INVARIANT DISTRIBUTIONS AND TIME AVERAGES
FOR HOROCYCLE FLOWS

LIVIO FLAMINIO AND GIOVANNI FORNI T

ABSTRACT. There are infinitely many obstructions to existence of smooth solutions of the
cohomological equatiobfu = f, whereU is the vector field generating the horocycle flow

on the unit tangent bundl&M of a Riemanni! surface of finite area and is a given
function onSM. We study the Sobolev regularity of these obstructions, construct smooth
solutions of the cohomological equation and derive asymptotics for the ergodic averages of
horocycle flows.

1. INTRODUCTION

The classical horocycle flow is the flow on (compact) homogeneous spaces of the form
1 ¢

0 1)/

The ergodic properties of this flow have been an active subject of study for a long time
since it has the intriguing characteristic of presenting at the same time some of properties
of “orderly” ergodic systems, (zero entropy [21], minimality [23, 19, 57], unique ergodicity
[14, 35, 36] etc.), and some of the properties which are more frequently associated with
“chaotic” systems, (e.g. multiple strong mixing [44, 38, 37]). The works of M. Ratner in
the 80-90’s [48, 47, 50] have also put in evidence the tight relation of the ergodic properties
of the horocycle flow with the geometry of the underlying spRE&SL(2,R).

Representation theory is a natural tool for the study of flows on homogeneous spaces
([16, 17, 41, 2], etc.); in particular, M. Ratner [49] and C. Moore [42] have obtained pre-
cise estimates for the mixing rate of the geodesic and horocycle flow and, more recently,
M. Burger [5] has proved uniform upper bounds for the deviation of ergodic averages of
sufficiently regular functions along the orbits of the horocycle flow on open complete sur-
faces with positive injectivity radius and on compact surfaces. Invariant distributions for
geodesic flows on manifolds of constant curvatures were studied in [11].

In this article we establish precise asymptotics for the ergodic averages of sufficiently
regular functions along the orbits of the horocycle flow on compact surfaces, improving
on Burger’s results. For cuspidal horocycles on non-compact surfaces of finite area such
asymptotics were obtained by P. Sarnak in [51], inspired by D. Zagier [58], by a method
based on Eisenstein series. Our approach does not use automorphic forms and it is based on
the study of the cohomological equation and of invariant distributions for the horocycle flow,

M"\PSL(2,R) given by right multiplication by the one-parameter subgrgu
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via representation theory. Such a method yields sharp results in the compact case while in
the non-compact (finite area) case we obtain a generalisation of Sarnak’s result to arbitrary
horocycle arcs. G. Margulis and D. Kleinbock [31] proved, for finite volume quotients of
general semisimple Lie groups, exponential decay of the deviation from equidistribution
for smooth measures supported on a compact subset of any horosphere under the action of
diagonal subgroups. Our results yield precise asymptotics in the particular case of quotients
of the semisimple group (2, R).

We recall that for a flow{ ¢'} we say thati is acoboundanyif there exists a solutiod’
(continuous L', L?, depending on the context) of teehomological equation

d
(1) —Fo¢!l =aG.
dt =0
The cohomological equation arises in several problems in dynamics e.g. in the study of
the existence of invariant measures, in conjugacy problems, in the study of repararametrisa-

tions of flows etc. It is well understood in two opposite dynamical setups:

e linear toral flows
e Anosov flows

In the first case, provided that a Diophantine condition on the rotation number is satisfied
(and generically this is the case), the only obstruction to the solution of the cohomological
equation is given by the unique invariant measure: given a sufficiently reGuédmrmean
zero there exist a solutiof' of the equation (1) with a loss of regularity controlled by the
Diophantine condition. Hence, for any sufficiently regular funct®nergodic averages
converge to the mean with an error bounded by CgfistThe Denjoy-Koksma inequality
[32] yields estimates for functions which are only of bounded variation.

