·+ z2

n+1 = 1}.
If we write zj = xj + iξj , the equations become |x|2 − |ξ|1 = 1, 〈x, ξ〉 = 0. The geodesic flow
Gt(x, ξ) = (cos tx+sin tξ,− sin tx+cos tξ) induces the exponential map expxξ = (cos |ξ|)x+
(sin |ξ|)ξ, which complexifies to

expC,x

√
−1ξ = (cosh |ξ|)x+

√
−1(sinh |ξ|) ξ|ξ|.

The distance function of Sn of constant curvature 1 is given by:

r(x, y) = 2 sin−1 |x− y|
2

= 2 sin−1(
1

2

√

(x− y)2),

whose analytic continuation to Sn
C
× Sn

C
is the doubly-branched holomorphic function:

rC(z, w) = 2 sin−1 1

2

√

(z − w)2.

One branch gives the pluri-subharmonic function
√
ρ(z) = rC(z, z̄) = 2 sin−1 i|ℑz|) = 2i sinh−1 |ℑz|) = i cosh−1 |z|2, (z ∈ S

n
C).

Since
exp∗

C

√
ρ(x, ξ) = cosh−1 |(cosh |ξ|)x+ i(sinh |ξ|) ξ

|ξ||2
= cosh−1{(cosh |ξ|)2 − (sinh |ξ|)2}
= cosh−1 cosh 2|ξ| = 2|ξ|,

the limit form is i
2π
∂∂̄ cosh−1 |z|2 on Sn

C
.
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(iii) (See e.g. [KM]). Hn The hyperboloid model of hyperbolic space is the hypersurface
in R

n+1 defined by

H
n = {x2

1 + · · ·x2
n − x2

n+1 = −1, xn > 0}.
Then,

Hn
C

= {(z1, . . . , zn+1) ∈ C
n+1 : z2

1 + · · · z2
n − z2

n+1 = −1}.
In real coordinates zj = xj + iξj, this is:

〈x, x〉L − 〈ξ, ξ〉L = −1, 〈x, ξ〉L = 0

where 〈, 〉L is the Lorentz inner product of signature (n, 1). The complexified exponential
map is given by

expCx(
√
−1ξ) = cos(

||ξ||L√
2

)x+
√
−1(

sin ||ξ||L√
2

||ξ||L
)ξ.

Let

Mǫ = {z ∈ Cn+1 : z2
1 + · · ·+ z2

n − z2
n+1 = −1, |z1|2 + · · ·+ |zn|2 − |zn|2 < ǫ}.

We note that Mǫ has two components according to the sign of ℜzn+1. The Monge-Ampere
function is: √

ρ(z) = cos−1(||x||2L + ||ξ||2L − π)/
√

2.

The radius of maximal Grauert tube is ǫ = 1 or r = π/
√

2. Hence the limit form is
i
π
∂∂̄ cos−1(||x||2L + ||ξ||2L − π)/

√
2) on M1.

2.2. Analytic Continuation of the wave kernel. By the wave kernel of (M, g) we mean
the kernel

E(t, x, y) =
∞

∑

j=0

eitλjϕj(x)ϕj(y)

of eit
√

∆. As discussed in [Bou, GS2, GLS], the wave kernel at imaginary times admits a
holomorphic extension to Mǫ ×M as

(11) E(iǫ, ζ, y) =
∞

∑

j=0

e−ǫλjϕCj(ζ)ϕj(y), (ζ, y) ∈Mǫ ×M.

In the simplest (albeit non-compact) case of Rn, the wave kernel E(t, x, y) =
∫

Rn e
it|ξ|ei〈ξ,x−y〉dξ

analytically continues to t+ iτ, ζ = x+ ip ∈ C+ × Cn as the integral

E(t+ iτ, x+ ip, y) =

∫

Rn

ei(t+iτ)|ξ|ei〈ξ,x+ip−y〉dξ,

which converges absolutely for |p| < τ. At positive imaginary times and for (x, y) ∈ Rn×Rn,
E(iτ, x, y) is the Poisson kernel of the upper half space R

n
x × R

+
τ ,

K(τ, x, y) = τ−n
(

1 + (
x− y

τ
)2

)−n+1
2

= τ
(

τ 2 + (x− y)2)
)−n+1

2 ,

which visibly has a holomorphic continuation to ζ = x+ ip in the x variable for |p| < τ .
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On a general analytic Riemannian manifold, one has a similar integral formula for the
wave kernel of the form

