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ABSTRACT. There are infinitely many obstructions to existence of smooth solutions of the
cohomological equationUu = f , whereU is the vector field generating the horocycle flow
on the unit tangent bundleSM of a RiemannM surface of finite area andf is a given
function onSM . We study the Sobolev regularity of these obstructions, construct smooth
solutions of the cohomological equation and derive asymptotics for the ergodic averages of
horocycle flows.

1. INTRODUCTION

The classical horocycle flow is the flow on (compact) homogeneous spaces of the form

Γ\PSL(2, R) given by right multiplication by the one-parameter subgroup

{(
1 t
0 1

)}
.

The ergodic properties of this flow have been an active subject of study for a long time
since it has the intriguing characteristic of presenting at the same time some of properties
of “orderly” ergodic systems, (zero entropy [21], minimality [23, 19, 57], unique ergodicity
[14, 35, 36] etc.), and some of the properties which are more frequently associated with
“chaotic” systems, (e.g. multiple strong mixing [44, 38, 37]). The works of M. Ratner in
the 80-90’s [48, 47, 50] have also put in evidence the tight relation of the ergodic properties
of the horocycle flow with the geometry of the underlying spaceΓ\PSL(2, R).

Representation theory is a natural tool for the study of flows on homogeneous spaces
([16, 17, 41, 2], etc.); in particular, M. Ratner [49] and C. Moore [42] have obtained pre-
cise estimates for the mixing rate of the geodesic and horocycle flow and, more recently,
M. Burger [5] has proved uniform upper bounds for the deviation of ergodic averages of
sufficiently regular functions along the orbits of the horocycle flow on open complete sur-
faces with positive injectivity radius and on compact surfaces. Invariant distributions for
geodesic flows on manifolds of constant curvatures were studied in [11].

In this article we establish precise asymptotics for the ergodic averages of sufficiently
regular functions along the orbits of the horocycle flow on compact surfaces, improving
on Burger’s results. For cuspidal horocycles on non-compact surfaces of finite area such
asymptotics were obtained by P. Sarnak in [51], inspired by D. Zagier [58], by a method
based on Eisenstein series. Our approach does not use automorphic forms and it is based on
the study of the cohomological equation and of invariant distributions for the horocycle flow,
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via representation theory. Such a method yields sharp results in the compact case while in
the non-compact (finite area) case we obtain a generalisation of Sarnak’s result to arbitrary
horocycle arcs. G. Margulis and D. Kleinbock [31] proved, for finite volume quotients of
general semisimple Lie groups, exponential decay of the deviation from equidistribution
for smooth measures supported on a compact subset of any horosphere under the action of
diagonal subgroups. Our results yield precise asymptotics in the particular case of quotients
of the semisimple groupSL(2, R).

We recall that for a flow{φt} we say thatG is acoboundaryif there exists a solutionF
(continuous ,L1, L2, depending on the context) of thecohomological equation

(1)
d

dt
F ◦ φt

∣∣∣∣
t=0

= G.

The cohomological equation arises in several problems in dynamics e.g. in the study of
the existence of invariant measures, in conjugacy problems, in the study of repararametrisa-
tions of flows etc. It is well understood in two opposite dynamical setups:

• linear toral flows
• Anosov flows

In the first case, provided that a Diophantine condition on the rotation number is satisfied
(and generically this is the case), the only obstruction to the solution of the cohomological
equation is given by the unique invariant measure: given a sufficiently regularG of mean
zero there exist a solutionF of the equation (1) with a loss of regularity controlled by the
Diophantine condition. Hence, for any sufficiently regular functionG, ergodic averages
converge to the mean with an error bounded by Const./T . The Denjoy-Koksma inequality
[32] yields estimates for functions which are only of bounded variation.

In the Anosov case the celebrated Livshitz Theorem [33, 6, 20, 7] states that a Hölder
function G is a coboundary iffG integrates to zero along every periodic orbit, or, equiv-
alently, if it has mean zero with respect to all invariant measures. Thus, even in this case
the only obstructions to the solution of the cohomological equation are represented by mea-
sures. In contrast, the strong ergodic properties of these flows are reflected in the fact that
ergodic averages converge to the mean as stochastically independent processes do, i.e. the
central limit Theorem holds [46].

The horocycle flow, differently from the cases above, has invariant distributions which are
not signed measures [29]. In the spirit of [12, 13] we find that these distributions control the
asymptotics of ergodic averages. Furthermore the exponents of the asymptotic expansion
coincide with the Sobolev order of the invariant distributions.

1.1. Statement of the results.The groupPSL(2, R) acts (on the left) by isometries and
holomorphically on Poincaré upper half plane

H = ({z ∈ C | =z > 0}, |dz|2/(=z)2).

The quotient spaceM = Γ\H, by a discrete subgroup ofPSL(2, R) acting without fixed
points, is a Riemannian manifold of constant curvature−1 and also a complex curve (a
Riemann surface).

The isometric action ofPSL(2, R) on H induces a free transitive action on the unit
tangent bundleSH of H and by fixing(i, i) as an origin inSH we identify PSL(2, R)
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to SH. By means of this identification elements of the Lie algebrasl(2, R) of PSL(2, R)
are identified with the generators of some flows onSH which project to flows on the quotient
spaceSM = Γ\SH ≈ Γ\PSL(2, R). Thesl(2, R) matrices

U =
{(

0 1
0 0

)}
, X =

{(
1/2 0
0 −1/2

)}
define respectively the generators of the (stable) horocycle flow{φU

t } and of the geodesic
flow {φX

t } on the unit tangent bundleSM of an hyperbolic surfaceM := Γ\H.
For all hyperbolic surfaces of finite area, the spectrumσ(∆M ) of the Laplace-Beltrami

operator∆M onM has0 as a simple eigenvalue and there is a “spectral gap”, i.e. the bottom
of the non-zero spectrumµ0 := inf σ(∆M ) \ {0} is strictly positive. IfM is compact, by
standard elliptic theory, its spectrum is pure point and discrete with eigenvalues of finite
multiplicity and it satisfies the Weyl asymptotics. Examples of ‘pinched’ compact surfaces
with arbitrarily small spectral gapµ0 > 0 were first constructed by B.Randol [45] (see [54],
[9] for more recent sharper results).

If M is not compact, its spectrum can be described as follows (see for instance [53] and
references therein, in particular D.Hejal [24]):

• Lebesgue spectrum on the interval[1/4,∞[ with multiplicity equal to the number
of cusps ofM ;

• possibly, finitely many eigenvalues of finite multiplicity in the interval]0, 1/4[;
• possibly, embedded eigenvalues of finite multiplicity in the interval[1/4,∞[.

Examples of non-compact ‘pinched’ surfaces with an arbitrarily small spectral gap, hence
with non-empty (pure point) spectrum in the open interval]0, 1/4[, were already constructed
by A. Selberg [55] (see [9] for a more recent approach). In the non-compact case, the Weyl
asymptotics for the pure point spectrum failsconjecturallyfor a generic subgroup in any
given Teichmüller space with the exception of the Teichmüller space of the once-punctured
torus [8], [52].

The picture is quite different for a relevant class of arithmetic subgroups. For allN ∈ Z+,
let Γ(N) := {g ∈ PSL(2, Z) | g = id mod N}. The subgroupsΓ < PSL(2, R) such
that

Γ(1) > Γ > Γ(N), N ∈ Z+,

are calledcongruence subgroups. For all such subgroups, Selberg’s spectral gap conjecture
[55] claims that there are no eigenvalues in]0, 1/4[, henceµ0 = 1/4. Selberg’s conjecture
is known to be true for all congruence subgroupsΓ > Γ(N), N ≤ 17 [27], [28]. In the
case of a general congruence subgroup, the classical Selberg’s lower boundµ0 ≥ 3/16
[55] was significantly improved by W. Luo, Z. Rudnick and P. Sarnak [34] who proved
thatµ0 ≥ 171/784 ≈ 0.218 . . . . Recently, H. Kim and P. Sarnak [30] have announced a
further step in the direction of the Selberg’s conjecture:

µ0 ≥
975
4096

≈ 0.238 . . .

For all congruence subgroups, the Weyl asymptotics holds for the pure point spectrum [26],
[10].

As we shall see the (pure point) spectrum within the interval]0, 1/4[ is especially relevant
to the asymptotics of ergodic averages of horocycles, both in the compact and the non-
compact case. We shall denote byσpp the set of all eigenvalues of the Laplace operator∆M
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and byC the set of cusps ofM . If M is compact, the Laplacian∆M has pure point spectrum
supported on the setσpp andC = ∅.

Let L2(SM) be the space of all complex-valued square-integrable functions with respect
to thePSL(2, R)-invariant volume onSM . Let W s(SM), s ∈ R, be theSobolev spaces
of functionsf ∈ L2(SM) with ∆s/2f ∈ L2(SM), where∆ is anelliptic second order
element of the enveloping algebra ofsl(2, R) (a Laplacian). The dual space(W s(SM))′ of
linear bounded functionals onW s(SM) is isomorphic to the spaceW−s(SM), according
to the standard theory of Sobolev spaces [1].

LetE ′(SM) be the dual space of the spaceC∞(SM) of infinitely differentiable functions
onSM . The space

I(SM) :=
{
D ∈ E ′(SM) | LUD = 0

}
of U -invariant distributions is completely determined by the spectrum of the Laplacian∆M

and by the genus ofM , as follows.

Theorem 1.1. The spaceI(SM) has infinite countable dimension. There is a decomposi-
tion

(2) I(SM) =
⊕

µ∈σpp

Iµ ⊕
⊕

n∈Z+

In ⊕
⊕
c∈C

Ic

where

(1) for µ = 0, the spaceI0 is spanned by thePSL(2, R)-invariant volume;
(2) for 0 < µ < 1/4, there is a splittingIµ = I+

µ ⊕ I−µ , whereI±µ ⊂ W−s(SM),

iff s > 1±
√

1−4µ
2 , and each subspace has dimension equal to the multiplicity ofµ ∈

σpp;
(3) for µ ≥ 1/4, the spaceIµ ⊂ W−s(SM), iff s > 1/2, and it has dimension equal

to twice the multiplicity ofµ ∈ σpp;
(4) for n ∈ Z+, the spaceIn ⊂ W−s(SM), iff s > n and it has dimension equal

to twice the rank of the space of holomorphic sections of then-th power of the
canonical line bundle overM ;

(5) for c ∈ C, the spaceIc ⊂ W−s(SM), iff s > 1/2, and it has infinite countable
dimension.

The Sobolev regularity ofU -invariant distributions can be summarised as follows. The
Sobolev orderof a distributionD ∈ E ′(SM), is the extended real number

SD := inf
{
s ∈ R+ | D ∈ W−s(SM)

}
.

By Theorem 1.1, we have:

(3) SD =


1±<

√
1−4µ

2 if D ∈ I±µ , for µ > 0 ;
n if D ∈ In , for n ∈ Z+ ;
1
2 if D ∈ Ic , for c ∈ C ;

Let µ0 > 0 be the bottom of the non-zero spectrum of∆M . Let ν0 ∈ [0, 1[ be defined as

(4) ν0 :=

{√
1− 4µ0, if µ0 < 1

4 ;
0, if µ0 ≥ 1

4 .
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A complete set of obstructions to the existence of smooth solutions of thecohomological
equationUf = g, for functionsg ∈ W s(SM), is given by the following space of invariant
distributions:

Is(SM) :=
{
D ∈ W−s(SM) | LUD = 0 .

}
,

The spaceIs(SM) is completely determined by Theorem 1.1.

Theorem 1.2. For all s > 1+ν0
2 and all t ∈ R, there exists a constantC := C(ν0, s, t) > 0

such that, for allg ∈ W s(SM),

• if t < −1+ν0
2 andg has zero average onSM , or

• if t < s− 1 andD(g) = 0, for all D ∈ Is(SM),
then the cohomological equationUf = g has a solutionf ∈ W t(SM) which satisfies the
Sobolev estimate

‖ f ‖ t ≤ C ‖ g ‖ s.

A solutionf ∈ W t(SM) of the cohomological equationUf = g is unique up to additive
constants if and only ift ≥ −1−ν0

2 .

By definition, invariant distributions of orderS > 0 are obstructions to the existence of
solutions of the cohomological equation of (Sobolev) regularityS +1. However, it turns out
that they obstruct also the existence of solutions of lower regularity. In fact, Theorem 1.2 is
sharp, in the following sense:

Theorem 1.3. Let g ∈ W s(SM), s > 1+ν0
2 , and letD ∈ I(SM) be anU -invariant

distribution of orderSD < s. If the equationUf = g has a solutionf ∈ W t(SM) for
anyt ≥ SD − 1, thenD(g) = 0.

The following remarkable result holds:

Theorem 1.4. The action of the geodesic one-parameter group{φX
t } on the distributional

spaceI(SM) has a spectral representation, if1/4 6∈ σpp, and it has a generalized spectral
representation with a finite number of2× 2 Jordan blocks, if1/4 ∈ σpp. The splitting (2) of
I(SM) is {φX

t }-invariant, hence the subspaces

(5) Ipp :=
⊕

µ∈σpp

Iµ , Id := Ipp ⊕
⊕

n∈Z+

In , IC :=
⊕
c∈C

Ic .

are {φX
t }-invariant. The spectrum of{φX

t } on Id is discrete, while the spectrum onIC is
Lebesgue with finite multiplicity equal to the number of cusps.

The discrete spectrum of{φX
t } on Id can be described as follows. Forµ = 0, the

subspaceI0 is generated by thePSL(2, R)-invariant, hence{φX
t }-invariant, volume form.

For all µ ∈ σpp \ {0}, there is a splittingIµ = I+
µ ⊕I−µ into subspaces of equal dimension,

which coincides for0 < µ < 1/4 with the splitting induced by the Sobolev order (see
Theorem1.1, (2)), such that the following holds. For allµ 6= 1/4, the subspacesI±µ are
eigenspaces for{φX

t }, in fact

(6) φX
t | I±µ = exp

(1±
√

1− 4µ

2
t
)

I .
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If 1/4 ∈ σpp, the subspaceI1/4 6= {0} and{φX
t } | I1/4 has a Jordan normal form. In

fact,I1/4 is generated by pairs{D+,D−} such thatD± ∈ I±1/4 and

(7) φX
t

(
D+

D−
)

= e−
t
2

(
1 0
− t

2 1

) (
D+

D−
)

,

For all n ∈ Z+, the subspaceIn is an eigenspace for{φX
t }. In fact,

(8) φX
t | In = e−nt I .

The Lebesgue spectrum of the operatorφX
t onIC is supported on the circle of radiuse−t/2

in C, for all t ∈ R.

It follows from Theorem 1.4 that the action of the geodesic flow{φX
t } on the infinite

dimensional spaceI(SM) has a well-defined Lyapunov spectrum and an Oseledec’s de-
composition. It turns out by comparing the formulae in Theorem 1.4 with the Sobolev
orders (3) of invariant distributions, that the Lyapunov exponent of any generalized eigen-
vectorD ∈ Id of the geodesic flow and of anyD ∈ IC is equal to the negative of its Sobolev
order.

Theorems 1.1-1.4 are derived from abstract results on unitary representations of the Lie
groupPSL(2, R) (Theorems 3.2, 4.1 and 4.6). Theorem 3.2 states that the invariant dis-
tributions for the “horocycle vector field” in each irreducible representation of parameter
µ 6= 1/4 are generated by eigendistributions of the “geodesic vector field”. Such eigendis-
tributions correspond to theconical distributionsfor the Lie groupSL(2, R) in the sense of
S. Helgason [25], §2. In the exceptional case of irreducible representations with parameter
µ = 1/4, the subspace of conical distributions is one-dimensional, while the subspace of
horocycle-invariant distributions has dimension2. Theorem 1.1 is based on a direct analysis
of the Sobolev regularity of such (conical) distributions and Theorem 1.4 on the explicit
computation of the action of the geodesic flow on invariant distributions.

The abstract Theorem 4.1, on existence of smooth solutions of the cohomological equa-
tion, holds under the only condition that the Casimir operator associated with the unitary
representation has a ‘spectral gap’. Theorem 1.2 on solutions of the cohomological equa-
tion on hyperbolic surfaces of finite area follows immediately, since the gap property holds.
Theorem 4.6 is a converse result which proves that, in each irreducible component, invari-
ant distributions are obstructions to the existence of solutions of smoothness lower than
expected. This result shows that, in a sense, our result on existence of solutions of the
cohomological equation is optimal as far as the loss of Sobolev regularity is concerned.
Theorem 1.3, the corresponding statement for hyperbolic surfaces, plays a non-trivial role
in obtainingL2 lower bounds for ergodic averages.