In the Anosov case the celebrated Livshitz Theorem [33, 6, 20, 7] states that a Holder
function G is a coboundary ifiG integrates to zero along every periodic orbit, or, equiv-
alently, if it has mean zero with respect to all invariant measures. Thus, even in this case
the only obstructions to the solution of the cohomological equation are represented by mea-
sures. In contrast, the strong ergodic properties of these flows are reflected in the fact that
ergodic averages converge to the mean as stochastically independent processes do, i.e. the
central limit Theorem holds [46].

The horocycle flow, differently from the cases above, has invariant distributions which are
not signed measures [29]. In the spirit of [12, 13] we find that these distributions control the
asymptotics of ergodic averages. Furthermore the exponents of the asymptotic expansion
coincide with the Sobolev order of the invariant distributions.

1.1. Statement of the results. The groupPSL(2,R) acts (on the left) by isometries and
holomorphically on Poincaré upper half plane

H=({z € C|S3z>0},|dz?/(32)?).

The quotient spac&/ = I'\ H, by a discrete subgroup @fSL(2,R) acting without fixed
points, is a Riemannian manifold of constant curvatafeand also a complex curve (a
Riemann surface).

The isometric action oPSL(2,R) on H induces a free transitive action on the unit
tangent bundleSH of H and by fixing(i,4) as an origin inSH we identify PSL(2,R)
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to SH. By means of this identification elements of the Lie algedifa, R) of PSL(2,R)
are identified with the generators of some flowsSdi which project to flows on the quotient
spaceSM =T'\SH ~ I'\PSL(2,R). Thesl(2,R) matrices

o) 0 )

define respectively the generators of the (stable) horocycle g} and of the geodesic
flow {¢X} on the unit tangent bundI&\/ of an hyperbolic surfac/ := I'\ H.

For all hyperbolic surfaces of finite area, the spectwm ;) of the Laplace-Beltrami
operatorA ,; on M has0 as a simple eigenvalue and there is a “spectral gap”, i.e. the bottom
of the non-zero spectrum, := inf o(Ays) \ {0} is strictly positive. IfM is compact, by
standard elliptic theory, its spectrum is pure point and discrete with eigenvalues of finite
multiplicity and it satisfies the Weyl asymptotics. Examples of ‘pinched’ compact surfaces
with arbitrarily small spectral gap, > 0 were first constructed by B.Randol [45] (see [54],

[9] for more recent sharper results).

If M is not compact, its spectrum can be described as follows (see for instance [53] and

references therein, in particular D.Hejal [24]):

e Lebesgue spectrum on the interyal4, oo[ with multiplicity equal to the number
of cusps ofM;
¢ possibly, finitely many eigenvalues of finite multiplicity in the inter{@|1/4(;
¢ possibly, embedded eigenvalues of finite multiplicity in the intefvat, oco|.
Examples of non-compact ‘pinched’ surfaces with an arbitrarily small spectral gap, hence
with non-empty (pure point) spectrum in the open intet9al /4], were already constructed
by A. Selberg [55] (see [9] for a more recent approach). In the non-compact case, the Weyl
asymptotics for the pure point spectrum failsnjecturallyfor a generic subgroup in any
given Teichmiuiller space with the exception of the Teichmuller space of the once-punctured
torus [8], [52].
The picture is quite different for a relevant class of arithmetic subgroups. FSralZ™,
letI'(N) := {g € PSL(2,Z) | g = id mod N}. The subgroup$ < PSL(2,R) such
that
(1) >T >T(N), NezZt,

are calleccongruence subgroupgor all such subgroups, Selberg’s spectral gap conjecture
[55] claims that there are no eigenvalues(nl /4], henceu, = 1/4. Selberg’s conjecture
is known to be true for all congruence subgrodips- T'(N), N < 17 [27], [28]. In the
case of a general congruence subgroup, the classical Selberg’s lower fapund3/16
[55] was significantly improved by W. Luo, Z. Rudnick and P. Sarnak [34] who proved
thatug > 171/784 ~ 0.218.... Recently, H. Kim and P. Sarnak [30] have announced a
further step in the direction of the Selberg’s conjecture:

975
> — =~ 0.238...
T

For all congruence subgroups, the Weyl asymptotics holds for the pure point spectrum [26],
[10].