(12) E(t, x, y) =

∫

T ∗
yM

eit|ξ|gy ei〈ξ,exp−1
y (x)〉A(t, x, y, ξ)dξ

where |ξ|gx is the metric norm function at x, and where A(t, x, y, ξ) is a polyhomogeneous
amplitude of order 0. The analytic continuation of the wave group at imaginary times is the

Poisson operator e−τ
√

∆, a Fourier integral operator with complex phase; for background on
the microlocal analysis of such kernels, we refer to [T] (Chapter XI). The analytic continua-
tion,

(13) E(iτ, ζ, y) =

∫

T ∗
y

e−τ |ξ|gyei〈ξ,exp−1
y (ζ)〉A(t, ζ, y, ξ)dξ (ζ = x+ ip).

of the Poisson kernel to the Grauert tube |ζ | < τ defines a complex Fourier integral operator
from L2(M) with values in holomorphic functions in Mτ where τ < ǫ0. Its canonical relation
is the complexification of the canonical relation of the real wave group, i.e. ‘graph’ of the
complexified geodesic flow at imaginary times

(14) Γiτ = {(x, ξ, z, ζ) ∈ T ∗M\0 × T ∗Mǫ\0 : Giτ (x, ξ) = (z, ζ).}
We may (and will) also express the adjoint operator in the modified form

(15) E∗(iτ, x, ζ) =

∫

Rn

e−τ |ξ|gxei〈ξ,exp−1
x (ζ)〉A∗(t, ζ, x, ξ)dξ (ζ = x+ ip).

Here, we use the phase −τ |ξ|gx + i〈ξ, exp−1
x (ζ̄)〉 instead of −τ |ξ|gx − i〈ξ, exp−1

ζ̄
(x)〉.

We can transport the complexified wave kernel to B∗
ǫM ×M using the complexified ex-

ponential map (or ψ):

(16) Ẽ(iǫ, (x, ξ), y) := E(iǫ, expC

x

√
−1ξ, y).

It is again a complex Fourier integral operator whose canonical relation Γ̃iτ can be obtained
from (14) by composing with ψ.

2.3. Szego projector. We denote by Os+ n−1
4 (∂B∗

ǫM) the subspace of the Sobolev space

W s+ n−1
4 (∂B∗

ǫM) consisting of CR holomorphic functions, i.e.

Os+ m−1
4 (∂B∗

ǫM) = W s+ m−1
4 (∂B∗

ǫM) ∩ O(∂B∗
ǫM).

The inner product on O0(∂B∗
ǫM) is with respect to the Liouville measure dµǫ. There are

similar spaces for ∂Mǫ and composition with ψǫ defines an isomorphism

ψ∗
ǫ : Os+ m−1

4 (∂B∗
ǫM) → Os+ m−1

4 (∂Mǫ).

We further denote by

Π̃ǫ : L2(∂B∗
ǫM) → O0(∂B∗

ǫM)

the Szegö projector for the tube B∗
ǫM , i.e. the orthogonal projection onto boundary values

of holomorphic functions in the tube. It is well-known (cf. [BoSj, MS, GS2]) that Π̃ǫ is
a complex Fourier integral operator, whose real canonical relation is the graph ∆Σ of the
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identity map on the symplectic cone Σǫ ⊂ T ∗(∂B∗
ǫM) spanned by the contact form α = ξ ·dx,

i.e.

Σǫ = {(x, ξ; rαǫ), (x, ξ) ∈ ∂B∗
ǫM), r > 0} ⊂ T ∗(∂B∗

ǫM).

Alternatively it is a Toeplitz operator in the sense of Boutet de Monvel-Guillemin [BG]. The
analogous Szegö projector Πǫ : L2(∂Mǫ) → O0(∂Mǫ) is conjugate to Π̃ǫ in the sense that

Π̃ǫ = (ψ∗
ǫ )

−1Πǫψ
∗
ǫ .

We now consider the restrictions Π̃ǫ ◦ Ẽ(iǫ) from L2(M) to O(∂B∗
ǫM). Since Σǫ is an

R+-bundle over ∂B∗
ǫM , we can define the symplectic equivalence of cones:

(17) ιǫ : T ∗M → Σǫ, ι(x, ξ) = (x, ǫξ, |ξ|α(x,ǫξ)).

The following result is the transport under ψǫ to ∂B∗
ǫM of results due to Boutet de Monvel

(see also [GS2]).

Theorem 2.2. [Bou, GS2] Π̃ǫ ◦ Ẽ(iǫ) : L2(M) → O(∂B∗
ǫM) is a complex Fourier integral

operator of order −m−1
4

associated to the canonical relation

Γ = {(y, η, ιǫ(y, η)} ⊂ T ∗M × Σǫ.