Let B ⊂ Id be a basis of (generalized) eigenvectors for{φX
t } on Id with the following

properties. For allµ ∈ σpp \ {1/4} and alln ∈ Z+, the setsBµ := B ∩ Iµ, Bn := B ∩ In

are basis of eigenvectors for{φX
t } | Iµ and {φX

t } | In. If 1/4 ∈ σpp, the setB+
1/4 :=

B ∩ I+
1/4 is a basis of eigenvectors for{φX

t } | I+
1/4, the setB−1/4 := B ∩ I−1/4 is a basis

of generalized eigenvectors (of order2) for {φX
t } | I−1/4 andB1/4 := B+

1/4 ∪ B
−
1/4 is a union

of pairs{D+,D−} such thatD± ∈ B±1/4 and formula (7) holds.
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Let I1
+(SM) be the complement of the line generated by the invariant volume form

in I1(SM) ⊂ W−1(SM). The subsetB1
+ := B ∩ I1

+(SM) is a basis of (generalized)
eigenvectors for{φX

t } | I1
+(SM). The basisB, B1

+ have the following decompositions:

(9) B =
⋃

µ∈σpp

Bµ ∪
⋃

n∈Z+

Bn , B1
+ =

⋃
µ∈σpp\{0}

Bµ .

In the compactcase, Theorems 1.2, 1.3 and 1.4 imply the following quantitative unique
ergodicity result.

Theorem 1.5. The horocycle flow{φU
t } on the unit tangent bundleSM of a compact hy-

perbolic surfaceM has a deviation spectrum in the following sense. For anys > 3 and for
all (x, T ) ∈ SM × R+, there exist a sequence of real-valued functions{cs

D(x, T )}D∈B1
+

and distributional functionsDs
1(x, T ) ∈ I1, Rs(x, T ) ∈ W−s(SM) such that, for allf ∈

W s(SM) and allT ≥ 0,

(10)
1
T

∫ T

0
f(φU

t (x))dt =
∫

SM
f dvol +

∑
D∈B1

+\B
+
1/4

cs
D(x, T )D(f) T−SD +

+
∑

D∈B+
1/4

cs
D(x, T )D(f) T−SD log+ T +

Ds
1(x, T )(f) log+ T +Rs(x, T )(f)

T
.

The functionscs
D,Ds

1 andRs satisfy the following uniform estimates. There existsC(s) > 0,
such that, for all(x, T ) ∈ SM × R+,∑

D∈B1
+

|cs
D(x, T )|2 ≤ C(s) ;

‖Ds
1(x, T ) ‖−s ≤ C(s) ;

‖Rs(x, T ) ‖−s ≤ C(s) .

For every invariant distributionD ∈ B1
+, there existsC(D, s) > 0 such that, for sufficiently

largeT > 0,

‖ cs
D(·, T ) ‖ 0 ≥ C(D, s) .

Theorem 1.5 implies that the Central Limit Theorem does not hold for the horocycle flow
on compact hyperbolic surfaces.

Corollary 1.6. There exist zero average functionsf ∈ C∞(SM) such that any weak limit
(asT →∞) of the probability distributions of the functions∫ T

0 f(φU
t (·)) dt

‖
∫ T
0 f(φU

t (·)) dt ‖ 0

has compact support6= {0}.

In thenon-compactcase, we obtain by the same methods the following generalisation of
a result proved by P. Sarnak [51] for closed cuspidal horocycle arcs.
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Let I1/2
+ (SM) be the orthogonal complement of the line generated by the invariant vo-

lume in the spaceI1/2(SM) ⊂ W−1/2(SM). The subsetB1/2
+ := B∩I1/2

+ (SM) is a basis

of eigenvectors for{φX
t } | I

1/2
+ (SM). Let σpp(0, 1/4) := σpp∩]0, 1/4[. By Theorem 1.1,

(11) B1/2
+ =

⋃
µ∈σpp(0,1/4)

Bµ .

It follows thatB1/2
+ has finite cardinality equal to the total multiplicity of the eigenvalues

of the Laplacian∆M within the interval]0, 1/4[. In particular, it is empty for hyperbolic
surfaces satisfying the Selberg’s conjecture.

Let γx,T be the uniformly distributed probability measure along the unstable horocycle
arc in SM of initial point x ∈ SM and lengthT > 0. For all t ∈ R+, let φX

t (γx,T )
be the push-forward ofγx,T under the action of the geodesic flow. The measureφX

t (γx,T )
is equal to the uniformly distributed probability measure along the horocycle arc of initial
point φX

t (x) and lengthTt = etT . The following result is derived from Theorem 5.14,
which contains more precise asymptotics for the push-forward of a horocycle arc depending
on the rate of escape in the cusps of its endpoints.

Theorem 1.7. For any s > 3, there exist bounded coefficients{cs
D(x, T, t)}D∈B1/2

+

and a

bounded distributional coefficientRs(x, T, t) ∈ W−s(SM) such that, for allf ∈ W s(SM)
and all t ≥ 0,

(12) φX
t (γx,T )(f) =

∫
SM

f dvol +
∑

D∈B1/2
+

cs
D(x, T, t)D(f) T−SD

t +

+ Rs(x, T, t)(f) T
−1/2
t log2 Tt .

There exists a continuous functionC := Cs : SM × R+ → R+ such that for allt ≥ 0,∑
D∈B1/2

+

|cs
D(x, T, t)|2 ≤ C(x, T ) ;

‖Rs(x, T, t) ‖−s ≤ C(x, T ) .

For every invariant distributionD ∈ B1/2
+ , there exists a constantC(D, s) > 0 such that, if

T > 0 is sufficiently large, then for allt ≥ 0,

C(D, s)−1 ≤ ‖ cs
D(·, T, t) ‖ 0 ≤ C(D, s) .

In the particular case thatγx,T is supported on a closed cuspidal horocycle, we prove by
the same methods that all the coefficientscs

D(x, T, t) are constant functions oft ≥ 0 and that

the remainder term isO(T−1/2
t log Tt) (Proposition 5.15). Hence, we obtain an asymptotic

formula with remainder purely by methods based on representation theory. We remark that
P. Sarnak [51] obtained a sharper asymptotics with remaindero(T 1/2

t ) by Eisenstein series
methods (Rankin-Selberg method), taking into account the explicit spectral decomposition
of cuspidal horocycles and the absolute continuity of the continuous part of the spectrum.
In the particular case of the modular group, the remainder term for cuspidal horocycles is
O(T−3/4+ε

t ), for all ε > 0, iff the Riemann hypothesis holds [58], [51].
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2. FOURIER ANALYSIS

2.1. Sobolev spaces.We choose as generators forsl(2, R) the elements

X =
{(

1/2 0
0 −1/2

)}
, Y =

{(
0 −1/2

−1/2 0

)}
, Θ =

{(
0 1/2

−1/2 0

)}
.

Recall the commutations rules:

(13) [X, Y ] = −Θ, [Θ, X] = Y, [Θ, Y ] = −X.

The basis elementX ∈ sl(2, R) is the “geodesic vector field”, in the sense that it corre-
sponds to the generator of the geodesic flow onSH. The elements

V =
{(

0 0
1 0

)}
= −Y −Θ, U =

{(
0 1
0 0

)}
= −Y + Θ

are respectively the unstable and the stable “horocycle vector fields”, in the sense that they
correspond to the generators of the unstable and the stable horocycle flows onSH. In fact,
the following commutation relations hold:

(14) [X, V ] = −V, [X, U ] = U .

TheLaplacian determined by the basis{X, Y,Θ} is theelliptic element of the enveloping
algebra ofsl(2, R) defined as

(15) ∆ := −(X2 + Y 2 + Θ2) .

LetH be the (Hilbert) space of a unitary representation ofPSL(2, R). Any element of the
Lie algebrasl(2, R) acts onH as an essentially skew-adjoint operator and the Laplacian∆
acts as an essentially self-adjoint operator [43]. TheSobolev spaceof orders ∈ R+ is the
maximal domainW s(H) ⊂ H of the operator(I + ∆)s/2 endowed with the inner product

(16) 〈f, g〉s := 〈(I + ∆)sf, g〉H .

The spacesW s(H) are Hilbert spaces which coincide with the completion of the sub-
spaceC∞(H) ⊂ H of infinitely differentiablevectors with respect to the norm‖ f ‖ s :=
‖ (I + ∆)s/2f ‖H, induced by the inner product (16). The subspaceC∞(H) coincides with
the intersection of the spacesW s(H) for all s ≥ 0. The Sobolev spaces with negative
exponentW−s(H), s > 0, defined as the Hilbert space duals of the spacesW s(H), are
subspaces of the spaceE ′(H) of distributions, defined as the dual space ofC∞(H).

TheSobolev orderof a distributionD ∈ E ′(H) is the extended real number

(17) SD := inf{s ∈ R | D ∈ W−s(H)} .

2.2. Direct decompositions.TheCasimiroperator, which generates the centre of the en-
veloping algebra ofsl(2, R), is the element

(18) � := −X2 − Y 2 + Θ2 .

The Casimir operator� acts as a constantµ ∈ R+∪{−n2+n |n ∈ Z+} on the Hilbert space
of eachirreducibleunitary representation and its value classifies all non-trivial irreducible
unitary representations according to three different types. LetHµ be the Hilbert space of
an irreducible unitary representation on which the Casimir operator takes the valueµ ∈
R+ ∪ {−n2 + n |n ∈ Z+}. The representation is said to belong to theprincipal series
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if µ ≥ 1/4, to thecomplementary seriesif 0 < µ < 1/4 and to thediscrete seriesif µ ≤ 0
[15, 3].

LetH be the Hilbert space of any non-trivial unitary representation ofPSL(2, R). Since
the Casimir operator� is in the centre of the enveloping algebra ofsl(2, R) and acts onH
as an essentially self-adjoint operator, there exists aPSL(2, R)-invariant direct integral
decomposition[39, 40, 18],

(19) H =
∫
⊕
Hµ

with respect to a positive Stieltjes measureds(µ) over the spectrumσ(�). The Casimir
operator acts as the constantµ ∈ σ(�) on every Hilbert spaceHµ. The representations
induced onHµ do not need to be irreducible. In fact,Hµ is in general the direct sum of
an (at most countable) number of unitary representations equal to the spectral multiplicity
of µ ∈ σ(�).

All the operators in the enveloping algebra aredecomposablewith respect to the direct in-
tegral decomposition (19). Hence there exists for alls ∈ R an induced direct decomposition
of the Sobolev spaces:

(20) W s(H) =
∫
⊕

W s(Hµ)

with respect to the measureds(µ). The existence of the direct integral decompositions (19),
(20) allows us to reduce our analysis of invariant distributions and of the cohomological
equation for the horocycle vector field to irreducible unitary representations.

2.3. Hyperbolic surfaces. If M is a hyperbolic surface of finite area, the spectrumσ(∆M )
of the Laplacian onM has a pure point discrete component of finite multiplicity and an
absolutely continuous component on the interval[1/4,∞[ with finite multiplicity equal to
the number of (standard) cusps ofM [24]. Hence, the Laplacian∆M has a “spectral gap”,
in the sense thatσ(∆M ) \ {0} has a lower boundµ0 > 0. Examples of ‘pinched’ surfaces
with µ0 < 1/4 were constructed in [54, 45, 9]. We shall denoteσpp the pure point spectrum
of ∆M andC will denote the (finite) set of cusps ofM . If M is compact, then the Laplacian
has pure-point spectrum supported on the setσpp andC = ∅.

There is a standard unitary representation ofPSL(2, R) on the Hilbert spaceL2(SM).
The corresponding Sobolev spacesW s(SM) have the following splitting as a direct integral
of irreducible representations (see (19) and (20)):

(21) W s(SM) =
⊕

µ∈σpp

W s(Hµ)⊕

⊕
⊕

n∈Z+

(W s(H+n)⊕W s(H−n))⊕
⊕
c∈C

W s(Hc) .

For µ = 0, the sub-representationHµ is the trivial representation, which appears with
multiplicity 1, otherwise the sub-representationsHµ, H±n andHc are not yet (in general)
irreducible.

Let mµ ∈ Z+ denote the multiplicity of an eigenvalueµ ∈ σpp \ {0} andmn ∈ Z+

denote the dimension of the space of holomorphic (anti-holomorphic) sections of then-th
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power of the canonical line bundle, which can be computed by the Riemann-Roch Theorem.
We have:

(22)

W s(Hµ) =
mµ⊕
i=1

W s(H(i)
µ ) ;

W s(H±n) =
mn⊕
i=1

W s(H(i)
±n) ;

W s(Hc) =
∫
⊕

W s (Hc(µ)) dsc(µ) .

The sub-representationsH(i)
µ are irreducible with Casimir parameterµ > 0, hence they

belong to either the principal series (µ ≥ 1/4) or to the complementary series (µ0 ≤ µ <

1/4); the sub-representationsH(i)
+n, H(i)

−n are irreducible with Casimir parameter−n2 +
n, n ∈ Z+, hence they belong to the holomorphic, respectively to the anti-holomorphic,
discrete series; the sub-representationsHc(µ) are irreducible with Casimir parameterµ ≥
1/4, hence they belong to the principal series, and, for allc ∈ C, the Stieltjes measures
dsc(µ) are supported on[1/4,+∞[ and are absolutely continuous.

2.4. Orthogonal basis. LetHµ be the Hilbert space of an irreducible unitary representation
of Casimir parameterµ ∈ R+ ∪ {−n2 + n |n ∈ Z+}. In order to construct a convenient
orthogonal basis ofHµ, we consider the following elements of the enveloping algebra

η+ = X − iY, η− = X + iY ,

which have the property of raising and lowering eigenvalues of−iΘ. In fact, from

[−iΘ, η±] = ±η±

it follows that, if−iΘu = ku, then

−iΘ(η±u) = η±(−iΘu) + [−iΘ, η±]u = kη±u± η±u = (k ± 1)(η±u) .

If µ ≥ 0 (i.e. ifHµ belongs to the complementary or principal series), an orthogonal basis
of Hµ will be

. . . , η−
kv0, . . . , η−

2v0, η−v0, v0, η+v0, η+
2v0, . . . , η+

kv0, . . .

wherev0 is aΘ-invariant vector (Θv0 = 0).
If µ = −n2 + n andHµ belongs to the holomorphic discrete series, an orthogonal basis

of Hµ will be

vn, η+vn, η+
2vn, . . . , η+

kvn, . . .

whereΘvn = invn.
The anti-holomorphic case is similar. In fact, there is a complex anti-linear isomorphism

between holomorphic and anti-holomorphic irreducible representations of the discrete series
of identical Casimir parameter. It is therefore not restrictive to explicitly consider only the
holomorphic case.

In all cases such a basis is formed by analytic vectors, since they are by definition eigen-
vectors of the operatorΘ, hence eigenvectors of the Laplacian∆ = �− 2Θ2.
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Rather then dealing with the basis{vk}, we introduce an adapted orthogonal basis{uk}
of Hµ. Let ν be a complex solution of the equation

(23) 1− ν2 = 4µ .

We remark that

• if Hµ belongs to the principal series, thenµ ≥ 1/4 and thereforeν is purely imagi-
nary;

• if Hµ belongs to the complementary series, thenµ ∈]0, 1/4[ andν is real belonging
to ]− 1, 1[ \ {0};

• if Hµ belongs to the discrete series, thenµ = −n2 + n andν = ±(2n − 1), n a
positive integer.

The basis{uk} is defined as follows:

(24)
uk = ck(η+uk−1), ck =

2
2k − 1 + ν

for k > 0,

uk = ck(η−uk+1), ck =
2

−2k − 1 + ν
for k < 0,

where the initial definition isu0 = v0 ( ‖u0 ‖ = 1), in the caseµ > 0 while un = vn

( ‖un ‖ = 1 ), for µ = −n2 + n.
We remark that, for an irreducible representation of the discrete series withµ = −n2 +n,

the basis{uk} is well defined only forν = 2n− 1.
The basis{uk} is an orthogonal, but not orthonormal, basis of eigenvectors of the opera-

tor Θ, hence of the Laplacian operator∆ = �− 2Θ2. In fact, for allk ∈ Z (k ≥ n),

(25) Θuk = ikuk , ∆uk = (µ + 2k2)uk .

The norms of its vectors are given, for allk 6= 0 (or k 6= n) by the formula:

(26) ‖uk ‖ 2 =

{
‖uk−1 ‖ 2 , if ν ∈ iR, i.e. if µ ≥ 1/4 ,
2|k|−1−ν
2|k|−1+ν ‖uk−1 ‖ 2 if ν ∈ R , i.e. if µ < 1/4 .