As we shall see the (pure point) spectrum within the intelfzal /4] is especially relevant
to the asymptotics of ergodic averages of horocycles, both in the compact and the non-
compact case. We shall denotedyy, the set of all eigenvalues of the Laplace operataf
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and byC the set of cusps af/. If M is compact, the Laplaciafy;; has pure point spectrum
supported on the set,, andC = (.

Let L2(SM) be the space of all complex-valued square-integrable functions with respect
to the PSL(2, R)-invariant volume onSM. Let W*(SM), s € R, be theSobolev spaces
of functionsf € L?(SM) with A%/2f e L?(SM), whereA is anelliptic second order
element of the enveloping algebrasf2, R) (a Laplacian). The dual spa¢d*(SM))’ of
linear bounded functionals di*(SM) is isomorphic to the spadd —*(SM ), according
to the standard theory of Sobolev spaces [1].

Let&’(SM) be the dual space of the spac® (S M) of infinitely differentiable functions
on SM. The space

I(SM) :={D € &'(SM) | LyD =0}

of U-invariant distributions is completely determined by the spectrum of the Lapldcjan
and by the genus a¥/, as follows.

Theorem 1.1. The spacé& (S M) has infinite countable dimension. There is a decomposi-
tion

(2 I(SM)= P 7,0 P Z. o PL

HETpp neZt ceC
where

(1) for u = 0, the spac€ is spanned by th&SL(2, R)-invariant volume;

(2) for 0 < p < 1/4, there is a splittingZ,, = I:[ ®Z,, whereIfLE C W5(SM),
iff 5 > 1Evi=dn V21‘4“, and each subspace has dimension equal to the multiplicjty<of
Tpp;

(3) for p > 1/4, the spacef,, ¢ W~*(SM), iff s > 1/2, and it has dimension equal
to twice the multiplicity of: € oy,

(4) for n € Z*, the spaceZ,, ¢ W—5(SM), iff s > n and it has dimension equal
to twice the rank of the space of holomorphic sections ofriiib power of the
canonical line bundle ovek/;

(5) for ¢ € C, the spaceZ, ¢ W—5(SM), iff s > 1/2, and it has infinite countable
dimension.

The Sobolev regularity of/-invariant distributions can be summarised as follows. The
Sobolev ordepf a distributionD € £'(SM), is the extended real number

Sp:=inf{s € R" | De W *(SM)} .
By Theorem 1.1, we have:
RIS i DeTf, forp>0;

ifDeZ,, fornelZt;
fDeZ., forcecC;

3 Sp =

o= 3

Let 49 > 0 be the bottom of the non-zero spectrumof;. Lety, € [0, 1[ be defined as

5 {\/1—4M07 if o < §;
0=

0, if 120} > %

(4)
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A complete set of obstructions to the existence of smooth solutions ebti@mological
equationU f = g, for functionsg € W*(SM), is given by the following space of invariant
distributions:

I°(SM) :={De W *(SM) | LyD=0.},
The spac&€*(SM) is completely determined by Theorem 1.1.

Theorem 1.2. For all s > £ and all¢ € R, there exists a constant := C(1p, s,t) > 0
such that, for ally € W*(SM),

o ift < —HT”O andg has zero average ofiM, or
e ift <s—1andD(g) =0,forall D € Z5(SM),

then the cohomological equatidhf = g has a solutionf € W*(SM) which satisfies the
Sobolev estimate

[flle<Clgls

A solutionf € Wt(SM) of the cohomological equatioli f = g is unique up to additive
constants if and only if > —15%.