Moreover, for any s,

Π̃ǫ ◦ Ẽ(iǫ) : W s(M) → Os+ m−1
4 (∂B∗

ǫM)

is a continuous isomorphism.

2.4. Analytic continuation of eigenfunctions. We obtain the holomorphic extension of
the eigenfunctions ϕλ by applying the complex Fourier integral operator E(iτ):

(18) E(iτ)ϕλ = e−τλϕC

λ .

As usual, we can use the complexified exponential map to transport the ϕC

λ to B∗
ǫ0(M):

(19) ϕ̃C

λ(x, ξ) = ϕC

λ(expx
√
−1ξ).

By Theorem 2.2,we obtain:

Corollary 2.3. [Bou, GLS] Each eigenfunction ϕλ has a holomorphic extension to B∗
ǫM

satisfying

sup
(x,ξ)∈B∗

ǫM

|ϕ̃C

λ(x, ξ)| ≤ Cǫλ
m+1eǫλ.

The fact that the holomorphic continuations of eigenfunctions can be obtained by applying
a complex Fourier integral operator is the crucial link connecting the geodesic flow and the
growth rate and zeros of ϕC

λ .

2.5. Examples. We pause to consider some basic examples of holomorphic continuations of
eigenfunctions. The simplest example is the flat torus Rm/Zm, where the real eigenfunctions
are cos〈k, x〉, sin〈k, x〉 with k ∈ 2πZ

m. The complexified torus is C
m/Zm and the complexified

eigenfunctions are cos〈k, ζ〉, sin〈k, ζ〉 with ζ = x+ iξ.
No such explicit examples exist in the ergodic case, but one can see the uniform analytic

continuation of eigenfunctions very clearly in the case of compact hyberbolic quotients Hm/Γ.
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For simplicity we consider the two-dimensional case. Eigenfunctions can be then represented
by Helgason’s generalized Poisson integral formula [H],

ϕλ(z) =

∫

B

e(iλ+1)〈z,b〉dTλ(b).

Here, z ∈ D (the unit disc), B = ∂D, and dTλ ∈ D′(B) is the boundary value of ϕλ, taken
in a weak sense along circles centered at the origin 0. Also, 〈z, b〉 is the (signed) hyperbolic
distance of the horocycle passing through z and b to 0. To analytically continue ϕλ it suffices
to analytically continue 〈z, b〉. Writing the latter as 〈ζ, b〉, we have:

ϕC

λ(ζ) =

∫

B

e(iλ+1)〈ζ,b〉dTλ(b).

Using this representation, one could verify directly the estimates on growth of complexified
eigenfunctions.

3. The operators Ẽ(iǫ)∗ΠǫaΠǫẼ(iǫ)

The following lemma will be used to reduce ergodicity properties and norm estimates of
the complexified eigenfunctions ϕC

λ to properties of the initial real eigenfunctions ϕλ. We

recall that the Ẽ, Π̃ notation refers to the B∗
ǫM setting while E,Π refers to the Mǫ setting.

Lemma 3.1. Let a ∈ S0(T ∗M − 0). Then for all 0 < ǫ < ǫ0, we have:

Ẽ(iǫ)∗Π̃ǫaΠ̃ǫẼ(iǫ) ∈ Ψ−m−1
2 (M),

with principal symbol equal to a(x, ξ) |ξ|−(m−1
2

)
g .

Proof. We observe that Ẽ(iǫ)∗Π̃ǫaΠ̃ǫẼ(iǫ) is a complex Fourier integral operator on L2(M)
associated to the canonical relation,

Γ∗ ◦ ∆Σǫ ◦ Γ = {(y, η, x, ξ)} ⊂ T ∗M × T ∗M : ιǫ(x, ξ) = ιǫ(y, η)}.
Since ιǫ is a conic symplectic isomorphism, it follows that Γ∗ ◦∆ǫ ◦Γ = ∆T ∗M×T ∗M , i.e. that
Ẽ(iǫ)∗Π̃ǫaΠ̃ǫẼ(iǫ) is a pseuododifferential operator. It follows from Theorem 2.2 that

Ẽ(iǫ)∗Π̃ǫaΠ̃ǫẼ(iǫ) : W s(M) →W s+ m−1
2 (M),

is a continuous linear map and hence that the order is −m−1
2
.