In fact, since the adjointη+
∗ = −η− and

(27) η+η− = −�− iΘ + Θ2, η−η+ = −� + iΘ + Θ2 ,

we obtain that fork > 0

‖uk ‖ 2 = ‖ ck ‖ 2〈η+uk−1, η+uk−1〉 = −‖ ck ‖ 2〈η−η+uk−1, uk−1〉 =

= ‖ ck ‖ 2〈(�− iΘ−Θ2)uk−1, uk−1〉 =
2k − 1− ν

2k − 1 + ν̄
‖uk−1 ‖ 2

and a similar computation holds fork < 0.
We introduce for convenience the sequence

(28) Πν,k =
k∏

i=iν+1

2i− 1− ν

2i− 1 + ν
for any integerk ≥ iν =

[
1 + <(ν)

2

]
(empty products are set equal to1, hence, ifk = iν , thenΠν,k = 1 in all cases).

By (26) we have

(29) ‖uk ‖ 2 =
∣∣Πν,|k|

∣∣ .
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The behaviour of the norms‖uk ‖ is described by the following Lemma whose proof is
postponed to the Appendix.

Lemma 2.1. If ν ∈ iR, for all k ≥ iν = 0,

(30) |Πν,k| = 1.

There existsC > 0 such that, ifν ∈ ]− 1, 1[ \ {0}, for all k > iν = 0, we have

(31) C−1

(
1− ν

1 + ν

)
(1 + k)−ν ≤ Πν,k ≤ C

(
1− ν

1 + ν

)
(1 + k)−ν ;

if ν = 2n− 1, for all k ≥ ` ≥ iν = n, we have

(32) C−1

(
k − n + 1
`− n + 1

)−ν

≤
Πν,k

Πν,`
≤ C

(
k − n + ν

`− n + ν

)−ν

.

The Sobolev norms of the vectors of the orthogonal basis{uk} are given by the identities

(33) ‖uk ‖ 2
s = 〈(I + ∆)suk, uk〉 = (1 + µ + 2k2)s ‖uk ‖ 2

By (33)and (29), a vectorf =
∑∞

−∞ fkuk ∈ Hµ belongs toW s(Hµ) (s > 0) iff the
Sobolev norm

(34) ‖ f ‖ s :=

( ∞∑
−∞

(1 + µ + 2k2)s|Πν,k||fk|2
) 1

2

< ∞ .

By Lemma 2.1,

(35) ‖uk ‖ 2
s ≈ (1 + |k|)2s−<(ν) .

It follows that

(36) ‖ f ‖ s ≈

( ∞∑
−∞

(1 + |k|)2s−<(ν) |fk|2
) 1

2

.

We recall that ifHµ belongs to theprincipal series thenν is purely imaginary; ifHµ

belongs to thecomplementary seriesthenν ∈ ]−1, 1[\{0}; andν = 2n−1 if Hµ belongs
to thediscrete series(µ = −n2 + n, n ∈ Z+).

3. INVARIANT DISTRIBUTIONS

For any unitary representation ofPSL(2, R) on a Hilbert spaceH, let

I(H) := {D ∈ E ′(H) | LUD = 0}

be the space of allU -invariant distributions inE ′(H). The analysis ofI(H) and of its
subspacesIs(H) of U -invariant distributions of order≤ s can be reduced to the case of
irreducibleunitary representations. In fact, we have:
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Lemma 3.1. LetH be a direct integral of unitary representationsHλ of PSL(2, R) with
respect to a Stieltjes measureds. The spacesI(H), Is(H) of U -invariant distributions have
direct integral decompositions:

I(H) =
∫
⊕
I(H) ds(λ) ,

Is(H) =
∫
⊕
Is(H) ds(λ) .

Proof. The spaceC∞(H), its dual spaceE ′(H), all Sobolev spacesW s(H) are decompos-
able and the horocycle vector fieldU , as a densely defined essentially skew-adjoint operator
onH, is also decomposable. Hence the Lemma holds. �

Invariant distributions for irreducible unitary representations are described by the follow-
ing

Theorem 3.2. LetHµ be an irreducible unitary representation ofPSL(2, R) of Casimir
parameterµ. Then

• if Hµ belongs to the principal or complementary series, the spaceI(Hµ) has dimen-
sion2 and it is generated by two eigenvectorsD±µ of the “geodesic vector field”X

of eigenvalues−1±ν
2 and Sobolev order1±<(ν)

2 respectively.
• if Hµ belongs to the discrete series andµ = −n2 + n, the spaceI(Hµ) has dimen-

sion1 and it is generated by an eigenvectorD+
µ of X of eigenvalue−n and Sobolev

ordern.

Theorems 1.1 and 1.4 can be immediately derived from Lemma 3.1 and Theorem 3.2, by
the decompositions (21), (22) of Sobolev spaces into irreducible sub-representations.

3.1. Formal invariant distributions. Any distributionD ∈ E ′(Hµ) is uniquely deter-
mined by its Fourier coefficientsdk = D(uk), k ∈ Z (principal and complementary series)
or k ≥ n (discrete series).

SinceLUD = 0 iff
D(Uf) = 0, for all f ∈ C∞(Hµ),

a distributionD isU -invariant iffD(Uuk) = 0, for all k ∈ Z or allk ≥ n. We need therefore
to compute the action ofU on the vectors of the basis{uk}. The resulting formula (37)
below, as well as the similar formula (45) in §3.3 for the action of the ‘geodesic vector
field’, can be found in the literature onSL(2, R) harmonic analysis (see for instance [4],
formula(4.4)).

Lemma 3.3. Let Iν = Z if µ parametrises the principal or complementary series orIν =
[n,∞[ ⊂ Z if µ = −n2 + n parametrises the holomorphic discrete series. Then

(37) Uuk = − i(2k + 1 + ν)
4

uk+1 + ikuk −
i(2k − 1− ν)

4
uk−1, for all k ∈ Iν

(for ν = 2n− 1 andk = n the above equation must be read asUun = −inun+1 + inun).

Proof. Since

Uuk = (−Y + Θ)uk = (Θ− i

2
(η+ − η−))uk
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for the principal ot the complementary series we have

Uuiν = Uu0 = − i

2
(η+u0 − η−u0) =

= − i

2

(
u1

c1
− u−1

c−1

)
= − i(ν + 1)

4
u1 +

i(ν + 1)
4

u−1,

while for the holomorphic discrete series with parameterν = 2n− 1, n ∈ Z+, we have

Uuiν = Uun = (Θ− i

2
η+)un = inun −

i

2
un+1

cn+1
= −inun+1 + inun

Thus the Lemma is true in these particular cases. For anyk > iν we have instead

Uuk = ikuk −
i

2
η+uk +

i

2
η−(ckη+uk−1)

= ikuk −
i

2ck+1
uk+1 +

ick

2
η−η+uk−1

= − i

2ck+1
uk+1 + ikuk +

ick

2
(−� + iΘ + Θ2)uk−1 .

A straightforward computation, based on the values ofck−1, ck given in (24) and on
(25), yields (37) for allk > iν . A similar computation shows that, for the principal or the
complementary series, the equation (37) is also valid for allk < 0. �

Let Lν be the linear difference operator that to a sequenced̂ = (dk)k∈Iν assigns the
sequenceLν d̂ defined by

(38) (Lν d̂)k = − i(2k + 1 + ν)
4

dk+1 + ikdk −
i(2k − 1− ν)

4
dk−1 , k ∈ Iν .

We remark that, ifν = 2n − 1 (discrete series) andk = n, formula (38) should be read
as

(Lν d̂)n = −indn+1 + indn .

Lemma 3.3 immediately implies that the sequenced̂ of the Fourier coefficientsdk = D(uk)
of anU -invariant distributionD ∈ E ′(Hµ) must satisfy the difference equation

(39) Lν d̂ = 0 .

It is immediate to check that

(40) d+
k = 1, for all k ∈ Iν ,

is a solution of the equation (39) for any value ofν.
In the case whereν = 2n− 1 parametrises the discrete series there are no other linearly

independent solutions. In fact the identity(Lν d̂)n = −indn+1 + indn = 0 impliesdn+1 =
dn, hence, by (38) and (39),dk = dn for all k ∈ Iν .

If ν 6= 0 parametrises the principal or the complementary series, another linearly inde-
pendent solution can be obtained as follows. Letu−k be the vectors obtained by replacing the
parameterν by−ν in the definition (24) of the adapted Fourier basis. The difference equa-
tion for the Fourier coefficients ofU -invariant distributions with respect to the basis{u−k }
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becomesL−ν d̂ = 0. Forν 6= 0, by writing the solutiond+
k = 1 for the basis{u−k } in terms

of the basis{uk}, we obtain as a second solution

(41) d−k =
|k|∏
i=1

2i− 1− ν

2i− 1 + ν
= Πν,|k| for k 6= 0 .

For ν = 0 (µ = 1/4), a second solution can be found by directly solving the difference
equation:

(42) d−0 = 0, d−k =
|k|∑
i=1

1
2i− 1

for k 6= 0 .

We have thus shown that the spaceI(Hµ) ⊂ E ′(Hµ) of invariant distributions is at most
two dimensional ifHµ belongs to the principal or the complementary series, and it is at most
one-dimensional ifHµ belongs to the discrete series.

3.2. Sobolev order. The linear functional

D+
µ : f =

∞∑
−∞

fkuk 7→
∞∑
−∞

fk

is defined, for anyt > 1, on the set off ∈ Hµ for which the series
∑∞

−∞(1 + |k|)t |fk|2
converges. In fact, there exists a constantCν,t > 0 such that

(43) |D+
µ (f)| ≤ Cν,t

( ∞∑
−∞

(1 + |k|)t |fk|2
)1/2

.

By (36) we conclude thatD+
µ defines a continuous linear functional onW s(Hµ) iff s >

1+<(ν)
2 .
If ν 6= 0, the linear functional

D−µ : f =
∞∑
−∞

fkuk 7→
∞∑
−∞

fkΠν,|k|

is defined, for anyt > 1 − 2<(ν), on the set off ∈ Hµ for which the series
∑∞

−∞(1 +
|k|)t |fk|2 converges. In fact, by Lemma 2.1, there exists a constantCν,t > 0 such that

(44) |D−µ (f)| ≤ Cν,t

( ∞∑
−∞

(1 + |k|)t |fk|2
)1/2

.

By (36) it follows thatD+
µ defines a continuous linear functional onW s(Hµ) iff s > 1−<(ν)

2 .
If ν = 0, it is immediate to check that the linear functional

D−µ : f =
∞∑
−∞

fkuk 7→
∞∑
−∞

fk

 |k|∑
i=1

1
2i− 1


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is defined, for anyt > 1, on the set off ∈ Hµ for which the series
∑∞

−∞(1 + |k|)t |fk|2
converges. It follows thatD−µ defines a continuous linear functional onW s(Hµ) iff s >
1
2 = 1−<(ν)

2 .

3.3. Eigenvectors. The generators{D+
µ ,D−µ } of the spaceI(Hµ) of invariant distributions

for the “horocycle vector field” are for allµ 6= 1/4 distributional eigenvectors for the Lie
derivative operatorLX with respect to the “geodesic vector field”X. In other terms, they
are exactly theconical distributionsfor the Lie groupPSL(2, R), in the sense of S. Helga-
son [25]. In the special caseµ = 1/4, the distributionD+

µ is still an eigenvector (a conical
distribution), butD−µ is not. In this case, the matrix of the operatorLX with respect to the
basis{D+

1/4,D
−
1/4} is a2× 2 Jordan block.

Lemma 3.4. Let Iν = Z if µ parametrises the principal or complementary series orIν =
[n,∞[ ⊂ Z if µ = −n2 + n parametrises the holomorphic discrete series. Then

(45) Xuk =
2k + 1 + ν

4
uk+1 −

2k − 1− ν

4
uk−1 for all k ∈ Iν

(for ν = 2n− 1, andk = n the above equation must be read asXun = nun+1).

Proof. We have[Θ, Y ] = −X andU = −Y + Θ, henceX = [Θ, U ]. By Lemma 3.3,
sinceΘuk = i k uk for all k ∈ Iν , an immediate calculation yields the above formula
for Xuk. �

Lemma 3.5. If µ > 0 (principal or complementary series) andµ 6= 1/4,

(46) LXD±µ = −1± ν

2
D±µ .

If µ = 1/4 (ν = 0),

(47) LX

(
D+

µ

D−µ

)
= −1

2

(
1 0
1 1

) (
D+

µ

D−µ

)
.

If µ = −n2 + n, n ∈ Z+ (discrete series),

LXD+
µ = −1 + ν

2
D+

µ = −nD+
µ .

Proof. The distributionD+
µ is determined byD+

µ (uk) = 1 for all k ∈ Iν . Hence, by Lemma
3.4,

(48) LXD+
µ (uk) = −D+

µ (Xuk) = −
(

2k + 1 + ν

4
− 2k − 1− ν

4

)
= −1 + ν

2
D+

µ (uk).

The distributionD−µ is determined, ifν 6= 0, byD−µ (uk) = Πν,|k|. Hence, by Lemma 3.4,
for all k ∈ Z,

LXD−µ (uk) = −D−µ (Xuk) = −
(

2k + 1 + ν

4
Πν,|k+1| −

2k − 1− ν

4
Πν,|k−1|

)
=

= −
(

2k + 1− ν

4
− 2k − 1 + ν

4

)
Πν,|k| = −1− ν

2
D−µ (uk).
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If ν = 0, the distributionD−µ is determined by

(49) D−µ (u0) = 0, D−µ (uk) =
|k|∑
i=1

1
2i− 1

for k 6= 0.

Hence, for allk ∈ Z,

LXD−µ (uk) = −

2k + 1
4

|k+1|∑
i=1

1
2i− 1

− 2k − 1
4

|k−1|∑
i=1

1
2i− 1

 =

= −1
2
−
(

2k + 1
4

− 2k − 1
4

) |k|∑
i=1

1
2i− 1

= −1
2
D+

µ (uk)−
1
2
D−µ (uk).

�

Theorem 3.2 is therefore completely proved.

4. THE COHOMOLOGICAL EQUATION

Let H be a unitary representation ofPSL(2, R). We prove that, if the Casimir oper-
ator � onH has a ‘spectral gap’ then the only obstructions to the existence of a smooth
solution f ∈ H of the equationUf = g, for any smooth vectorg ∈ H, are given by
U -invariant distributions.

Theorem 4.1. If there existsµ0 > 0 such thatσ(�)∩ ]0, µ0[ = ∅, then the following holds.
Let ν0 be defined as in (4). Let s > 1+ν0

2 and t ∈ R. Then there exists a constantC :=
C(ν0, s, t) > 0 such that, for allg ∈ W s(H),

• if either t < −1+ν0
2 andg has no component on the trivial sub-representation ofH,

or
• if t < s− 1 andD(g) = 0, for all D ∈ Is(H),

then the equationUf = g has a solutionf ∈ W t(H) which satisfies the Sobolev estimate

‖ f ‖ t ≤ C ‖ g ‖ s.

A solutionf ∈ W t(H) of the equationUf = g is unique modulo the trivial sub-representa-
tion if and only ift ≥ −1−ν0

2 .

Theorem 4.1 immediately implies Theorem 1.2.

4.1. Formal Green operators. LetHµ be any irreducible unitary representation of Casimir
parameterµ and letf , g ∈ E ′(Hµ) be distributions satisfying the equation

(50) Uf = g .

Let f =
∑

k fkuk andg =
∑

k gkuk be the Fourier expansions of the distributionsf , g

with respect to the adapted basis (24) ofHµ. Let f̂ = (fk)k∈Iν , ĝ = (gk)k∈Iν denote the
sequences of the Fourier coefficients off and g. The equation (50) is equivalent to the
difference equation:

(51) L∗ν f̂ = ĝ
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whereL∗ν is the operator transposed ofLν . More explicitly we have, for allk ∈ Iν ,

(52) (L∗ν f̂)k = −i
2k + 1− ν

4
fk+1 + ikfk − i

2k − 1 + ν

4
fk−1 = gk .

If ν = 2n− 1 (discrete series) andk = n, equation (52) should be read as

infn −
i

2
fn+1 = gn.

We remark that whenν ∈ i R ∪ ]0, 1[ parametrises the principal or the complementary
series we haveL∗ν = L−ν ; this equality holds formally also for the discrete series.

Formal solutions of the homogeneous equationUf = 0 are (formal) vectorsf ∈ Hµ

representing invariant distributions with respect to theHµ inner product. It follows that,
if D ∈ I(Hµ), the sequencêf = (fk)k∈Iν given by

fk =
D(uk)
‖uk ‖ 2

=
D(uk)
Πν,|k|

is a solution of the homogeneous equationL∗νf = 0. By (29), (40) and (41), we obtain the
following formulae for a basis of the kernel of the operatorL∗ν . For theprincipal or the
complementary series:

(53) f
(1)
k = Π−1

ν,|k| = Π−ν,|k|

and, ifν 6= 0,

(54) f
(2)
k = 1 for all k ∈ Z.