By definition, invariant distributions of ordef > 0 are obstructions to the existence of
solutions of the cohomological equation of (Sobolev) regulefity 1. However, it turns out
that they obstruct also the existence of solutions of lower regularity. In fact, Theorem 1.2 is
sharp, in the following sense:

Theorem 1.3.Letg € W*(SM), s > 1 and letD € Z(SM) be anU-invariant
distribution of orderSp < s. If the equationV f = g has a solutionf € W*(SM) for

anyt > Sp — 1, thenD(g) = 0.
The following remarkable result holds:

Theorem 1.4. The action of the geodesic one-parameter gréug } on the distributional
spaceZ(SM) has a spectral representation,lif4 ¢ o, and it has a generalized spectral
representation with a finite number »f 2 Jordan blocks, it /4 € ,,. The splitting ) of
Z(SM) is {¢X }-invariant, hence the subspaces

(5) Iy =P L, Li=Tpo P L. Ic:=P.

HETpp nezZt ceC

are {¢X }-invariant. The spectrum df;X } onZ, is discrete, while the spectrum @p is
Lebesgue with finite multiplicity equal to the number of cusps.

The discrete spectrum df4;X} on Z; can be described as follows. For = 0, the
subspacd is generated by th&SL(2, R)-invariant, hence ¢;* }-invariant, volume form.
Forall i € o, \ {0}, there is a splitting,, = I:[ @ Z,, into subspaces of equal dimension,
which coincides fol0 < p < 1/4 with the splitting induced by the Sobolev order (see
Theoreml.1, (2)), such that the following holds. For all # 1/4, the subspaceﬁ;—“ are
eigenspaces fof¢;* }, in fact

1+ yT—4a
(6) o5 | TE = exp(%t)f



6 LIVIO FLAMINIO AND GIOVANNI FORNI T

If 1/4 € oy, the subspacé, 4, # {0} and {7} | Z1/4 has a Jordan normal form. In
fact,Z, ,, is generated by pair§D*, D~} such thatD* € 7, and

1/4
.
™ o (g_) =

(0.

For all n € Z*, the subspacg, is an eigenspace fofo;X }. In fact,

N[

(8) ¢ | Tn = e ™I

The Lebesgue spectrum of the operatgron Z¢ is supported on the circle of radius*/2
inC, forall t € R.

It follows from Theorem 1.4 that the action of the geodesic fiaiy* } on the infinite
dimensional spacé&(SM) has a well-defined Lyapunov spectrum and an Oseledec’s de-
composition. It turns out by comparing the formulae in Theorem 1.4 with the Sobolev
orders (3) of invariant distributions, that the Lyapunov exponent of any generalized eigen-
vectorD € 7, of the geodesic flow and of arfy € Z; is equal to the negative of its Sobolev
order.

Theorems 1.1-1.4 are derived from abstract results on unitary representations of the Lie
group PSL(2,R) (Theorems 3.2, 4.1 and 4.6). Theorem 3.2 states that the invariant dis-
tributions for the “horocycle vector field” in each irreducible representation of parameter
u # 1/4 are generated by eigendistributions of the “geodesic vector field”. Such eigendis-
tributions correspond to theonical distributiondor the Lie groupSL(2, R) in the sense of
S. Helgason [25], 82. In the exceptional case of irreducible representations with parameter
u = 1/4, the subspace of conical distributions is one-dimensional, while the subspace of
horocycle-invariant distributions has dimensibriTheorem 1.1 is based on a direct analysis
of the Sobolev regularity of such (conical) distributions and Theorem 1.4 on the explicit
computation of the action of the geodesic flow on invariant distributions.

The abstract Theorem 4.1, on existence of smooth solutions of the cohomological equa-
tion, holds under the only condition that the Casimir operator associated with the unitary
representation has a ‘spectral gap’. Theorem 1.2 on solutions of the cohomological equa-
tion on hyperbolic surfaces of finite area follows immediately, since the gap property holds.
Theorem 4.6 is a converse result which proves that, in each irreducible component, invari-
ant distributions are obstructions to the existence of solutions of smoothness lower than
expected. This result shows that, in a sense, our result on existence of solutions of the
cohomological equation is optimal as far as the loss of Sobolev regularity is concerned.
Theorem 1.3, the corresponding statement for hyperbolic surfaces, plays a non-trivial role
in obtainingL? lower bounds for ergodic averages.