The principal symbol of Ẽ(iǫ)∗Π̃ǫaΠ̃ǫẼ(iǫ) equals a(x, ξ) times the principal symbol of

Ẽ(iǫ)∗Π̃ǫẼ(iǫ). Indeed, by the calculus and Egorov theorem for complex Fourier integral
operators, it equals the the principal symbol of Ẽ(iǫ)∗Π̃ǫẼ(iǫ) times the translate of a under

the canonical relation underlying Π̃ǫẼ(it). As discussed above, this relation is the symplectic
identification of T ∗M − 0 ≡ Σǫ.

Thus, it suffices to show that the principal symbol of Ẽ(iǫ)∗Π̃ǫẼ(iǫ) equals |ξ|−
m−1

2
g . Since

it equals the principal symbol of E(it)∗ΠǫE(it) transported under ψ, we can (and will) do
the computation in the Mǫ setting. The calculation could be done using the calculus of
complex Fourier integral operators, but that would require a digression on symbols of Szegö
projectors and on the composition of the symbols of the three factors. It seems quicker to
calculate the symbol from scratch by applying stationary phase for complex phase functions
with only real critical points.
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The calculation is well illustrated by the simplest case of the Euclidean wave kernel on
R
m. We then have:

E(iτ)∗ΠτE(iτ)(x, y) =

∫

Rm

∫

Rm

∫

Rm×Sm−1

e−i(−iτ)|ξ1|e−i〈ξ1,x−(x1−ip)〉ei(iτ)|ξ2|ei〈ξ2,x1+ip−y〉dξ1dξ2dpdx1.

This is a complex Fourier integral operator with phase

(20) Ψ0(x, y, ξ, ζ, τ) = −τ(|ξ1| + |ξ2|) + i〈ξ2, x1 + ip− y〉 − i〈ξ1, x− (x− ip)〉.
The dx1 integral produces δ(ξ1 + ξ2), and then the dξ1 integral gives

E(iτ)∗ΠτE(iτ)(x, y) =
∫

Rm

∫

Rm

∫

Sm−1 e
−i(t−iτ)|ξ|e−i〈ξ,x−(ip)〉ei(t+iτ)|ξ|ei〈ξ, ip−y〉dξdp

=
∫

Rm

∫

Sm−1 e
−2τ |ξ|e−2〈ξ,p〉e−i〈ξ,y〉dξdp

∼ 2τ
m−1

2

∫

Rm |ξ|−m−1
2 sinh 2τ |ξ|e−2τ |ξ|e−i〈ξ,x−y〉dξ

In the last step we used the asymptotics of the inner integral

(21)

∫

τSm−1 e
−2〈ξ,p〉dµ(p) = τm−1

∫

Sm−1 e
−2τ |ξ|〈ω,e1〉dµ(ω)

∼ 2τ
m−1

2 |ξ|−m−1
2 sinh 2τ |ξ|e−2τ |ξ|.

Thus, E(iτ)∗ΠτE(iτ) is a Fourier multiplier by a polyhomogeneous function with leading

term |ξ|−m−1
2 .

We now show that the same result holds on a general compact analytic Riemannian man-
ifold by reducing to the Euclidean case. Using the analytic continuation of the parametrix
(13), we have

(22)
E(iτ)∗ΠτE(iτ)(x, y) =

∫

T ∗
xM

∫

T ∗
yM

∫

S∗M e−τ(|ξ1|g,x+|ξ2|g,y)e−i〈ξ1,exp−1
x (ζ)〉ei〈ξ2,exp−1

y (ζ)〉

× A∗(t, ζ, x, ξ1)A(t, ζ, y, ξ2)dξ1dξ2dV (z)dω

The phase

(23) Ψ = −τ(|ξ1|g,ζ + |ξ2|g,y) − i〈ξ1, exp−1
x (ζ)〉 + i〈ξ2, exp−1

y (ζ)〉
is complex but has only real critical points given by the non-degenerate critical manifold
Cψ ≃ T ∗M :

(24) CΨ = {(x, y, ξ1, ξ2, ζ = z + iτω) : y = x, ξ1 = −ξ2, z = 0, ω =
ξ1
|ξ1|

}.

The Lagrange immersion

ιΨ : CΨ → T ∗M × T ∗M, ιΨ(x, y, ξ1, ξ2, ζ = z + iτω) = (x, dxΨ, y,−dyΨ)

is then real valued and, as mentioned above, we may apply stationary phase for complex
phase functions with only real critical points (cf. [Ho], Vol. 1) to evaluate the principal
symbol.