If ν = 0, a second independent solution is

(55) f
(2)
0 = 0, f

(2)
k =

|k|∑
i=1

1
2i− 1

for all k ∈ Z \ {0}.

Such formulae can also be deduced from (40), (41) by the identityL∗ν = L−ν .
For thediscrete series:

(56) f
(1)
k = Π−1

ν,k , for all k ∈ Iν .

A standard construction based on the solutionsf (1), f (2) yields theGreen operator
for L∗ν . For theprincipal and complementary series, if ν 6= 0 we have

(57) Gν(k, `) =

{
2i
ν

(
Πν,|`|
Πν,|k|

− 1
)

k > `

0 k ≤ `

As ν → 0 formula (57) converges to the Green operator forν = 0:

(58) G0(`, k) =

{
4i
(∑|`|

i=1
1

2i−1 −
∑|k|

i=1
1

2i−1

)
k > `

0 k ≤ `

We remark that the Green operator is chosen so that if the sequenceĝ of the Fourier coef-
ficients of the functiong ∈ Hµ has finite support and furthermoreD+

µ (g) = D−µ (g) = 0,

then the sequencêf = Gν(ĝ) has also finite support and therefore yields a bona-fide solu-
tion f ∈ C∞(Hµ).
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The Green operator in the case of the (holomorphic)discrete seriescan be taken as

(59) Gν(k, `) =

{
−2i

ν

Πν,|`|
Πν,|k|

iν ≤ k < `

−2i
ν iν ≤ ` ≤ k

which has the property that if the sequenceĝ of the Fourier coefficients ofg ∈ Hµ has
finite support andD+

µ (g) = 0, thenf̂ has also finite support and therefore yields a bona-fide
solutionf ∈ C∞(Hµ).

In all cases it is straightforward to check that the sequences(Ĝ)k = Gν(k, `) satisfy the
equation

(L∗νĜ)k = δ`k ,

hence the Green operators (57), (58) and (59) are well-defined.

4.2. Sobolev estimates.We prove Sobolev estimates for the Green operatorGν in each
irreducible componentHµ. The dependence of the estimates on the Casimir parameterµ
is studied explicitly, since it will be crucial in the construction of solutions of the equa-
tion Uf = g for general unitary representations by ‘gluing’ the solutions obtained in each
irreducible ‘component’ of a direct integral decomposition.

Sharp estimates for theprincipal or thecomplementary seriesare based on the following
Lemma proven in the Appendix.

Lemma 4.2. There existsC > 0 such that, ifν ∈ iR or ν ∈ ]−1, 1[\{0}, for all k ≥ ` ≥ 0,

|
Πν,`

Πν,k
− 1| ≤ C|ν|max{1, |

Πν,`

Πν,k
|}
(
1 + log

(1 + k

1 + `

))
.

Lemma 4.3(Principal series). For all s > 1/2, t < s − 1, there existsCs,t > 0 such that,
for all ν ∈ iR (µ ≥ 1/4) and for allg ∈ W s(Hµ) we have:

(a) if t < −1/2 or
(b) if D+

µ (g) = D−µ (g) = 0,

thenGνg ∈ W t(Hµ) and
‖Gνg ‖ t ≤ Cs,t ‖ g ‖ s.

Proof. In the first case, the Lemma is equivalent to saying that, ifs > 1/2 andt < −1/2,
the operator

ḡ = (ḡ`)`∈Z
Gν→7−→ f̄ =

(∑
`∈Z

Gν(k, `)
‖uk ‖ t

‖u` ‖ s
ḡ`

)
k∈Z

is a bounded operator with uniformly bounded norm from`2(Z) to `2(Z). We claim that,
in fact, it is a Hilbert-Schmidt operator with Hilbert-Schmidt norm‖Gν ‖HS bounded uni-
formly with respect toµ ≥ 1/4.

If ν 6= 0,

‖Gν ‖ 2
HS :=

∑
k,`∈Z

|Gν(k, `)|2 ‖uk ‖ 2
t

‖u` ‖ 2
s

=
4
|ν|2

∑
k∈Z

∑
`<k

|
Πν,|`|

Πν,|k|
− 1|2 (1 + µ + 2k2)t

(1 + µ + 2`2)s
.

By the estimate (30) in Lemma 2.1 and by Lemma 4.2, we have

(60) |
Πν,|`|

Πν,|k|
− 1| ≤ C|ν| [1 + log(1 + |k|) + log(1 + |`|)] .
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Hence, ifs > 1/2, by the integral inequality,∑
`<k

|
Πν,|`|

Πν,|k|
− 1|2 (1 + µ + 2`2)−s ≤ Cs |ν|2

log2(1 + µ)
(1 + µ)s−1/2

[1 + log2(1 + |k|)] ,

and, if t < −1/2,∑
k∈Z

(1 + µ + 2k2)t [1 + log2(1 + |k|)] ≤ Ct (1 + µ)t+1/2 log2(1 + µ) .

It follows that

(61) ‖Gν ‖ 2
HS ≤ 4 Cs Ct

log4(1 + µ)
(1 + µ)s−t−1

≤ C2
s,t .

The estimate (61) is uniform asν → 0 (µ → 1/4). Hence the estimate in the caseν = 0
follows immediately. The first case of the Lemma is therefore proved.

Let g ∈ W s(Hµ), s > 1/2, with D+
µ (g) = D−µ (g) = 0 and letf := Gνg. If ν 6= 0, we

have

fk =
2i

ν

∑
`<k

(
Πν,|`|

Πν,|k|
− 1) g` = −2i

ν

∑
`≥k

(
Πν,|`|

Πν,|k|
− 1) g` .

It follows that

‖ f ‖ 2
t ≤

4
|ν|2

‖ g ‖ 2
s

∑
k∈Z

∑
|`|≥|k|

|
Πν,|`|

Πν,|k|
− 1|2 (1 + µ + 2k2)t

(1 + µ + 2`2)s
.

Since, ift < s− 1,

Is,t :=
∫ ∫

x≥y

(1 + y2)t

(1 + x2)s
[1 + log2(1 + x2)] dx dy < +∞ ,

by (60) and by the integral inequality, there existsC ′ > 0 such that

‖ f ‖ 2
t ≤ C ′ Is,t

log2(1 + µ)
(1 + µ)s−t−1

‖ g ‖ 2
s ≤ Cs,t ‖ g ‖ 2

s .

Hence the second case of the Lemma is proved forν 6= 0.
If ν = 0, we have

fk = 4i
∑

`∈Z,`<k

(d−` − d−k ) g` = −4i
∑

`∈Z,`≥k

(d−` − d−k ) g` ,

where (see (42))

d−0 = 0, d−k =
|k|∑
i=1

1
2i− 1

for k 6= 0 .

It follows that, if t < s− 1,

‖ f ‖ 2
t ≤ C ‖ g ‖ 2

s

∑
k∈Z

∑
|`|≥|k|

(1 + k2)t

(1 + `2)s
[1 + log(1 + `2)] ≤ Cs,t ‖ g ‖ 2

s .

�

Lemma 4.4(Complementary series). For all ν ∈]0, 1[ (0 < µ < 1/4), s > 1+ν
2 andg ∈

W s(Hµ) we have
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(a) if t < −1+ν
2 or

(b) if t < −1−ν
2 andD−µ (g) = 0, or

(c) if t < s− 1 andD+
µ (g) = D−µ (g) = 0,

thenGνg ∈ W t(Hµ). Furthermore there exists a constantCs,t > 0 such that the following
estimate holds. Setting

Cs,t,ν :=


Cs,t max{1, [2s− (1 + ν)]−1/2[−2t + 1 + ν]−1/2} in case (a),
Cs,t

ν max{1, [2s− (1 + ν)]−1/2[−2t + 1− ν]−1/2} in case (b),

Cs,t max{1, [2s− (1 + ν)]−1/2} in case (c);

we have

‖Gνg ‖ t ≤
Cs,t,ν√
1− ν

‖ g ‖ s,

Proof. We claim that, ifs > 1+ν
2 andt < −1+ν

2 , the operator

ḡ = (ḡ`)`∈Z
Gν→7−→ f̄ =

(∑
`∈Z

Gν(k, `)
‖uk ‖ t

‖u` ‖ s
ḡ`

)
k∈Z

is a Hilbert-Schmidt operator from̀2(Z) to `2(Z) with Hilbert-Schmidt norm

(62) ‖Gν ‖HS ≤
Cs,t,ν√
1− ν

.

The claim immediately implies the Lemma in case (a).
We have

‖Gν ‖ 2
HS :=

∑
k,`∈Z

|Gν(k, `)|2 ‖uk ‖ 2
t

‖u` ‖ 2
s

=
4
ν2

∑
k∈Z

∑
`<k

|
Πν,|`|

Πν,|k|
− 1|2

Πν,|k|

Πν,|`|

(1 + µ + 2k2)t

(1 + µ + 2`2)s
.

Since0 < µ < 1/4, for all t ∈ R there exists a constantCt > 0 such that, for allk ∈ Z,

(63) C−1
t (1 + |k|)2t ≤ (1 + µ + 2k2)t ≤ Ct(1 + |k|)2t .

If ν ∈ ]0, 1[, by Lemma 4.2, for allk, ` ∈ Z,

(64)
4
ν2
|
Πν,|`|

Πν,|k|
− 1|2

Πν,|k|

Πν,|`|
≤ C max{

Πν,|`|

Πν,|k|
,
Πν,|k|

Πν,|`|
}×

× [1 + log(1 + |k|) + log(1 + |`|)] .

Hence, by the estimate (31) in Lemma 2.1,

‖Gν ‖ 2
HS ≤

Cs,t

1− ν

∑
k∈Z

{
∑
|`|≥|k|

(1 + |k|)2t−ν

(1 + |`|)2s−ν
[1 + log(1 + |`|)]+

+
∑
|`|<|k|

(1 + |k|)2t+ν

(1 + |`|)2s+ν
[1 + log(1 + |k|)]}.

The estimate (62) then follows by the integral inequality.
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Let g ∈ W s(Hµ), s > 1+ν
2 , withD−µ (g) = 0 and letf := Gνg. We have

fk =
2i

ν

∑
`<k

(
Πν,|`|

Πν,|k|
− 1)g` = −2i

ν

∑
`≥k

Πν,|`|

Πν,|k|
g` +

∑
`<k

g`

 .

Hence

|fk| ≤
2
ν

 ∑
|`|≥|k|

Πν,|`|

Πν,|k|
|g`|+

∑
`<k

|g`|

 .

It follows by Lemma 2.1 that there exists a constantCs,t > 0 such that

‖ f ‖ 2
t ≤

Cs,t

ν2(1− ν)
‖ g ‖ 2

s

 ∑
|`|≥|k|

(1 + |k|)2t+ν

(1 + |`|)2s+ν
+
∑
`<k

(1 + |k|)2t−ν

(1 + |`|)2s−ν

 .

The integral inequality then implies that, ift < s− 1,∑
|`|≥|k|

(1 + |k|)2t+ν

(1 + |`|)2s+ν
< Cs[2s− (1 + ν)]−1

and, ifs > 1+ν
2 andt < −1−ν

2 ,

∑
`<k

(1 + |k|)2t−ν

(1 + |`|)2s−ν
< Cs,t[2s− (1 + ν)]−1[−2t + 1− ν]−1.

The Lemma is therefore proved in case (b).
Let g ∈ W s(Hµ), s > 1+ν

2 , withD+
µ (g) = D−µ (g) = 0 and letf := Gνg. We have

fk =
2i

ν

∑
`<k

(
Πν,|`|

Πν,|k|
− 1)g` = −2i

ν

∑
`≥k

(
Πν,|`|

Πν,|k|
− 1)g`.

It follows by (63), (64) and Lemma 2.1 that

(65) ‖ f ‖ 2
t ≤

4
ν2
‖ g ‖ 2

s

∑
k∈Z

∑
|`|≥|k|

|
Πν,|`|

Πν,|k|
− 1|2

Πν,|k|

Πν,|`|

(1 + µ + 2k2)t

(1 + µ + 2`2)s
≤

≤ Cs,t

1− ν
‖ g ‖ 2

s

∑
k∈Z

∑
|`|≥|k|

(1 + |k|)2t−ν

(1 + |`|)2s−ν
[1 + log(1 + |`|)].

The estimate in case (c) then follows by the integral inequality. �

Lemma 4.5(Discrete series). For all n ∈ Z+ ( ν = 2n− 1, µ = −n2 + n),

(a) if s > 1− n, t < min(s− 1, n− 1) andg ∈ W s(Hµ) or
(b) if s > n, t < s− 1, andg ∈ W s(Hµ) satisfyD+

µ (g) = 0 g ∈ W s(Hµ),
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thenGνg ∈ W t(Hµ) and there exists a constantCs,t > 0 such that the following estimates
hold. Let

Cs,t,ν :=


Cs,t max{1, (s− n)−1/2(n− 1− t)−1/2} in case (a), if s > n;
Cs,t max{1, (n− 1− t)−1/2} in case (a), if s = n;
Cs,t max{1, (s + n− 1)−1/2, (n− s)−1/2} in case (a), if s < n;
Cs,t max{1, (s− n)−1/2} in case (b);

then

‖Gνg ‖ t ≤
Cs,t,ν

νs−t
‖ g ‖ s.

Proof. We claim that, ifs > 1− n andt < min(s− 1, n− 1), the operator

ḡ = (ḡ`)`∈Iν

Gν→7−→ f̄ =

∑
`≥n

Gν(k, `)
‖uk ‖ t

‖u` ‖ s
ḡ`


k∈Iν

is a Hilbert-Schmidt operator from̀2(Iν) to `2(Iν) with Hilbert-Schmidt norm

(66) ‖Gν ‖HS ≤
Cs,t,ν

νs−t
.

We have

‖Gν ‖ 2
HS =

4
ν2

∑
k≥n

{
∑

n≤`≤k

Πν,k

Πν,`

(1 + µ + 2k2)t

(1 + µ + 2`2)s
+
∑
`>k

Πν,`

Πν,k

(1 + µ + 2k2)t

(1 + µ + 2`2)s
} .

Sinceν = 2n − 1 ≥ 1 andµ = −n2 + n, there exists a constantC1 > 0 such that, for
all n ∈ Z+ and allk ≥ n,

(67) C−1
1 [ν + (k − n)]2 ≤ 1 + µ + 2k2 ≤ C1[ν + (k − n)]2

and, by the upper bound (32) in Lemma 2.1, for allk ≥ ` ≥ n,

(68)
Πν,k

Πν,`
≤ C1

(
k − n + ν

`− n + ν

)−ν

.

Hence, there exists a constantCs,t > 0 such that

‖Gν ‖ 2
HS ≤ Cs,tν

2t−2s−2
∑
k≥0

{
∑

0≤`≤k

[1 + (k/ν)]2t−ν

[1 + (`/ν)]2s−ν
+
∑
`>k

[1 + (k/ν)]2t+ν

[1 + (`/ν)]2s+ν
}.

By the integral inequality, there exists a constantsC2 > 0, C3 > 0 such that

∑
0≤`≤k

1
ν

[1 + (`/ν)]−2s+ν ≤


C2 max{1, (s− n)−1} if s > n;
C2 log(1 + k/ν) if s = n;
C2 max{1, (n− s)−1}(1 + k/ν)−2s+ν+1 if s < n;

hence, ift < min(s− 1, n− 1),

∑
k≥0

∑
0≤`≤k

1
ν2

[1 + (k/ν)]2t−ν

[1 + (`/ν)]2s−ν
≤


C3 max{1, (s− n)−1(n− 1− t)−1} if s > n;
C3 max{1, (n− t− 1)−1} if s = n;
C3 max{1, (n− s)−1(s− 1− t)−1} if s < n;
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and, ifs > 1− n,∑
`>k

1
ν

[1 + (`/ν)]−2s−ν ≤ C2(s + n− 1)−1[1 + (k/ν)]−2s−ν+1;

hence, ift < s− 1,

(69)
∑
k≥0

∑
`>k

1
ν2

[1 + (k/ν)]2t+ν

[1 + (`/ν)]2s+ν
≤ C3(s + n− 1)−1(s− 1− t)−1.

It follows that there exists a constantCs,t > 0 such that (66) holds and such an upper bound
for the Hilbert-Schmidt norm of the operatorGν implies the Lemma in case (a).

Let g ∈ W s(Hµ), s > n, withD+
µ (g) = 0 and letf := Gνg. For allk ≥ n, letf (α), f (β)

be defined by

f
(α)
k := −2i

ν

∑
n≤`≤k

g` ;

f
(β)
k :=

2i

ν

∞∑
`>k

g`
Πν,`

Πν,k

Sincef = f (α)+f (β), estimates on the Sobolev norms off (α), f (β) imply corresponding
estimates forf by the triangular inequality.