Let B C Z, be a basis of (generalized) eigenvectors{for } on Z,; with the following
properties. For all € o, \ {1/4} and alln € Z*, the sets3, := BNZ,, B, := BN1I,
are basis of eigenvectors fdu;X} |Z, and {¢X} |Z,. If 1/4 € oy, the setB], =

1/4
BN If“/4 is a basis of eigenvectors fde;* } |Il+/4, the SetB;/4 = BN I;/4 is a basis
of generalized eigenvectors (of orddrfor {¢;* } |I;/4 andB, , = 8;4 U B;/4 is a union

of pairs{D*, D~} such thatD* ¢ B

1/4 and formula (7) holds.



TIME AVERAGES FOR HOROCYCLE FLOWS 7

Let 71 (SM) be the complement of the line generated by the invariant volume form
in Z'(SM) ¢ W—Y(SM). The subseB! := BNZI!(SM) is a basis of (generalized)
eigenvectors fof¢; } | 71 (SM). The basis3, B. have the following decompositions:

9) B=|J)B.,ulJB.,, Bi= |J B,

KETpp nezt neopp\{0}

In the compactcase, Theorems 1.2, 1.3 and 1.4 imply the following quantitative unique
ergodicity result.

Theorem 1.5. The horocycle flow¢!} on the unit tangent bundl§) of a compact hy-
perbolic surfacell has a deviation spectrum in the following sense. For any 3 and for
all (z,T) € SM x R, there exist a sequence of real-valued functi({)af%(gc,T)}Delgl+
and distributional function®; (z,T) € 7, R*(x,T) € W~*(SM) such that, for allf €
W#e(SM)andallT > 0,

(10) 1/Tf(<z>U(:1;))dt—/ favol + 3 ch(@ T)D()T 5 +
T Jo ! - Jsm D

DeBL\BY ),

Di(z, T)(f)log" T + R*(z, T)(/f)
- :

+ ) (@ T)D(f) TP log™ T +
DeBy),

The functionss,, D; andR? satisfy the following uniform estimates. There exists) > 0
such that, for all(z,T) € SM x RT,

S lepla TP < C(s);
DeBl
[Di(z,T) || —s < C(s);
IR (@, T) || -s < C(s).

For every invariant distributiorD € B, there exist€>(D, s) > 0 such that, for sufficiently
large T > 0,

Iep(T) o > C(D,s).

Theorem 1.5 implies that the Central Limit Theorem does not hold for the horocycle flow
on compact hyperbolic surfaces.

Corollary 1.6. There exist zero average functiofiss C>°(SM) such that any weak limit
(asT — o0) of the probability distributions of the functions

Jo F@(
|| fo ¢t dt H 0

has compact suppott {0}.

In thenon-compactase, we obtain by the same methods the following generalisation of
a result proved by P. Sarnak [51] for closed cuspidal horocycle arcs.
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Let Ii/Q(SM) be the orthogonal complement of the line generated by the invariant vo-
lume in the spac&!/2(SM) c W~1/2(SM). The subseB)/” := BNZ\/*(SM) is a basis
of eigenvectors fof ¢;* } |Ii/2(SM). Letoy,,(0,1/4) := oppN]0,1/4[. By Theorem 1.1,

(11) = |J B.
p€app(0,1/4)

It follows thathr/2 has finite cardinality equal to the total multiplicity of the eigenvalues
of the LaplacianA ; within the intervall0, 1/4]. In particular, it is empty for hyperbolic
surfaces satisfying the Selberg’s conjecture.