We recall that the principal symbol is the transport to ∆T ∗M×T ∗M by ιΨ of the 1/2-
density σ0

√

dCΨ
where σ0 is the principal term of the amplitude restricted to CΨ, and where

dCΨ
is the Leray density on CΨ induced by the map iΨ and the coordinate volume density
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dξ1dξ2dV (z)dω. Above, σ0 is the principal term of A∗(t, ζ, x, ξ1)A(t, ζ, y, ξ2) ≡ 1 on CΨ. The
Leray density is given by

dCΨ
=

∥

∥

∥

∥

D(x,ξ1,
∂Ψ
∂ξ1

, ∂Ψ
∂ξ2

, ∂Ψ
∂ζ

)

D(x,ξ1,y,ξ2,ζ)

∥

∥

∥

∥

−1

dxdξ1 =

∥

∥

∥

∥

D( ∂Ψ
∂ξ1

, ∂Ψ
∂ξ2

, ∂Ψ
∂ζ

)

D(y,ξ2,ζ)

∥

∥

∥

∥

−1

dxdξ1,

where we regard (x, ξ1) as coordinates on CΨ. We write ζ = x1 + ip in Riemannian normal
coordinates based at x. Expanding first along the Dy rows and then along the Ψ′

x1
columns,

we obtain

(25) dCΨ
=

∥

∥

∥

∥

D( ∂Ψ
∂p)

D(p)

∥

∥

∥

∥

−1

dxdξ1.

Indeed, simple calculations show that the Dy derivatives only act non-trivially on Ψ′
ξ2

, and
that Ψ′

x1
only has non-trivial derivatives under Dξ2 , Dx1. To eliminate the Dy rows and the

Ψ′
x1

column, it suffices to show that Ψ′′
x1x1

= 0 and that Ψ′′
yξ2

= Id = Ψ′′
x1ξ2

on the critical

set. In the calculation of Ψ′′
x1x1

on the critical set we may put ξ1 = −ξ2 = ξ, x = y, p = ξ1
|ξ1| ,

and then the calculation reduces to D2
x1

(〈ξ, exp−1
x (x1− ip)−exp−1

x (x1 + ip)〉)|x1=0 = 0, which
holds since exp−1

x is the identity map when ζ = x + ip is expressed in Riemannian normal
coordinates at x. In calculating Ψ′′

yξ2
= D2

yξ2
(|ξ2|gy + i〈ξ2, exp−1

y (ζ)〉)|x=y,ξ2=−ξ1 , the first term
has a zero Hessian since all metric coefficients vanish in normal coordinates. The second
is easily seen to be a constant multiple of the identity operator (the multiple is the same
as in the Euclidean case). Finally, Ψ′′

x1ξ2
= iDx1 exp−1

y (x1 + ip)|x1=0,y=x = CId. Taking
the determinant of the result gives (25). Finally, we calculate this last determinant after
restricting to the critical set, obtaining a constant multiple of

detD2
pp〈ξ, exp−1

x (ip)〉|p= ξ
|ξ|

= C detD2
pp〈ξ, p〉|p= ξ

|ξ|
.

The last determinant is precisely the one that arises as the Hessian determinant in the
stationary phase formula in (21). The derivatives are taken on Sm−1, hence we obtain |ξ|m−1

times the normalized determinant, which is invariant under rotations and hence constant.
Raising to the power −1

2
completes the calculation.

�

4. Proof of Lemma 1.4 and Lemma 1.6

We now use Lemma 3.1 to reduce the quantum ergodicity and norm properties of the
complexified eigenfunctions to properties of the original real eigenfunctions.

4.1. Proof of Lemma 1.4. We begin by proving a weak limit formula for the CR holo-
morphic functions uǫλ defined in (8) for fixed ǫ. For notational simplicity, we drop the tilde
notation although we work in the B∗

ǫM setting.

Lemma 4.1. Assume that {ϕλ} is a quantum ergodic sequence. Then for each 0 < ǫ < ǫ0,

|uǫλ|2 →
1

µǫ(∂B∗
ǫM)

, weakly in L1(∂B∗
ǫM, dµǫ).

That is, for any a ∈ C(∂B∗
ǫM),

∫

∂B∗
ǫM

a(x, ξ)|uǫλ((x, ξ)|2dµǫ →
1

µǫ(∂B∗
ǫM)

∫

∂B∗
ǫM

a(x, ξ)dµǫ.
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Proof. It suffices to consider a ∈ C∞(∂B∗
ǫM). We then consider the Toeplitz operator ΠǫaΠǫ

on O0(∂B∗
ǫM). We have,

(26)

〈ΠǫaΠǫu
ǫ
j, u

ǫ
j〉 = e2ǫλj ||ϕC

λ ||−2
L2(∂B∗

ǫM)〈ΠǫaΠǫE(iǫ)ϕj , E(iǫ)ϕj〉L2(∂B∗
ǫM)

= e2ǫλj ||ϕC

λ ||−2
L2(∂B∗

ǫM)〈E(iǫ)∗ΠǫaΠǫE(iǫ)ϕj , ϕj〉L2(M).