We have that

‖ f (β) ‖ 2
t ≤

4
ν2
‖ g ‖ 2

s

∑
k≥n

∑
`>k

Πν,`

Πν,k

(1 + µ + 2k2)t

(1 + µ + 2`2)s
,

hence, ifs > n and t < s − 1, by the estimates (67), 68 and (69), there exists a con-
stantCs,t > 0 such that

‖ f (β) ‖ 2
t ≤

C2
s,t,ν

ν2s−2t
‖ g ‖ 2

s .

SinceD+
µ (g) = 0,

f
(α)
k = −2i

ν

∑
n≤`≤k

g` =
2i

ν

∑
`>k

g`.

It follows that

|f (α)
k |2 ≤ 4

ν2
‖ g ‖ 2

s

∑
n≤`≤k

Π−1
ν,` (1 + µ + 2`2)−s;

|f (α)
k |2 ≤ 4

ν2
‖ g ‖ 2

s

∑
`>k

Π−1
ν,` (1 + µ + 2`2)−s.

Let

Σ(1)
s,t,ν :=

4
ν2

n+ν∑
k=n

k∑
`=n

Πν,k

Πν,`

(1 + µ + 2k2)t

(1 + µ + 2`2)s
;

Σ(2)
s,t,ν :=

4
ν2

∞∑
k=n+ν+1

∞∑
`=k+1

Πν,k

Πν,`

(1 + µ + 2k2)t

(1 + µ + 2`2)s
.
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We then have
‖ f (α) ‖ 2

t ≤
(
Σ(1)

s,t,ν + Σ(2)
s,t,ν

)
‖ g ‖ 2

s.

The functionΣ(1)
s,t,ν can be estimated as above. In fact, there exists a constantCs,t > 0 such

that

Σ(1)
s,t,ν ≤ Cs,t ν2t−2s−2

ν∑
k=0

k∑
`=0

[1 + (k/ν)]2t−ν

[1 + (`/ν)]2s−ν
.

Since, by the integral inequality ,ifs > n,
k∑

`=0

1
ν

[1 + (`/ν)]−2s+ν ≤ C1 max{1, (s− n)−1};

and
ν∑

k=0

1
ν

[1 + (k/ν)]2t−ν ≤ 2t ,

there exists a constantCs,t > 0 such that

Σ(1)
s,t,ν ≤ C2

s,t max{1, (s− n)−1} ν2t−2s .

The estimate of the functionΣ(2)
s,t,ν , can be carried out as follows. By the lower bound (32)

in Lemma 2.1, there exists a constantC4 > 0 such that, if̀ > k,

Πν,k

Πν,`
≤ C4

(
`− n + 1
k − n + 1

)ν

.

It follows that there exists a constantCs,t > 0 such that

Σ(2)
s,t,ν ≤ Cs,t ν2t−2s−2

∞∑
k=ν+1

∞∑
`=k+1

[1 + (k/ν)]2t

[1 + (`/ν)]2s

(
1 + `

1 + k

)ν

.

Since, fork ≥ ν, we have[1 + (k/ν)]2t ≤ 22t(k/ν)2t and since

1 + `

1 + k
≤ 1 + `/ν

k/ν
,

it follows that

Σ(2)
s,t,ν ≤ C ′

s,t ν2t−2s−2
∞∑

k=ν+1

∞∑
`=k+1

(
k

ν

)2t−ν

[1 + (`/ν)]−2s+ν .

By the integral inequality, ifs > n (hence−2s + ν + 1 < 0) ,
∞∑

`=k+1

1
ν

[1 + (`/ν)]−2s+ν ≤ (s− n)−1

(
k

ν

)−2s+ν+1

,

and, if t < s− 1,
∞∑

k=ν+1

1
ν

(
k

ν

)2t−2s+1

≤ (s− 1− t)−1.

Hence, there exists a constantCs,t > 0 such that

Σ(2)
s,t,ν ≤ C2

s,t(s− n)−1ν2t−2s.
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It follows that
‖ f (α) ‖ 2

t ≤ C2
s,t max{1, (s− n)−1} ν2t−2s.

�

Proof of Theorem4.1. Let H be a direct integral of non-trivial unitary representationsHλ

of PSL(2, R) with respect to a Stieltjes measureds. Every vectorg ∈ W s(H) has a
decomposition

g =
∫

gλ ds(λ)

with gλ ∈ W s(Hλ). We claim that:
(a) D(g) = 0 for all D ∈ Is(H) iff, for ds-almost allλ ∈ R, Dλ(g) = 0 for all Dλ ∈

Is(Hλ);
(b) if there exists a constantC(s, t) > 0 such that, fords-almost allλ ∈ R, the equa-

tion Ufλ = gλ has a solutionfλ ∈ W t(Hλ) satisfying auniformSobolev estimate

(70) ‖ fλ ‖ t ≤ C(s, t) ‖ gλ ‖ s ,

then the equationUf = g has a solutionf ∈ W t(H) with the same Sobolev bound:

‖ f ‖ t ≤ C(s, t) ‖ g ‖ s .

The claim(a) follows immediately from Lemma 3.1.
The claim(b) can be proved as follows. Let

f :=
∫

fλ ds(λ) .

Since the operatorU is decomposable and

‖ f ‖ 2
t =

∫
‖ fλ ‖ 2

t ds(λ) ≤

≤ C(s, t)2
∫

‖ gλ ‖ 2
s ds(λ) = C(s, t)2 ‖ g ‖ 2

s < +∞ ,

the vectorf ∈ W t(SM) yields a well-defined solution of the equationUf = g which
satisfies the required Sobolev bound. The claim is therefore completely proved.

The existence part of the Theorem then follows from Lemmata 4.3, 4.4, 4.5 and the direct
integral decompositions (19), (20). In fact, if the Casimir operator has a ‘spectral gap’, the
uniform Sobolev estimates (70) holds for all irreducible unitary sub-representations.

The uniqueness part is proved as follows. A solutionf ∈ W t(H) of the equationUf = g
is not unique modulo the trivial sub-representation iff there exists a non-trivial invariant
distributionD ∈ W t(H). By Lemma 3.1 and Theorem 3.2, that is the case ifft ≥ −1−ν0

2 .
�

4.3. Converse results.LetH be the Hilbert space of a unitary representation of the group
PSL(2, R). It is immediate by the definition of anU -invariant distributionD ∈ Is(H) that,
if g ∈ H is a vector such that the equationUf = g has a solutionf ∈ W t(H) with t ≥ s+1,
thenD(g) = 0. We prove thatD(g) = 0 under weaker regularity assumptions on the
solutionf . In fact, it turns out that, ifg is not in the kernel ofU -invariant distributions, then
Theorem 4.1 gives the optimal Sobolev regularity for the solution. Such converse result will
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also be a crucial tool in the proof of lower bounds on the deviations of ergodic averages of
the horocycle flow.

Theorem 4.6. Letg ∈ W s(H), s > 1+ν0
2 , and letD ∈ E ′(H) be aU -invariant distribution

of Sobolev orderSD < s. If the equationUf = g has a solutionf ∈ W t(H) with t ≥
SD − 1, thenD(g) = 0.

Theorem 4.6 implies Theorem 1.3, for all finite area hyperbolic surfaces.
The proof of Theorem 4.6 can be reduced, by direct decomposition into irreducible sub-

representations, to the following Lemmata.

Lemma 4.7 (Principal series). Let ν ∈ iR ( µ ≥ 1/4). Let g ∈ W s(Hµ), s > 1/2, be
any vector such that the cohomological equationUf = g has a solutionf ∈ W t(Hµ).
If t ≥ −1/2, thenD+

µ (g) = D−µ (g) = 0.

Lemma 4.8 (Complementary series). Let ν ∈ ]0, 1[ ( 0 < µ < 1/4). Let g ∈ W s(Hµ),
s > 1+ν

2 , be any vector such that the cohomological equationUf = g has a solutionf ∈
W t(Hµ).

(1) If t ≥ −1+ν
2 , thenD−µ (g) = 0 ;

(2) if t ≥ −1−ν
2 , thenD+

µ (g) = D−µ (g) = 0.

Lemma 4.9(Discrete Series). Letν = 2n− 1 ( µ = −n2 + n), n ∈ Z+. Letg ∈ W s(Hµ),
s > n, be any vector such that the cohomological equationUf = g has a solutionf ∈
W t(Hµ). If t ≥ n− 1, thenD+

µ (g) = 0.

We remark that the proof of Lemmata 4.7, 4.8 and 4.9 can be reduced to the case that
the Fourier serieŝg of g ∈ Hµ with respect to the basis{uk} hasfinite support. In fact, for

anyg ∈ W s(Hµ), s > 1+<(ν)
2 , there exists a vectorh ∈ Hµ, with Fourier serieŝh of finite

support, such thatD(h) = D(g), for all D ∈ Is(Hµ). By Theorem 3.2, the sequenceĥ
can be determined as a solution of a linear system of two equations, in the case of the
principal or the complementary series, or of a single equation, in the case of the discrete
series. By Theorem 4.1, the equationUf = h− g has a solution which belongs toW t(Hµ)
for all t < s − 1. Hence, for anyt < s − 1, the equationUf = h has a solution which
belongs toW t(Hµ) iff the equationUf = g does. It is therefore sufficient to consider the
case of a vectorg ∈ Hµ with Fourier series of finite support.

Proof of Lemma4.7. Let ν 6= 0. If f is a distributional solution of the equationUf = g, the
sequencêf of its Fourier coefficients satisfies the linear second order difference equation
(52). The general solution can be written as

(71) fk =
2i

ν

∑
`<k

(
Πν,|`|

Πν,|k|
− 1)g` + c1f

(1)
k + c2f

(2)
k ,

wheref
(1)
k = Π−1

ν,|k|, f
(2)
k = 1, for all k ∈ Z, andc1, c2 ∈ C. If ĝ has finite support, there

existsk− ∈ Z− such that, for allk < k− < 0,

fk = c1f
(1)
k + c2f

(2)
k .
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It follows that, if f ∈ W t(Hµ), t ≥ −1/2, thenc1 = c2 = 0. In fact, if |c1| 6= |c2|,
since|Πν,|k|| = 1, for all k < k−, |fk| ≥ ||c1| − |c2|| > 0. If |c1| = |c2|, let c1 = eiθc2

andΠν,|k| = eiθk . Then|fk| ≥ |c2||ei(θ−θk) + 1|. By the definition ofΠν,|k|, if ν = is 6= 0,
we have

θk = −2
|k|∑
i=1

tan−1(
s

2i− 1
) .

Let I ⊂ S1 be a closed subinterval such thatθ − π 6∈ I. The set{k < k−|θk ∈ I}
contains infinitely many intervals[k−j , k+

j ] ⊂ Z− such that there exists a constantc > 1
with |k−j /k+

j | ≥ c for all j ∈ N. SinceI is closed, there exists a constantd > 0 such

that |θ − π − θ′| ≥ d for all θ′ ∈ I. Hence, ifk ∈ [k−j , k+
j ], sinceθk ∈ I, |ei(θ−θk) + 1| ≥

d > 0, for all j ∈ N. In both cases it follows that, ifc1 6= 0 or c2 6= 0, then∑
k<k−

|fk|2

|k|
= +∞ ,

hencef 6∈ W t(Hµ) for anyt ≥ −1/2.
If c1 = c2 = 0 andĝ has finite support, there existsk+ ∈ Z+ such that, for allk > k+ >

0,

fk =
2i

ν

(
D−µ (g)Π−1

ν,|k| +D+
µ (g)

)
.

The above argument implies that, iff ∈ W t(Hµ) with t ≥ −1/2, thenD+
µ (g) = D−µ (g) =

0.
Let ν = 0. The general solution of the difference equation (52) is

fk = 4i
∑
k<`

(d−` − d−k )g` + c1f
(1)
k + c2f

(2)
k ,

wheref
(1)
k = 1, for all k ∈ Z, c1, c2 ∈ C and

d−k = f
(2)
k =

|k|∑
i=1

1
2i− 1

.

If ĝ has finite support, there existsk− ∈ Z− such that, for allk < k− < 0,

fk = c1f
(1)
k + c2f

(2)
k .

Sincef
(2)
k is unbounded, it is immediate that, iff ∈ W t(Hµ) with t ≥ −1/2, thenc1 =

c2 = 0. Hence there existsk+ ∈ Z+ such that, for allk > k+,

fk = 4i
(
D−µ (g)−D+

µ (g)d−k
)

and again, sinced−k = f
(2)
k is unbounded, iff ∈ W t(Hµ) with t ≥ −1/2, thenD+

µ (g) =
D−µ (g) = 0. �

Proof of Lemma4.8. The sequencêf of the Fourier coefficients can be written as in (71).
If ĝ has finite support, there existsk− ∈ Z− such that, for allk < k− < 0,

fk = c1f
(1)
k + c2f

(2)
k = c1Π−1

ν,|k| + c2.
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By the estimates (31) in Lemma 2.1 and by (36), it follows that(1) if t ≥ −1+ν
2 , thenc1 = 0;

(2) if t ≥ −1−ν
2 , thenc1 = c2 = 0.

If ĝ has finite support, there existsk+ ∈ Z+ such that, for allk > k+ > 0,

fk =
2i

ν

(
D−µ (g)Π−1

ν,|k| +D+
µ (g)

)
+ c1f

(1)
k + c2f

(2)
k .

Again by Lemma 2.1, it follows that(1) if t ≥ −1+ν
2 , sincec1 = 0, thenD−µ (g) = 0; (2)

if t ≥ −1−ν
2 , sincec1 = c2 = 0, thenD+

µ (g) = D−µ (g) = 0. �

Proof of Lemma4.9. The sequencêf of the Fourier coefficients of the solutionf satisfies
the linear difference equation (52) on the setIν = [n, +∞] ⊂ Z. Since the space of solutions
of the corresponding homogeneous equation is one-dimensional, the general solution can be
written as

fk = −2i

ν

(
k∑

`=n

g` +
∞∑

`=k+1

g`

Πν,|`|

Πν,|k|

)
+ c1f

(1)
k ,

wherec1 ∈ C andf
(1)
k = Π−1

ν,k, for all k ≥ n.
If ĝ has finite support, there existsk+ > n such that, for allk > k+,

fk = −2i

ν
D+

µ (g) + c1f
(1)
k .

Let f ∈ W t(Hµ). By the estimates (32) in Lemma 2.1, it follows that, ift ≥ −n, thenc1 =
0 and, if t ≥ n− 1, thenc1 = 0 andD+

µ (g) = 0. �

5. DEVIATION OF ERGODIC AVERAGES

5.1. Spectral decomposition of horocycle orbits.SinceIs(SM) ⊂ W−s(SM) is closed,
there is an orthogonal splitting

(72) W−s(SM) = Is(SM)⊕⊥ Is(SM)⊥ .

Although the spaceIs(SM) is {φX
t }-invariant, the action of the geodesic one-parameter

group {φX
t } on W s(SM) is not unitary and the orthogonal splitting (72) isnot {φX

t }-
invariant.

According to Theorems 1.1 and 1.4, the one-parameter group{φX
t } has a (generalized)

spectral representation on the spaceIs(SM). In fact, for alls > 0, there is a{φX
t }-invariant

orthogonal splitting

(73) Is(SM) = Is
d ⊕⊥ Is

C

and the spectrum ofφX
t is discrete on the subspaceIs

d := Id ∩ Is(SM) and Lebesgue of
finite multiplicity with spectral radius equal toe−t/2 onIs

C , for all t ∈ R.

LetB ⊂ Id be a basis of (generalized) eigenvectors for{φX
t } | Id such thatB∩

(
Id	I1/4

)
is a basis of eigenvectors for{φX

t } |
(
Id	I1/4

)
and, if1/4 ∈ σpp, the setB1/4 := B∩I1/4

is a basis which brings{φX
t } | I1/4 into its Jordan normal form. For anyD ∈ B \ B1/4

of Sobolev orderSD > 0, there existsλD ∈ C with <(λD) = −SD < 0 such that, for
all t ∈ R,

(74) φX
t (D) = eλDtD ;
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if 1/4 ∈ σpp, the subsetB1/4 ⊂ B is the union of a finite number of pairs{D+,D−} such
that the distributionsD± ∈ B±1/4 = B ∩ I±1/4 have the same Sobolev order equal to1/2 and
formula (7) holds:

(75) φX
t

(
D+

D−
)

= e−t/2

(
1 0
− t

2 1

) (
D+

D−
)

.