Let v, v be the uniformly distributed probability measure along the unstable horocycle
arc in SM of initial point z € SM and lengthT > 0. For allt € R*, let ¢ (y..r)
be the push-forward of,  under the action of the geodesic flow. The measijfe%j)
is equal to the uniformly distributed probability measure along the horocycle arc of initial
point ¢;X (x) and lengthT; = ¢'T. The following result is derived from Theorem 5.14,
which contains more precise asymptotics for the push-forward of a horocycle arc depending
on the rate of escape in the cusps of its endpoints.

Theorem 1.7. For any s > 3, there exist bounded coefficiertsy, (z, T',t)},_.1/» and a
+

bounded distributional coefficief®(x, T',t) € W—*(SM ) such that, for allf € W*(SM)
and all¢ > 0,

12) 6 (o) () = /S fivol YD ch(e 1) DT+

DeBi/z
+ R (2, T, ) () T, log? T,
There exists a continuous functiéh:= C, : SM x RT — R* such that for allt > 0,

> lep(z T.1))* < O, 1)
DeBi/2
| R¥(x, T,t) || s < C(x,T).

For every invariant distributiorD Bip, there exists a constadt(D, s) > 0 such that, if
T > 0 is sufficiently large, then for all > 0,

C(D,s)7' < |lep( Tot) o < C(D,s).

In the particular case that, 7 is supported on a closed cuspidal horocycle, we prove by
the same methods that all the coefficietft$xz, T', t) are constant functions of> 0 and that

the remainder term ié)(Tlfl/2 log T}) (Proposition 5.15). Hence, we obtain an asymptotic
formula with remainder purely by methods based on representation theory. We remark that
P. Sarnak [51] obtained a sharper asymptotics with remahr(dell/ 2) by Eisenstein series
methods (Rankin-Selberg method), taking into account the explicit spectral decomposition
of cuspidal horocycles and the absolute continuity of the continuous part of the spectrum.
In the particular case of the modular group, the remainder term for cuspidal horocycles is

O(T; */**4), for all ¢ > 0, iff the Riemann hypothesis holds [58], [51].
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2. FOURIER ANALYSIS

2.1. Sobolev spacesWe choose as generators #6(2, R) the elements

{8 ) {0 T e {(e )

Recall the commutations rules:
(13) [X> Y] = _@7 [®7X] = Y7 [@aY] =-X.

The basis element € sl(2,R) is the “geodesic vector field”, in the sense that it corre-
sponds to the generator of the geodesic flows@h. The elements

N

are respectively the unstable and the stable “horocycle vector fields”, in the sense that they
correspond to the generators of the unstable and the stable horocycle fl&¥s.dn fact,
the following commutation relations hold:

(14) (X, V]=-V, (X, U]=U.

TheLaplacian determined by the bas{sX, Y, ©} is theelliptic element of the enveloping
algebra ofs[(2, R) defined as

(15) A:=—(X*4+Y2+0%.

Let’H be the (Hilbert) space of a unitary representatioRSf.(2, R). Any element of the
Lie algebrasl(2,R) acts onH as an essentially skew-adjoint operator and the Laplasian
acts as an essentially self-adjoint operator [43]. Bkolev spacef orders € Rt is the
maximal domairiV*(H) C H of the operatotI + A)*/? endowed with the inner product

(16) <f>g>s = <(I+A)Sf7g>7'l

The spaced$V*(H) are Hilbert spaces which coincide with the completion of the sub-
spaceC'*°(H) C H of infinitely differentiablevectors with respect to the northf || s :=
| (I 4+ A)*/2f | 4. induced by the inner product (16). The subsp@ég(H) coincides with
the intersection of the spac&E*(H) for all s > 0. The Sobolev spaces with negative
exponentW —*(H), s > 0, defined as the Hilbert space duals of the spateé¢H), are
subspaces of the spa€&’H) of distributions, defined as the dual spac&6f (H).

The Sobolev ordepf a distributionD € £'(H) is the extended real number

(17) Sp:=inf{s e R|De W™ *(H)}.

2.2. Direct decompositions. The Casimir operator, which generates the centre of the en-
veloping algebra of((2, R), is the element

(18) O:=—-X2-Y?2+02.