By Lemma 3.1, E(iǫ)∗ΠǫaΠǫE(iǫ) is a pseudodifferential operator on M of order −m−1
2

with principal symbol ã|ξ|−
m−1

2
g , where ã is the (degree 0) homogeneous extension of a to

T ∗M − 0. The normalizing factor e2ǫλj ||ϕC

λ ||−2
L2(∂B∗

ǫM) has the same form with a = 1. Hence,

the expression on the right side of (26) may be written as

(27)
〈E(iǫ)∗ΠǫaΠǫE(iǫ)ϕj , ϕj〉L2(M)

〈E(iǫ)∗ΠǫE(iǫ)ϕj , ϕj〉L2(M)

.

By the standard quantum ergodicity result on compact Riemannian manifolds with ergodic
geodesic flow (see [Shn, Z2, Z, CV] for proofs and references) we have

(28)
〈E(iǫ)∗ΠǫaΠǫE(iǫ)ϕj , ϕj〉L2(M)

〈E(iǫ)∗ΠǫE(iǫ)ϕj , ϕj〉L2(M)

→ 1

µǫ(∂B∗
ǫM)

∫

∂B∗
ǫM

adµǫ.

More precisely, the numerator is asymptotic to the right side times λ−
m−1

2 , while the denomi-
nator has the same asymptotics when a is replaced by 1. We also use that 1

µǫ(∂B∗
ǫM)

∫

∂B∗
ǫM

adµǫ
equals the analogous average of ã over ∂B1 (see the discussion around (30)). Taking the ratio
produces (28).

Combining (26), (28) and the fact that

〈ΠǫaΠǫu
ǫ
j, u

ǫ
j〉 =

∫

∂B∗
ǫM

a|uǫj|2dµǫ

completes the proof of the lemma.
�

We now complete the proof of Lemma 1.4, i.e. we prove that

(29)

∫

B∗
ǫM

a|Uλ|2ωm → 1

µ1(S∗M)

∫

B∗
ǫM

a|ξ|−m+1
g ωm

for any a ∈ C(B∗
ǫM). It is only necessary to relate the Liouville measures dµr (6) to the

symplectic volume measure. One may write dµr = d
dt
|t=rχtωm, where χt is the characteristic

function of B∗
tM = {|ξ|g ≤ t}. By homogeneity of |ξ|g, µr(∂B∗

rM) = rm−1µ1(∂B
∗
1M). If

a ∈ C(B∗
ǫ ), then

∫

B∗
ǫM

aωm =
∫ ǫ

0
{
∫

∂B∗
rM

adµr}dr. By Lemma 4.1, we have

(30)
∫

B∗
ǫM

a|Uλ|2ωm =
∫ ǫ

0
{
∫

∂B∗
rM

a|urλ|2dµr}dr →
∫ ǫ

0
{ 1
µr(∂B∗

r )

∫

∂B∗
rM

adµr}dr

= 1
µ1(∂B∗

1M)

∫

B∗
ǫM

ar−m+1ωm,

=⇒ w∗ − limλ→∞ |Uλ|2 = 1
µ1(∂B∗

1M)
|ξ|−m+1

g .
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4.2. Proof of Lemma 1.6. We actually prove the stronger result that

1

λ
log ρλ(x, ξ) → |ξ|gx, uniformly in B∗

ǫM as λ→ ∞.

We state the weaker form because that is what we need in the proof of Theorem 1.1.
Again we drop the tilde notation for simplicity.

Proof. Again using E(iǫ)ϕλ = e−λǫϕC

λ , we have:

(31)

ρ2
λ(x, ξ) = 〈Πǫϕ

C

λ ,Πǫϕ
C

λ〉L2(∂B∗
ǫM) (ǫ = |ξ|gx)

= e2λǫ〈ΠǫE(iǫ)ϕλ,ΠǫE(iǫ)ϕλ〉L2(∂B∗
ǫM)

= e2λǫ〈E(iǫ)∗ΠǫE(iǫ)ϕλ, ϕλ〉.

Hence,

(32)
2

λ
log ρλ(x, ξ) = 2|ξ|gx +

1

λ
log〈E(iǫ)∗ΠǫE(iǫ)ϕλ, ϕλ〉.