The setBs := B ∩ Is
d is a basis of (generalized) eigenvectors for the action of{φX

t }
onIs

d. By Theorem 1.1 and (9), for alls > 1, there is a decomposition

(76) Bs =
⋃

µ∈σpp

Bµ ∪
⋃

1≤n<s

Bn .

The operatorφX
t | Is

C has Lebesgue spectrum of finite multiplicity supported on the circle of
radiuse−t/2 in the complex plane, for allt ∈ R. Its norm satisfies the following bound.

Lemma 5.1. There exists a constantC1 := C1(s) > 0 such that, for allt ∈ R,

(77) ‖φX
t

∣∣ Is
C ‖−s ≤ C1 (1 + |t|) e−t/2 .

Proof. By §§3.1 and 3.3, ifHµ is the Hilbert space of an irreducible representation of the
principal series, thenIs(Hµ) has dimension2 and it is generated by two complex conjugate
invariant distributionsD±µ . By Lemma 3.5, the distributionD±µ is an eigenvector of the op-
eratorφX

t with eigenvalue the complex numbere−(1±ν)t/2, whereν is the purely imaginary
parameter defined by (23). The distortion of the basis{D+

µ ,D−µ } is uniformly bounded as
the parameterµ varies over subsets of the real line bounded away from1/4 (which corre-
sponds to the imaginary parameterν being bounded away from0). Let d±µ be the sequences
of the Fourier coefficients of the distributionsD±µ , with respect to the basis (24) ofHµ. By
the definition ofd±µ in §3.1, an explicit calculation of the derivative of the coefficientsd−µ of
the distributionD−µ yields

lim
ν→0

d+
µ − d−µ

2ν
= −1

2
d

dν
d−ν

∣∣∣
ν=0

= d+
0 .

Since the Fourier basis (24) depends continuously on the parameterν ∈ i R∪ ] − 1, 1[, the
basis{<D+

µ ,=D−µ /2ν} of Is(Hµ) has bounded distorsion, asµ → 1/4 (ν → 0). The
2 × 2 matrix of the operatorφX

t with respect to this basis can be explicitly computed by
Lemma 3.5. It follows that there exists a constantC1 > 0 such that, for allµ ≥ 1/4, the
norm of the operatorφX

t on Is(Hµ) is bounded byC1(1 + |t|)e−t/2. Since the spaceIs
C

decomposes as a direct integral of the spacesIs(Hµ) over the interval[1/4,+∞[ and the
operatorφX

t is also decomposable, the desired estimates follows.
�

According to (72) and (73), everyγ ∈ W−s(SM) can be written as

(78) γ =
∑
D∈Bs

cD(γ)D + C(γ) +R(γ)

with C(γ) ∈ Is
C andR(γ) ∈ Is(SM)⊥. The real numbercD(γ) will be called theD-

componentof γ alongD ∈ Bs and the distributionC(γ) the (U -invariant)continuous com-
ponentof γ. We recall that the continuous component vanishes for allγ ∈ W−s(SM) if
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M is compact. The following Lemma tells us that bounds on the norms of distributions in
W−s(SM) are equivalents to bounds on their coefficients.

Lemma 5.2. There exists a constantC2 := C2(s) > 0 such that

(79) C−2
2 ‖ γ ‖ 2

−s ≤
∑
D∈Bs

|cD(γ)|2 + ‖ C(γ) ‖ 2
−s + ‖R(γ) ‖ 2

−s ≤ C2
2 ‖ γ ‖ 2

−s .

Proof. The splittings (72) and (73) are orthogonal with respect to the Hilbert structure of
W−s(SM). The basisBs is not orthogonal, however we claim that its distortion is uniformly
bounded. In fact, vectors of the basis supported on different irreducible representations are
orthogonal; ifD+

µ ,D−µ ∈ Bs are normalised eigenvectors supported on the same irreducible
representation of Casimir parameterµ ∈ R+ (principal or complementary series), a cal-
culation shows that the function〈D+

µ ,D−µ 〉−s is continuous on the interval]1/4,+∞[, it
converges to0 asµ → +∞ and to1 asµ → 1/4. SinceIs

d is contained in the pure point
component of the the spectral representation of the Casimir operator, the angle betweenD+

µ

andD−µ has a strictly positive uniform lower bound asµ ∈ σpp. �

5.1.1. Horocycle orbits.For x ∈ SM andT ∈ R+, let γx,T be the probability measure
uniformly distributed on the horocycle orbit of lengthT starting atx. More precisely, for
any continuous functionf onSM , we define

γx,T (f) =
1
T

∫ T

0
f(φU

t (x)) dt

By the Sobolev embedding Theorem (see [1]), fors > 3/2, the measuresγx,T are
continuous functionals onW s(SM) (which depend weakly-continuously onx ∈ SM
andT ∈ R+). Thus the splitting (78) can be applied to horocycle orbits. We set

cD(x, T ) := cD(γx,T ), C(x, T ) := C(γx,T ) , R(x, T ) := R(γx,T ) .

so that

(80) γx,T =
∑
D∈Bs

cD(x, T )D + C(x, T ) +R(x, T ) .

The proofs of Theorems 1.5 and 1.7 will reduce to estimates on the norms of the three parts
of this splitting. We start by showing in next section that since the parts of this splitting in-
variant by the horocycle flow, namely

∑
D∈Bs cD(x, T )D andC(x, T ), vanish on cobound-

aries, the remainder partR(x, T ) must be of the order of1/T ; furthermore the individual
coefficientscD(x, T ) and the continuous componentC(x, T ) cannot be too small.

The uniform norm of functions on a compact manifold can be bounded in terms of a
Sobolev norm by the Sobolev embedding theorem. In the case of a non-compact hyperbolic
surfacesM of finite area, since the injectivity radius is not bounded away from zero, the
Sobolev embedding theorem holds only locally. We therefore prove a version of the Sobolev
embedding theorem on compact subsets of the unit tangent bundleSM , with an explicit
bound on the constant.

We fix once for all a pointx0 ∈ SM and letd0 : SM → R be the distance function from
x0. Constants in the following statements will implicitly depend (in a inessential way) on
this choice.
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Lemma 5.3. There exists a constantC3 := C3(x0,M) such that for any functionF ∈
W 2(SM), we have thatF is continuous and

|F (x)| ≤ C3 ed0(x)/2 ‖F ‖ 2 .

Proof. Recall that ifG is a locallyW 2 function on Poincaré’s planeH thenG is continuous
and there existsC(ε) > 0 such that

|G(x)|2 < C(ε)
∫

B(x,ε)
(|G|2 + |dG|2 + |∆G|2) dy

for anyx ∈ H ([22] page 63 ).
Forx in SM denote byρ(x) the radius of injectivity ofSM atx.
Let ε < π and setA0 the open set of pointsx ∈ SM whereρ(x) > ε. By choosingε

sufficiently small we can assume that complementAc
0 consists ofk connected components

Vi each contained inSAi, the tangent unit bundle of disjoint open cuspsAi ≈ S1 × R+

whose boundary horocycle has length2ε.
By the Sobolev embedding theorem mentioned above there existsC(ε) > 0 such that for

anyx ∈ A0 we have

|F (x)|2 < C(ε)
∫

B(x,ε)
(|F |2 + |dF |2 + |∆F |2) dy.

For x ∈ Vi let d be the distance ofx from ∂Ai. It’s easy to see that2εe−d ≤ ρ(x) ≤
4εe−d. Let F̃ denote the lift ofF to Poincare’s half-planeH and let x̃ be a pointSH
projecting tox. Then, by the same embedding theorem,

|F̃ (x)|2 < C(ε)
∫

B(x̃,ε)
(|F̃ |2 + |dF̃ |2 + |∆F̃ |2) dy

and, since, the ballB(x̃, ε) ⊂ SH covers the ballB(x, ε) ⊂ SM at most[ed/2] + 1 times,
we get

|F (x)|2 < edC(ε)
∫

B(x,ε)
(|F |2 + |dF |2 + |∆F |2) dy .

The proof is finished by observing thatd0 is bounded onA0 andd0(x) < d + C ′(ε). �

Lemma 5.3 allows us to derive the following upper bound for the uniform norm of com-
ponents and remainder terms of horocycle arcs.

Corollary 5.4. For all s ≥ 2, there exists a constantC4 := C4(s, x0) > 0 such that, if the
horocycle arcγx,T ⊂ B(x0, d), then

(81)
∑
D∈Bs

|cD(x, T )|2 + ‖ C(x, T ) ‖ 2
−s + ‖R(x, T ) ‖ 2

−s ≤ C2
4 ed .

Proof. Let s ≥ 2. By Lemma 5.3, for any functionf ∈ W s(SM), we have:

|γx,T (f)| ≤ max{|f(x)| : x ∈ B(x0, d)} ≤ C3e
d/2 ‖ f ‖ s .

The estimate (81) then follows immediately from Lemma 5.2. �
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5.2. Coboundaries. Let {φt} be a measure preserving ergodic flow on a probability space.
We recall that a functiong is acoboundaryfor {φt} if it is a derivative of a functionf along
this flow. The Gottschalk-Hedlund Theorem, or rather its proof, yields upper bounds for the
uniform or theL2 norm of ergodic averages of a coboundaryg in terms of the uniform, or
respectively, theL2 norm of its primitivef . A key consequence is that the uniform bound
for the remainder termR(x, T ) proved in Corollary 5.4 can be significantly improved.

Lemma 5.5. Letx0 ∈ SM . For everys > 3, there exists a constantC5 := C5(s, x0) such
that if the end-points ofγx,T are inB(x0, d), then

(82) ‖R(x, T ) ‖−s ≤
C5

T
ed/2 .

Proof. Let I := Is(SM). The orthogonal splitting (72) induces a dual orthogonal splitting

(83) W s(SM) = Ann(I)⊕ Ann(I⊥) .

Hence, any functiong ∈ W s(SM) has a unique (orthogonal) decompositiong = g1 + g2,
whereg1 ∈ Ann(I) andg2 ∈ Ann(I⊥). SinceR(x, T ) ∈ I⊥, the functiong2 ∈ Ann(I⊥)
andg1 ∈ Ann(I), we have:

(84) R(x, T )(g) = R(x, T )(g1 + g2) = R(x, T )(g1) = γx,T (g1) .

The functiong1 is a coboundary for the horocycle flow. In fact, it belongs to the kernel
of all U -invariant distributions of order≤ s; hence, by Theorem 1.2, there exists a func-
tion f1 ∈ W t(SM), with 2 < t < s − 1, such thatUf1 = g1 and ‖ f1 ‖ t ≤ C ‖ g1 ‖ s.
Let d > 0 be such thatx, φU

T (x) ∈ B(x0, d). By the Sobolev embedding Theorem, the
functionf1 is continuous and by Lemma 5.3

(85) max{|f1(x)| : x ∈ B(x0, d)} ≤ C3 ed/2 ‖ f ‖ t ≤ C ′
3 ed/2 ‖ g1 ‖ s .

By the Gottschalk-Hedlund argument and the inequality (85),

(86) |γx,T (g1)| =
1
T
|f1 ◦ φU

T (x)− f1(x)| ≤ 2C ′
3

T
ed/2 ‖ g1 ‖ s .

Since the dual splitting (83) is orthogonal, by the estimates (84) and (86), we get

|R(x, T )(g)| ≤ 2C ′
3

ed/2

T
‖ g1 ‖ s ≤

2C ′

T
ed/2 ‖ g ‖ s .

The lemma is therefore proved. �

A similar argument proves the followingL2 bound.

Lemma 5.6. For everys > 1, there exists a constantC6 := C6(s), such that, for all
functionsg ∈ W s(SM),

(87) ‖R(·, T )(g) ‖ 0 ≤
C6

T
‖ g ‖ s .

Proof. According to (84), sinceg1 = Uf1 is a coboundary andφX
t is volume preserving, by

Theorem 1.3 and the orthogonality of the splitting (83), we have

‖R(·, T )(g) ‖ 0 = ‖ γx,T (g1) ‖ 0 ≤
2
T
‖ f1 ‖ 0 ≤

C6

T
‖ g1 ‖ s ≤

C6

T
‖ g ‖ s .

�
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The following lemma is a widely knownL2 version for ergodic measurable flows. It will
be a crucial tools in the proof of theL2 lower bounds of Theorems 1.5 and 1.7.

Lemma 5.7(Gottschalk-Hedlund Lemma). If an L2-functionF is a solution of the equation

(88)

(
dF ◦ φt

dt

)
t=0

= G ,

then the one-parameter family of functions{GT }T∈R defined by

GT (·) :=
∫ T

0
G (φt(·)) dt

is equibounded inL2 by 2 ‖F ‖ . Conversely if the family{GT }T≥0, is equibounded, then
the equation (88) has anL2 solution.

Proof. If there exists a solutionF of the equation (88), then∫ T

0
G (φt(x)) dt = F (φT (x))− F (x);

hence

‖
∫ T

0
G (φt(·)) dt ‖ 0 ≤ 2 ‖F ‖ 0 .

Conversely, if the family of functions{GT }T≥0 is equibounded inL2, then the family of
functions{FT }T≥0 defined by

FT (·) := − 1
T

∫ T

0

∫ t

0
G (φs(·)) ds dt

is equibounded inL2. Since{φt} is ergodic, by Von NeumannL2 ergodic Theorem, the
functionG has zero average and any weak limitF ∈ L2 of {FT } is a (weak)L2 solution of
the equation (88). �

We have the followingL2 bounds for the components of horocycle arcs:

Lemma 5.8. For everyD ∈ Bs there exists a constantCD > 0 such that, for allT > 0, the
D-componentcD(x, T ) of γx,T satisfies theL2 upper bound

(89) ‖ cD(·, T ) ‖ 0 ≤ CD .

If D ∈ I1(SM), theD-componentcD(x, T ) satisfy theL2 lower bound

(90) sup
T∈R+

T ‖ cD(·, T ) ‖ 0 = +∞ .

If the continuous spectrum is not empty, we also have

(91) sup
T∈R+

T ‖ C(·, T ) ‖−s,0 = +∞

for the continuous componentC(x, T ) of γx,T .
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Proof. Let D ∈ Bs. There exists a unique functiong ∈ Ann(Is(SM)⊥) ⊂ W s(SM)
such thatD(g) = 1, D′(g) = 0, for all D′ ∈ Bs with D′ 6= D and allD′ ∈ Is

C . By the
splitting (80), for all(x, T ) ∈ SM × R+,

γx,T (g) = cD(x, T ) .

It follows that, since the horocycle flow is volume preserving,

‖ c(·, T ) ‖ 0 ≤ ‖ 1
T

∫ T

0
g
(
φU

t (x)
)
dt ‖ 0 ≤ ‖ g ‖ 0 .

If the distributionD ∈ Bs has Sobolev orderS ≤ 1, sinceD(g) 6= 0, by Theorem 1.3 the
equationUf = g has no solutionf ∈ L2(SM). By the Gottschalk-Hedlund Lemma 5.7, it
follows that the family of functions

T cD(x, T ) = T γx,T (g) =
∫ T

0
g
(
φU

t (x)
)
dt

is not equibounded inL2(SM). Hence (90) is proved.

The proof of (91) is completely analogous. Suppose that the continuous spectrum is not
empty and letg ∈ W s(SM) be a function belonging to Ann

(
Is(SM)⊥

)
∩ Ann(Is

d) and
such thatD(g) 6= 0 for someD ∈ Is

C . Since anyD ∈ Is
C has Sobolev order equal to1/2,

by Theorem 1.3, the equationUf = g has no solutionf ∈ L2(SM). Then, as before,
by the Gottschalk-Hedlund Lemma 5.7, the family of functions{T C(·, T )(g)}T∈R is not
equibounded inL2(SM). In fact,

T C(x, T )(g) = T γx,T (g) =
∫ T

0
g
(
φU

t (x)
)
dt .

Since
‖ C(·, T )(g) ‖ 0 ≤ ‖C(·, T ) ‖−s,0 ‖ g ‖ s ,

the family of functions{T ‖ C(·, T ) ‖−s,0}T∈R is not equibounded inL2(SM), proving
(91). �

5.3. Iterative estimates. By the commutation relations (14), the geodesic flow{φX
t } ex-

pands the orbits of unstable horocycle flow{φV
s } by a factoret and it contracts the orbits of

stable horocycle flow{φU
s } by a factore−t:

(92) φX
t ◦ φU

s = φU
se−t ◦ φX

t , φX
t ◦ φV

s = φV
set ◦ φX

t .

It follows that, in the distributional sense,

(93) φX
t (γx,T ) = γφX

−t(x),et T .

Were the splitting (72), hence the splitting (80), invariant under the action geodesic flow,
Theorems 1.5 and 1.7 would follow immediately. In fact, by the eigenvalue identities (74)
onIs

d and by the bound on the norm ofφX
t onIs

C given by Lemma 5.1, the invariance of the
splitting (80) would entail that, for allD ∈ Bs \ B1/4 and for the continuous component,

cD(φX
−t(x), et) = cD(x, 1) eλDt ,

‖ C(φX
−t(x), et) ‖−s ≤ C1(1 + |t|) e−t/2 ‖ C(x, 1) ‖−s
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and, if1/4 ∈ σpp, by identity (75) for all pairs{D+,D−} ⊂ B1/4,

(94)
cD+(φX

−t(x), et) = [cD+(x, 1)− t

2
cD−(x, 1)] e−t/2 ,

cD−(φX
−t(x), et) = cD−(x, 1) e−t/2 ,

allowing us to conclude.
The aim of this section is to prove that, in spite of the lack of invariance of the split-

ting (80), the projections ontoIs
C andD ∈ B of the geodesic push-forwards of the remainder

termR(x, T ) are negligible.
Let x ∈ SM , T > 0. It will be convenient to discretise the geodesic flow timet ≥ 1 and

to consider the push-forwards of the arcγx,T by φX
`h, whereh ∈ [1, 2] and` ∈ N. Then the

distribution (measure)φX
`h(γx,T ) has a splitting

(95) φX
`h(γx,T ) =

∑
D∈Bs

cD(x, T, `)D + C(x, T, `) + R(x, T, `) .

We will prove pointwise andL2 bounds on the sequences of functionscD(·, T, `), C(·, T, `)
andR(·, T, `). By the identity (93) and the definition (80), we have:

(96)

cD(x, T, `) = cD

(
φX
−`h(x), e`h T

)
,

C(x, T, `) = C
(
φX
−`h(x), e`h T

)
,

R(x, T, `) = R
(
φX
−`h(x), e`h T

)
.

Uniform bounds andL2 bounds on the functionscD(·, T, `), C(·, T, `) andR(·, T, `) are
clearly equivalent to uniform andL2 bounds oncD(·, e`h T ), C(·, e`h T ) andR(·, e`h T )
respectively. Let

(97)
rD(x, T, `) := cD

(
φX

h R(x, T, `)
)
∈ R ,

RC(x, T, `) := C
(
φX

h R(x, T, `)
)
∈ Is

C .

By the identityφX
(`+1)h = φX

h ◦φX
`h, since the distributionsD ∈ Bs\B1/4 are eigenvectors

of the geodesic flow{φX
t } (see (74)) and the spaceIs

C is {φX
t }-invariant, we obtain by

projecting onD-components and on the continuous component:

(98)
cD(x, T, ` + 1) = cD(x, T, `) eλDh + rD(x, T, `) ;

C(x, T, ` + 1) = φX
h C(x, T, `) + RC(x, T, `) .

If 1/4 ∈ σpp, for all pairs{D+,D−} ⊂ B1/4 we obtain by (75):

(99)
cD+(x, T, ` + 1) = [cD+(x, T, `)− h

2
cD−(x, T, `)] e−h/2 + rD+(x, T, `) ;

cD−(x, T, ` + 1) = cD−(x, T, `) e−h/2 + rD−(x, T, `) .

Bounds on the solutions of the difference equations (98) and (99) can be derived from the
following trivial lemma.



38 LIVIO FLAMINIO AND GIOVANNI FORNI †

Lemma 5.9. LetΦ ∈ L(E) be a bounded linear operator on a normed spaceE. Let{R`},
` ∈ N, be a sequence of elements ofE. The solution{x`} of the following difference
equation inE,

(100) x`+1 = Φ(x`) + R` , ` ∈ N ,

has the form

(101) x` = Φ`(x0) +
`−1∑
j=0

Φ`−j−1Rj .

By Lemma 5.9, the proof of Theorems 1.5 and 1.7 is essentially reduced to estimates
on the ‘remainder terms’rD(x, T, `) andRC(x, T, `). Such estimates can be derived from
Lemma 5.5. Letx0 ∈ SM be a reference point as in Lemma 5.5 and letd0 : SM → R be
the distance function fromx0. For each(x, T ) ∈ SM × R+ and each̀ ∈ N, let d(x, T, `)
be the the maximum distance of the endpoints of the horocycle arcφX

`h(γx,T ) from x0:

(102) d(x, T, `) := max{d0

(
φX
−`h(x)

)
, d0

(
φX
−`h ◦ φU

T (x)
)
} .

Lemma 5.10. There exists a constantC7 := C7(s) such that, for all(x, T ) ∈ SM × R+

and all ` ∈ N,

(103)
∑
D∈Bs

|rD(x, T, `)|2 + ‖RC(x, T, `) ‖ 2
−s ≤

(
C7

T

)2

exp{d(x, T, `)− 2`h} .

Proof. Let CX(s) := maxh∈[1,2] ‖φX
h ‖−s. Then, by the definition (97) and Lemma 5.2,

we have ∑
D∈Bs

|rD(x, T, `)|2 + ‖RC(x, T, `) ‖ 2
−s ≤ C2

2C2
X ‖R(x, T, `) ‖ 2

−s .

ButR(x, T, `) is the “R” component of an arc of horocycle of lengthe`hT whose endpoints
are at a distanced(x, T, `) from the reference pointx0 (cf. (96), (93), (102)). Thus by
Lemma 5.5‖R(x, T, `) ‖−s < C5e

d(x,T,`)/2/e`hT and the lemma follows. �

The difference equations (98) and (99) also yield estimates for theL2 norms of the func-
tionscD(·, T, `) and‖ C(·, T, `) ‖−s onSM . However, in the case of the continuous compo-
nent, suchL2 bounds are not effective because of the lack ofL2 estimates on the remainder
term ‖RC(·, T, `) ‖−s. For theD-components we can prove the following:

Lemma 5.11. For eachD ∈ Bs, there exists a constantC8 := C8(D, s) > 0 such that, for
all T > 0 and all ` ∈ N,

(104) ‖ rD(·, T, `) ‖ 0 ≤
C8

T
e−`h .

Proof. Let g := gD ∈ W s(SM) be the unique function such thatD(g) = 1, D′(g) = 0
for all D′ ∈ Bs, D′ 6= D, andg ∈ Ann(Is

C) ∩ Ann(Is(SM)⊥). Let gh := φX
−h(g). By

definition of the remainder term we haverD(x, T, `) = R(x, T, `)(gh). Again by definition
(see (96)) we haveR(x, T, `) = R

(
φX
−`h(x), e`hT

)
and we obtain, using Lemma 5.6:

‖ rD(·, T, `) ‖ 0 = ‖R(·, T, `)(gh) ‖ 0 ≤
C6

Te`h
‖ gh ‖−s ≤

C8

T
e−`h



TIME AVERAGES FOR HOROCYCLE FLOWS 39

with C8 := C6 maxh∈[1,2] ‖ gh ‖ s. �

5.4. Bounds on the components: the cuspidal case.In the cuspidal case, the precision of
our asymptotics of geodesic push-forwards of a horocycle arc depends on the rate of escape
into the cusps of its endpoints. Letd0 : SM → R+ be the distance function from a fixed
pointx0 ∈ SM . For any givenσ ∈ [0, 1] andA ≥ 0 let

VA,σ := {x ∈ SM | d0

(
φX

t (x)
)
≤ A + σ |t| , for all t ≤ 0} .

Vσ :=
⋃
A≥0

VA,σ

The setsVσ do not depend on the choice of the pointx0 ∈ SM and they are measurable
as they can be written as countable unions of closed sets (hence, they areFσ sets). Since
the geodesic flow has unit speedV1 = SM . On the other hand, by the logarithmic law of
geodesics,Vσ has full measure for anyσ > 0 [56].

Lemma 5.12. Let s > 3. For everyD ∈ Bs of order SD > 0, there exists a uniformly
bounded sequence of positive bounded functions{KD(x, T, `)}`∈Z+ , (x, T ) ∈ VA,σ × R+,
such that the following estimates hold. For every horocycle arcγx,T having endpointsx,
φT

U (x) ∈ VA,σ and for all ` ∈ Z+ we have, ifD ∈ Bs \ B+
1/4,

(105) |cD(x, T, `)| ≤


KD(x, T, `) e−SD`h , if SD < 1− σ

2 ,

KD(x, T, `) ` e−SD`h , if SD = 1− σ
2 ,

KD(x, T, `) e−(1−σ
2
)`h , if SD > 1− σ

2 .

If 1/4 ∈ σpp andD ∈ B+
1/4, we have

(106) |cD(x, T, `)| ≤

{
KD(x, T, `) ` e−`h/2 , if σ < 1 ,

KD(x, T, `) `2 e−`h/2 , if σ = 1 .

There exists a positive constantKC := KC(A, σ, s, T ), such that the following estimates
hold. For every horocycle arcγx,T as above and for all̀ ∈ Z+, we have

(107) ‖ C(x, T, `) ‖−s ≤

{
KC ` e−`h/2 , if σ < 1 ,

KC `2 e−`h/2 , if σ = 1 .

In addition, there exists a positive constantK := K(A, σ, T, s) such that, for allγx,T with
endpoints belonging to the setVA,σ and for all ` ∈ Z+,

(108)
∑
D∈Bs

K2
D(x, T, `) + K2

C ≤ K2 .

Proof. For allD 6∈ B1/4, by the first difference equation in formula (98) and by Lemma 5.9
with E := C andΦ the multiplication operator byeλDh ∈ C, we obtain

(109) |cD(x, T, `)| ≤ |cD(x, T, 0)| e−SD`h + ΣD(x, T, `) ,

with

ΣD(x, T, `) :=
`−1∑
j=0

|rD(x, T, j)|e−SDh(`−j−1) .



40 LIVIO FLAMINIO AND GIOVANNI FORNI †

We must therefore bound the terms|cD(x, T, 0)| and eSD`hΣD(x, T, `) by KD(x, T, `),
KD(x, T, `)` or KD(x, T, `)e(SD−1+σ

2
)`h, according to the different values ofSD, for some

uniformly bounded sequence of functions{KD(x, T, `)}`∈Z+ onVA,σ × R+.
It follows from Corollary 5.4, taking into account the fact that the endpoints ofγx,T

belong to the setVA,σ ⊂ B(x0, A), that there exists a continuous functionCs : R+×R+ →
R+ (which can be chosen constant ifM has a positive injectivity radius) such that

(110)
∑
D∈Bs

|cD(x, T, 0)|2 ≤ Cs(A, T )2 ;

thus the term|cD(x, T, 0)| in formula (109) satisfies estimates finer than (105) and (108).
Using again the fact that the endpoints ofγx,T belong to the setVA,σ and the esti-

mate (103), a calculation based on the Cauchy-Schwartz inequality yields the following
bounds on the remainder termsΣD(x, T, `) for D 6∈ B1/4. For allS > 0, A ≥ 0, σ ∈ [0, 1],
there exists a constantC ′ := C ′(A, σ, S, s) > 0 such that

(111)

∑
D:SD≤S

Σ2
D(x, T, `) e2SD`h ≤ C ′

T 2
, if S < 1− σ

2
;

∑
D:SD=S

Σ2
D(x, T, `) e2SD`h ≤ C ′ `2

T 2
, if S = 1− σ

2
;

∑
D:SD≥S

Σ2
D(x, T, `) ≤ C ′

T 2
e−2(1−σ

2
)`h if S > 1− σ

2
.

It follows from (110) and (111) that, for eachD ∈ Bs, the sequence of positive functions
(112)

KD(x, T, `) :=


|cD(x, T, 0)|+ ΣD(x, T, `)eSD`h if SD < 1− σ

2 ,(
|cD(x, T, 0)|+ ΣD(x, T, `)eSD`h

)
`−1 if SD = 1− σ

2 ,(
|cD(x, T, 0)|+ ΣD(x, T, `)eSD`h

)
e−(SD−1+σ

2
)`h , if SD > 1− σ

2 .

is uniformly bounded for allγx,T with endpoints belonging to the setVA,σ. In view of the
bound (109), this proves the estimate (105) for eachD 6∈ B1/4. In addition, since the set
of real numbers{SD | D ∈ Bs} is finite, the inequalities (110) and (111) imply that, for all
γx,T with endpoints belonging to the setVA,σ and for all` ∈ Z+,

(113)
∑

D∈Bs\B1/4

K2
D(x, T, `) ≤ C ′′ ,

for some constantC ′′ := C ′′(A, σ, T, s) > 0, thereby proving the upper bound (108) over
all D-components withD ∈ Bs \ B1/4.

The proofs of the upper bounds for all pairs{D+,D−} ⊂ B1/4 (if 1/4 ∈ σpp) and
for the continuous component are similar. In the first case, by formula (99) we can apply
Lemma 5.9 withE = R2 and

(114) Φ := e−h/2

(
1 −h/2
0 1

)
.
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By formula (101), we obtain

(115)
|cD+(x, T, `)| ≤ |cD+(x, T, 0)− `h

2
cD−(x, T, 0)| e−`h/2 + ΣD+(x, T, `) ,

|cD−(x, T, `)| ≤ |cD−(x, T, 0)| e−`h/2 + ΣD−(x, T, `) ,

with

(116)

ΣD+(x, T, `) :=
`−1∑
j=0

|rD+(x, T, j)− (`− j − 1)h
2

rD−(x, T, j)| e−h(`−j−1)/2 ,

ΣD−(x, T, `) :=
`−1∑
j=0

|rD−(x, T, j)| e−h(`−j−1)/2 .

Since the endpoints of the horocycle arcγx,T belong to the setVA,σ, by the estimates (110)
and (103), the sequence of positive functions

(117)

KD+(x, T, `) :=

{(
|cD+ − `h

2 cD− |(x, T, 0) + ΣD+(x, T, `) e`h/2
)

`−1, if σ < 1 ,(
|cD+ − `h

2 cD− |(x, T, 0) + ΣD+(x, T, `) e`h/2
)

`−2, if σ = 1 .

is uniformly bounded by a constantK+
D := K+

D (A, σ, s, T ) > 0.
If D = D− ∈ B−1/4, it follows from the second lines in (115) and (116) that the sequence

of positive functionsKD(x, T, `), defined as in (112) withSD = 1/2 ≤ 1− σ
2 , is uniformly

bounded by a constantKD := KD(A, σ, s, T ) > 0.
SinceB1/4 is always a finite set, by the extimate (113) there exists a constantC(3) :=

C(3)(A, s, T ) > 0 such that, for allγx,T with endpoints belonging to the setVA,σ and for all
` ∈ Z+,

(118)
∑
D∈Bs

K2
D(x, T, `) ≤ C(3) .

For the continuous component, we apply Lemma 5.9, withE = Is
C andΦ = φX

h , to the
second difference equation in formula (98). We obtain

(119) ‖ C(x, T, `) ‖−s ≤ ‖Φ` ‖−s ‖ C(x, T, 0) ‖−s + ΣC(x, T, `)

with

ΣC(x, T, `) :=
`−1∑
j=0

‖Φ`−j−1RC(x, T, j) ‖−s .

By Lemma 5.1 the norm of the operatorφX
t on Is

C is bounded byC1(1 + |t|)e−t/2. Tak-
ing into account the fact that the endpoints ofγx,T belong to the setVA,σ we find: (1) by
Lemmata 5.2 and 5.3 we obtain that there exists a constantC(4) := C(4)(A, s, T ) such that
‖ C(x, T, 0) ‖−s ≤ C(4); (2) using the estimate (103) for‖RC(x, T, j) ‖−s we find that the
sequence of positive functions defined by:

(120) KC(x, T, `) :=


(
‖ C(x, T, 0) ‖−s + ΣC(x, T, `) e`h/2

)
`−1 , if σ < 1 ,(

‖ C(x, T, 0) ‖−s + ΣC(x, T, `) e`h/2
)
`−2 , if σ = 1 .
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is uniformly bounded by a constantKC := KC(A, σ, s, T ) > 0. �

Remark 1. In the caseσ = 1, the setVσ = SM and the results of Lemma 5.12 hold for all
(x, T ) ∈ SM ×R+. In addition, for every bounded subsetF ⊂ SM , there exists a constant
A := AF > 0 such thatF ⊂ VA,1. In fact, one can takeAF := max{dist(x, x0) |x ∈ F},
for a fixedx0 ∈ SM .

For theD-components we also have the followingL2 upper and lower bounds:

Lemma 5.13. Let s > 3. For eachD ∈ Bs, there exists a constantK ′
D = K ′(D, s), such

that for all ` ∈ Z+:

(121) ‖ cD(·, T, `) ‖ 0 ≤


K ′
D e−SD`h , if D 6∈ B+

1/4 & SD < 1 ;

K ′
D ` e−SD`h , if D ∈ B+

1/4 or SD = 1 ;

K ′
D e−`h , if D ∈ Bs & SD > 1 .