To complete the proof, we observe that

(33)
1

λ
log〈E(iǫ)∗ΠǫE(iǫ)ϕλ, ϕλ〉 ≤ C

log λ

λ
, uniformly in ǫ,

where C is a constant independent of (ǫ, λ). Indeed, by Lemma 3.1, E(iǫ)∗ΠǫE(iǫ) is a

pseudodifferential operator of order −m−1
2

with principal symbol |ξ|−m−1
2 . To obtain a uniform

bound on 〈E(iǫ)∗ΠǫE(iǫ)ϕλ, ϕλ〉 in ǫ, any of the standard bounds for the norm of a pseudo-
differential operator in terms of derivatives of the complete symbol would suffice.

To take one such bound with a convenient reference, we write 〈E(iǫ)∗ΠǫE(iǫ)ϕλ, ϕλ〉 as

(1 +λ2)
m+1

2 〈(I −∆)−
m+1

2 E(iǫ)∗ΠǫE(iǫ)ϕλ, ϕλ〉. Put Aǫ := (I −∆)−
m+1

2 E(iǫ)∗ΠǫE(iǫ). Since
Aǫ ∈ Ψ−(m−1), we may apply the Schur-Young bound of [H] (Vol. III, Theorem 18.1.11) to
obtain

(34) 〈Aǫϕλ, ϕλ〉 ≤ ||Aǫ||L2→L2 ≤ Cm

(

sup
x

∫

T ∗
xM

|aǫ(x, ξ)|dξ
)

,

where aǫ is the complete symbol of Aǫ relative to some choice of quantization a(x,D) of

symbols. The complete symbol of Aǫ may be obtained by applying 〈(I − ∆)−
m+1

2 to the
representation in (22). It is clear that the complete symbol is smooth in the parameter ǫ,
hence the right side of (34) has uniform bound in ǫ, proving (34) and therefore the lemma.

�

5. Proof of Lemma 1.5 and Theorem 1.1

The remaining step in the proof of Theorem 1.1 is the proof of Lemma 1.5.
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5.1. Proof of Lemma 1.5.

Proof. The proof is similar to that of Lemma 1.4 of [SZ]. We wish to prove that

ψj :=
1

λj
log |Uj|2 → 0 in L1(B∗

ǫM).

We argue by contradiction. If the conclusion is not true, then there exists a subsquence ψjk
satisfying ||ψjk||L1(B∗

ǫM) ≥ δ > 0.
To obtain a contradiction, we first observe that ψj is quasi-plurisubharmonic (QPSH) on

B∗
ǫM , i.e. may be locally written as the sum of a plurisubharmonic function vj and a smooth

function ρj; equivalently i∂∂̄ψj is locally bounded below by a negative smooth (1, 1) form.
Indeed we put

vj :=
1

λj
log |ϕC

j |2, ρj := −ρλj
.

We use the following fact about subharmonic functions (see [Ho, Theorem 4.1.9]):

Let {vj} be a sequence of subharmonic functions in an open set X ⊂ Rm which have a
uniform upper bound on any compact set. Then either vj → −∞ uniformly on every compact
set, or else there exists a subsequence vjk which is convergent in L1

loc(X).
Since the proof is local, it also holds for open sets in manifolds, and in particular for

X = B∗
ǫM .

We now verify that the hypotheses are satisfied in our example:

• (i) the functions vj are uniformly bounded above on B∗
ǫM ;

• (ii) lim supj→∞ vj ≤ 2|ξ|g.
It suffices to prove these statements on each surface ∂B∗

ǫM with uniform constants inde-

pendent of ǫ. On the surface ∂B∗
ǫM , Uj = uǫj. By the Sobolev inequality in Om−1

4 (∂B∗
ǫM),

we have
sup(x,ξ)∈∂B∗

ǫM) |uǫj(x, ξ)| ≤ λmj ||uǫj(x, ξ)||L2(∂B∗
ǫM)

≤ λmj .

Taking the logarithm, dividing by λj, and combining with the limit formula of Lemma 1.6
proves (i) - (ii).

We now settle the dichotomy above by proving that the sequence {vj} does not tend
uniformly to −∞ on compact sets. That would imply that ψj → −∞ uniformly on the
spheres ∂B∗Mǫ for each ǫ < ǫ0. Hence, for each ǫ, there would exist K > 0 such that for
k ≥ K,

(35)
1

λjk
log |uǫjk(z)| ≤ −1.

However, (35) implies that

|ujk(z)| ≤ e−2λjk ∀z ∈ ∂B∗
ǫM ,

which is inconsistent with the hypothesis that |uǫjk(z)| → 1 in D′(∂B∗
ǫM).

Therefore, the second half of the dichotomy holds, i.e. there must exist a subsequence,
which we continue to denote by {vjk}, which converges in L1(B∗

ǫ0) to some v ∈ L1(B∗
ǫ0). By
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passing if necessary to a further subsequence, we may assume that {vjk} converges pointwise
almost everywhere to v in B∗

ǫ0. Then,

v(z) = lim sup
k→∞

vjk ≤ 2|ξ|g (a.e) .

Now let

v∗(z) := lim sup
w→z

v(w) ≤ 0

be the upper-semicontinuous regularization of v. Then v∗ is plurisubharmonic on B∗
ǫM and

v∗ = v almost everywhere.
Put ψ∗ := v∗−2|ξ|g. Then ψ∗ ≤ 0, and the assumption ||ψjk||L1(B∗

ǫM) ≥ δ > 0 implies that

Uδ := {ζ ∈ B∗
ǫ0
M : ψ∗(ζ) < −δ/2}

has positive volume. Since ψjk → ψ∗ in L1(Uδ), one has by [Ho] Theorem 4.1.9 (b) that

(36) lim sup
k→∞

ψjk |Uδ
≤ ψ∗|Uδ

< −δ/2.

Hence, there exists a positive integer K such that ψjk(ζ) ≤ −δ/2 for ζ ∈ Uδ, k ≥ K; i.e.,

(37) |ψjk(ζ)| ≤ e−δλjk , ζ ∈ Uδ, k ≥ K.

This again contradicts the weak convergence to 1.
Therefore ||ψjk ||L1(B∗

ǫM) ≥ δ > 0 leads to a contradiction, and the Lemma is proved.
�

To complete the proof of Theorem 1.1 it suffices to combine the results that

i

2πλ
∂∂̄ log |Uλ|2 =

1

λ
[Zλ] −

i

2πλ
∂∂̄ log ||ϕǫλ||2L2(∂Mǫ)

→ 0 (weakly),

and that (by Lemma 1.6) the second term tends to i
π
∂∂̄|ξ|g. �

5.2. Final remarks. (i) We check the numerical details in the case of the circle.
The zeros of sin 2πkz in the cylinder C/Z all lie on the real axis at the points z = n

2k
.

Thus, there are 2k real zeros, and the Poincaré-Lelong formula gives

limk→∞
i

2πk
∂∂̄ log | sin 2πk|2 = limk→∞

1
k

∑2k
n=1 δ n

2k

= 1
π
δ0(ξ)dx ∧ dξ.

On the other hand,
i
π
∂∂̄|ξ| = i

π
d2

4dξ2
|ξ| 2

i
dx ∧ dξ

= i
π

1
2
δ0(ξ)

2
i
dx ∧ dξ,

matching the other expression.
As mentioned in the introduction, the complex eigenfunctions e2πikx have no complex

zeros, hence Theorem 1.1 is false for them. The reason is that they are not quantum ergodic
but rather localize on just one of the two components of the unit tangent bundle (the one
with the same sign as k). Running through the previous calculation shows that the limit
zero current for these eigenfunctions is i

π
∂∂̄ξ = 0 rather than i

π
∂∂̄|ξ|.
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(ii) One can obtain other formulae for the distribution of zeros in the ergodic case using
the fact that the maps t +

√
−1s → expγ(t) sγ̇(t) are holomorphic curves γC(t +

√
−1s)

relative to the adapted complex structure for each geodesic γ. If one pulls back complexified
eigenfunctions under γC, then one obtains a holomorphic function in a strip around the
real-axis. Its complex zeros are discrete and correspond to the intersection points ZϕC

λ
∩ γC.

Its real zeros are the intersection points of the real geodesic γ with the nodal hypersurface.
In connection with Conjecture 1.7, it is natural to conjecture that these intersection points
become uniformly distributed on (M, g) when γ is a uniformly distributed geodesic.

(iii) We can give a simpler form to i
π
∂∂̄|ξ|g in dimensions m ≥ 2. Let ρ(x, ξ) = |ξ|2g. We

note (with [GS2]) that

∂∂̄f(ρ) = f ′(ρ)∂∂̄ρ+ f ′′(ρ)∂ρ ∧ ∂ρ,
and that

∂ρ ∧ ∂ρ = idρ ∧ α, ∂∂̄ρ = −iωg.
It follows that in dimensions m ≥ 2, we have

(38)
i

π
∂∂̄

√
ρ =

1

2πρ1/2
ωg +

dρ ∧ α
4πρ3/2

.
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