If SD < 1, there existsK ′′
D := K ′′(D, s) > 0, TD := T (D, s) > 0 and`D := `(D, s) ∈

Z+ (`D = 1 if D 6∈ B+
1/4) such that, for allT ≥ TD and all ` ≥ `D:

(122) ‖ cD(·, T, `) ‖ 0 ≥

{
K ′′
D e−SD`h if D 6∈ B+

1/4 ;

K ′′
D ` e−SD`h if D ∈ B+

1/4 .

Proof. The proof ofL2 upper bounds is similar to that of the pointwise upper bounds in
Lemma 5.12. In caseD 6∈ B1/4, it is based on the difference equation forD-components in
formula (98), on the upper bounds (89) of Lemma 5.8, on Lemma 5.11 and on Lemma 5.9
for the normed spaceE := L2(SM) and the operatorΦ ∈ L(E) of multiplication by
eλDh ∈ C. In caseD ∈ B1/4, it is based on the vector-valued difference equation (99) and
on Lemma 5.9 for the normed spaceE := L2(SM)×L2(SM) and the operatorΦ ∈ L(E)
given by the natural action of the Jordan matrix (114) onE.

The proof of the lower bound (122) is as follows. In caseD 6∈ B1/4, by the difference
equation forD-components in formula (98) and by Lemma 5.9, we have:

‖ cD(·, T, `) ‖ 0 ≥ ‖ cD(·, T, 0) ‖ 0 e−SD`h − ΣD(T, `)

with

ΣD(T, `) :=
`−1∑
j=0

‖ rD(·, T, j) ‖ 0 e−SD(`−j−1)h .

If {D+,D−} ⊂ B1/4, by the vector-valued difference equation (99) and by Lemma 5.9,
we have

(123)
‖ cD+(·, T, `) ‖ 0 ≥ ‖ `h

2
cD−(·, T, 0)− cD+(·, T, 0) ‖ 0 e−`h/2 − ΣD+(T, `) ,

‖ cD−(·, T, `) ‖ 0 ≥ ‖ cD−(·, T, 0) ‖ 0 e−`h/2 − ΣD−(T, `) ,
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with

(124)

ΣD+(T, `) :=
`−1∑
j=0

‖ rD+(·, T, j)− (`− j − 1)h
2

rD−(·, T, j) ‖ 0 e−h(`−j−1)/2 ,

ΣD−(T, `) :=
`−1∑
j=0

‖ rD−(·, T, j) ‖ 0 e−h(`−j−1)/2 .

From the upper bound (104) for‖ rD(·, T, j) ‖ 0 of Lemma 5.11, we obtain that, for each
D ∈ Bs with SD < 1, there exists a constantC := C(D, s) > 0 such that, for all̀ ∈ Z+,

(125) ΣD(T, `) ≤

{
C
T e−SD`h if D 6∈ B+

1/4 ;
C
T

`h
2 e−`h/2 if D ∈ B+

1/4 .

The conditionSD < 1 implies also, by Lemma 5.8, that there existsTD := T (D, s) > 1
such that, for allT ≥ TD and all` ∈ Z+,

‖ cD(·, T, 0) ‖ 0 > 2
C

T
.

TheL2 lower bounds hence follow from the lower bounds (123) and forD+ ∈ B+
1/4 from

theL2 upper bound for theD+-component proved in Lemma 5.8. �

For allt ≥ 0, the push-forward probability measureφX
t (γx,T ) is the uniformly distributed

probability measure on a stable horocycle arc of lengthTt := et T . The following quanti-
tative equidistribution result holds. LetIs

+(SM) ⊂ Is(SM) be the subspace of invariant
distributions orthogonal to the volume form.

Theorem 5.14. Let s > 3. Then there exists a constantC9 := C9(A, σ, s, T ) such that
for any horocycle arcγx,T with endpoints belonging to the setVA,σ, for anyt ≥ 1 and for
all f ∈ W s(SM), we have

(126) φX
t (γx,T )(f) =

∫
SM

f dvol +
∑

D∈B
1−σ

2
+

cs
D(x, T, t)D(f) T−SD

t +

+ Cs(x, T, t)(f)T
− 1

2
t logασ Tt + Rs(x, T, t)(f) T

σ
2
−1

t logβσ Tt .

with cs
D(x, T, t) ∈ C, Cs(x, T, t) ∈ Is

C andRs(x, T, t) ∈ W−s(SM) satisfying the follow-
ing upper bounds: ∑

D∈B
1−σ

2
+

|cs
D(x, T, t)|2 ≤ C9 ,

‖ Cs(x, T, t) ‖−s ≤ C9 ,

‖Rs(x, T, t) ‖−s ≤ C9 .

In the above asymptotics, the exponentασ is 1 if σ < 1 and equals2 if σ = 1; the expo-
nentβσ is 0 if everyD ∈ Bs has Sobolev orderSD 6= 1− σ

2 and equals1 otherwise.
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In addition, for every invariant distributionD ∈ B1−σ
2

+ , there exists a constantCD :=
C(D, s) > 0 such that, ifT > 0 is sufficiently large, then for allt ≥ 0,

C−1
D ≤ ‖ cD(·, T, t) ‖ 0 ≤ CD .

Proof. Let t ≥ 1. There existh ∈ [1, 2] and ` ∈ Z+ such thatt = `h. The distribu-
tion φX

t (γx,T ) ∈ W−s(SM) can be split as in (95), hence the expansion (126) follows.
The pointwise upper bounds on the coefficients can be derived from Lemma 5.12 for the
D-components and theC-component and, by its definition in (96), from Lemma 5.5 for the
remainder termR(x, T, `) of the splitting (95). We remark that the term with coefficient
Rs(x, T, t)(f) in (126) includes the contributions of allD-components withD 6∈ B1−σ

2 as
well as the contribution of the remainder termR(x, T, `) of the splitting (95). Finally, the
L2 bounds for theD-components follow from Lemma 5.13. In fact, all such estimates are
uniform with respect toh ∈ [1, 2]. �

Theorem 1.7 follows from Theorem 5.14 (forσ = 1) and from Remark 1.
In the particular case thatγx,T is supported on a closed cuspidal horocycle, our methods

yield a simple proof of a weaker version of a result of P. Sarnak [51]. Sarnak’s proof is based
on Eisenstein series (Rankin-Selberg method).

Proposition 5.15. Let s > 2 and letγx,T be a closed cuspidal horocycle. Then there exist

coefficientscs
D ∈ C for D ∈ B1/2

+ and a distribution-valued functionCs(t) ∈ IC , uniformly
bounded with respect tot ≥ 0, such that the following asymptotics holds. For allt ≥ 0,

(127) φX
t (γx,T )(f) =

∫
SM

f dvol +
∑

D∈B1/2
+

cs
D D(f) T−SD

t +

+ Cs(t)(f)T
− 1

2
t log Tt .

Proof. A uniformly distributed probability measure supported on a closed cuspidal horo-
cycle is aU -invariant distribution. In fact by the Sobolev embedding theorem, ifs > 2,
then γx,T ∈ Is(SM). Hence, in the splitting ofγx,T according to (80), the remainder
termR(x, T ) = 0. The result then follows immediately from the description of the spec-
tral representation of the one-parameter group{φX

t } on the spaceIs(SM) given by Theo-
rem 1.4 and Lemma 5.1. �

5.5. Bounds on the components: the compact case.In the compact case, the spectrum
of the Laplacian is purely discrete and therefore the splitting (80) of a horocycle arcγx,T

becomes:

γx,T =
∑
D∈Bs

cD(x, T )D +R(x, T ) .

Lemma 5.12 can be strengthened as follows:

Lemma 5.16. Let s > 3 and letT0 ≥ 1. There exists a sequence of bounded positive
functions{KD(x, T )}D∈Bs , (x, T ) ∈ SM × R+, such that, for any horocycle arcγx,T

with T > T0 we have
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(128) |cD(x, T )| ≤


KD(x, T ) T−SD , if D 6∈ B+

1/4 & SD < 1 ;

KD(x, T ) T−SD log T if D ∈ B+
1/4 (⇒ SD = 1/2) ;

KD(x, T ) T−1 log T , if D ∈ Bs & SD = 1 ;
KD(x, T ) T−1 , if D ∈ Bs & SD ≥ 2 .

In addition, there existsK := K(s, T0) > 0 such that, for all(x, T ) ∈ SM × R+,
T ≥ T0,

(129)
∑
D∈Bs

K2
D(x, T ) ≤ K2 .

On the other hand, for eachD ∈ B1 ⊂ Bs, there existK ′
D := K ′(D, s) > 0 andT ′D :=

T ′(D, s) > 0 such that, for allT ≥ T ′D,

(130) ‖ cD(·, T ) ‖ 0 ≥

{
K ′
D T−SD , if D 6∈ B+

1/4 ;

K ′
D T−SD log T , if D ∈ B+

1/4 .

Proof. Let T0 > 0. For allT ≥ eT0, there existh ∈ [1, 2] and` ∈ Z+ such thatT = e`hT0.
By the first identity in (96), it follows that

(131)
cD(x, T ) = cD

(
φX

`h(x), T0, `
)

,

‖ cD(·, T ) ‖ 0 = ‖ cD (·, T0, `) ‖ 0 .

SinceM is compact, the unit tangent bundleSM is compact and has finite diameter. Hence,
by Lemma 5.5 and by the argument of Lemma 5.12, there is a constantK > 0 and, for each
D ∈ Bs, there exists a positive functionKD(x, T ), (x, T ) ∈ SM × R+, such that the
estimates in (105), (106) and (108) hold withσ = 0. The desired uniform upper bounds
then follow. TheL2 lower bounds follow immediately from Lemma 5.13. �

Theorem 1.5 follows immediately from lemma 5.5 and lemma 5.16.

Lemma 5.16 implies the following pointwise lower bound on the deviation of ergodic
averages.

Corollary 5.17. If D ∈ B1 ⊂ Bs, there exist constantsK ′′
D := K ′′(D, s) > 0, αD :=

α(D, s) > 0 andT ′′D := T ′′(D, s) > 0 such that the following holds. For allT ≥ T ′′D there
exists a setAT ⊂ SM of measure at leastαD > 0 such that, for allx ∈ AT ,

(132) |cD(x, T )| ≥

{
K ′′
D T−SD , if D 6∈ B+

1/4 ;

K ′′
D T−SD log T , if D ∈ B+

1/4 .

Hence, the lower bound (132) holds for almost allx ∈ SM and for infinitely manyT > 0.

Proof. LetD ∈ B1. SinceSD < 1, by Lemma 5.16, there exist constantsKD ≥ K ′
D > 0

such that, for allx ∈ SM and allT > T ′D, we have

|cD(x, T )| ≤ KD
K ′
D
‖ cD(·, T ) ‖ 0 .

Fix any constantK ∈ ]0, 1[ and let

AT := {x ∈ SM | |cD(x, T )| > K ‖ cD(·, T ) ‖ 0} .
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Then, forT > T ′D, we have

(133)

(
K2 +

(
KD
K ′
D

)2

|AT |

)
‖ cD(·, T ) ‖ 2

0 ≥
∫

SM\AT

|cD(x, T )|2 dvol +

+
∫

AT

|cD(x, T )|2 dvol = ‖ cD(·, T ) ‖ 2
0 .

It follows that the measure of the setAT is uniformly bounded below for allT > T ′D by a
positive constant. In fact, we have

|AT | ≥ (1−K2)
(

K ′
D

KD

)2

.

The desired pointwise lower bounds hold onAT by its definition and by theL2 lower bounds
in Lemma 5.16.

By a standard Borel-Cantelli argument, the setA of x ∈ SM such thatx ∈ AT for
infinitely manyT ≥ T0, has positive measure. By the ergodicity of the horocycle flow, the
setA has full measure.

�

We conclude by proving that the Central Limit Theorem does not hold for horocycle flows
on compact hyperbolic surfaces.

Proof of Corollary1.6. Let D ∈ B1 ⊂ Bs. Let SD ∈ ]0, 1[ be its Sobolev order. Letf ∈
W s(SM), s > 3, be any zero average function such thatD(f) 6= 0 andf belongs to the
kernel of allU -invariant distributions of the basisBs of Sobolev orderS ≤ SD.

By Theorem 1.5, there existsK > 0 such that, forT > 0 sufficiently large, the functions

FT :=
∫ T

0
f(φU

t (·)) dt

are uniformly bounded above byK ‖FT ‖ 0. It follows that the probability distributionρT of
FT / ‖FT ‖ 0 is supported within the interval[−K, K]. By Theorem 1.3 and Corollary 5.17,
there exists an interval around zero whose complement hasρT -measure larger thanαD > 0,
for all sufficiently largeT > 0. �

6. APPENDIX

Proof of Lemma2.1. The case of the principal series (ν ∈ iR) is immediate.
In the case of the complementary series, ifν ∈ ]0, 1] we write, fork ≥ 1,

Π−1
ν,k = Π−ν,k =

(
1 + ν

1− ν

) k∏
i=2

2i− 1 + ν

2i− 1− ν

(empty products are set equal to1). We have

log
k∏

i=2

2i− 1 + ν

2i− 1− ν
=

k∑
i=2

log
(

1 +
2ν

2i− 1− ν

)
.
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We then estimate the logarithms by the inequalities
x

1 + x
≤ log(1 + x) ≤ x, for x ∈ R+.

Finally we estimate from above and below the resulting series by the integral inequality.
In the case of the discrete series (ν = 2n− 1), we remark that, for allk ≥ n,

Πν,k =
k∏

i=n+1

2i− 1− ν

2i− 1 + ν
=

k∏
i=n+1

i− n

i + n− 1
=

(k − n)!(2n− 1)!
(k + n− 1)!

.

By the Stirling’s formula,

(k − n + 1)!
(k + n− 1)!

≈ e−2 (k − n + 1)k−n+1

(k + n− 1)k+n−1

(
k − n + 1
k + n− 1

) 1
2

.

where≈ means that, for some constantC > 1 independent ofn andk, the ratio of the left
side to the right side is bounded above byC and below byC−1 for all n ≥ 1 andk ≥ n.
Hence,

(134) Πν,k ≈ e−2ν!
(

k − n + 1
k + n− 1

)k−n+1

(k + n− 1)−ν+ 1
2 (k − n + 1)−

1
2 =

= e−2ν!
(

k − n + 1
k + n− 1

)k+n−1

(k + n− 1)−
1
2 (k − n + 1)−ν+ 1

2 .

Sincek ≥ ` and the function(1 + x)
1
x is decreasing on the intervalx > −1,

(135)

(
` + n− 1
`− n + 1

)`−n+1

=
[
(1 +

ν − 1
`− n + 1

)
`−n+1

ν−1

]ν−1

≤

≤
[
(1 +

ν − 1
k − n + 1

)
k−n+1

ν−1

]ν−1

=
(

k + n− 1
k − n + 1

)k−n+1

and

(136)

(
` + n− 1
`− n + 1

)`+n−1

=
[
(1− ν − 1

` + n− 1
)−

`+n−1
ν−1

]ν−1

≥

≥
[
(1− ν − 1

k + n− 1
)−

k+n−1
ν−1

]ν−1

=
(

k + n− 1
k − n + 1

)k+n−1

.

Sincek ≥ `, the function
k − n + x

`− n + x

is non-increasing onR+. Hence

k + n− 1
` + n− 1

=
k − n + ν

`− n + ν
≤ k − n + 1

`− n + 1
.

It follows that

Πν,k

Πν,`
≤ C

(
k − n + ν

`− n + ν

)−ν+ 1
2
(

k − n + 1
`− n + 1

)− 1
2

≤ C

(
k − n + ν

`− n + ν

)−ν
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and

Πν,k

Πν,`
≥ C−1

(
k − n + 1
`− n + 1

)−ν+ 1
2
(

k − n + ν

`− n + ν

)− 1
2

≥ C−1

(
k − n + 1
`− n + 1

)−ν

.

�

Proof of Lemma4.2. Since|Πν,`| ≥ |Πν,k| for all k ≥ ` ≥ 0, if |ν| ≥ 1/2 the estimate is
immediate by the triangular inequality. Ifν ∈ iR or ν ∈]− 1/2, 1/2[, we have

d

dν
log
(

Πν,`

Πν,k

)
=

d

dν
log

k∏
i=`+1

2i− 1 + ν

2i− 1− ν
=

k∑
i=`+1

2(2i− 1)
(2i− 1)2 − ν2

> 0.

By the integral inequality,

| d

dν

(
Πν,`

Πν,k

)
| = |

Πν,`

Πν,k
|| d

dν
log
(

Πν,`

Πν,k

)
| ≤ C|

Πν,`

Πν,k
| log

(
1 + k

1 + `

)
.

Hence, if|ν| < 1/2 the estimate follows from the intermediate value theorem. �
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