The Casimir operatdr] acts as a constapte R*U{—n?+n|n € Z*} on the Hilbert space

of eachirreducible unitary representation and its value classifies all non-trivial irreducible
unitary representations according to three different types.H.ebe the Hilbert space of
an irreducible unitary representation on which the Casimir operator takes theatue
Rt U {-n? +n|n € Z*}. The representation is said to belong to grncipal series
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if © > 1/4, to thecomplementary serigs0 < ;1 < 1/4 and to thediscrete seriesf ;1 < 0
[15, 3].

Let H be the Hilbert space of any non-trivial unitary representatioR 81.(2, R). Since
the Casimir operatdr] is in the centre of the enveloping algebras€f2, R) and acts or{
as an essentially self-adjoint operator, there exisf35d (2, R)-invariantdirect integral
decomposition[39, 40, 18],

(19) H= /69 H,

with respect to a positive Stieltjes measurd ) over the spectruna (). The Casimir
operator acts as the constante o(CJ) on every Hilbert spacé{,. The representations
induced on’,, do not need to be irreducible. In fadt,, is in general the direct sum of
an (at most countable) number of unitary representations equal to the spectral multiplicity
of p € o(0O).

All the operators in the enveloping algebra dezomposableith respect to the direct in-
tegral decomposition (19). Hence there exists fos @lR an induced direct decomposition
of the Sobolev spaces:

(20) W (H) = /ea WS (H,)

with respect to the measu#ie(1.). The existence of the direct integral decompositions (19),
(20) allows us to reduce our analysis of invariant distributions and of the cohomological
equation for the horocycle vector field to irreducible unitary representations.

2.3. Hyperbolic surfaces. If M is a hyperbolic surface of finite area, the specteui 5/)
of the Laplacian om\/ has a pure point discrete component of finite multiplicity and an
absolutely continuous component on the intefgh, oo with finite multiplicity equal to
the number of (standard) cuspsdf [24]. Hence, the Laplaciai\y; has a “spectral gap”,
in the sense that(Aj/) \ {0} has a lower boung, > 0. Examples of ‘pinched’ surfaces
with 19 < 1/4 were constructed in [54, 45, 9]. We shall denejg the pure point spectrum
of A, andC will denote the (finite) set of cusps 8. If M is compact, then the Laplacian
has pure-point spectrum supported on thessgandC = 0.

There is a standard unitary representatio’SfL (2, R) on the Hilbert spacé?(SM).
The corresponding Sobolev spad€$ (S M) have the following splitting as a direct integral
of irreducible representations (see (19) and (20)):

(21) W*(SM)= P Wi (H.)e

HETPp

© D W (Hin) & W (H-) & P W (He).

neZ+ ceC

For . = 0, the sub-representatidti,, is the trivial representation, which appears with
multiplicity 1, otherwise the sub-representatidtis, H+,, and’H. are not yet (in general)
irreducible.

Let m, € Z* denote the multiplicity of an eigenvalye € o, \ {0} andm,, € Z*
denote the dimension of the space of holomorphic (anti-holomorphic) sections oftthe
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power of the canonical line bundle, which can be computed by the Riemann-Roch Theorem.
We have:

@WS H() :

(22) W (Han) = @ W*(H

/ WS (Ho()) dse(yt)

The sub-representatioﬂsﬁ) are irreducible with Casimir parameter> 0, hence they
belong to either the principal serieg & 1/4) or to the complementary seriegy(< p <

1/4); the sub-representatioﬂﬁgf)w H() are irreducible with Casimir parametem? +

n,n € ZT, hence they belong to the holomorphic, respectively to the anti-holomorphic,
discrete series; the sub-representatibiaéi) are irreducible with Casimir parameter>

1/4, hence they belong to the principal series, and, foradl C, the Stielties measures
ds.(p) are supported ofi /4, +oc[ and are absolutely continuous.

2.4. Orthogonal basis. Let’H,, be the Hilbert space of an irreducible unitary representation
of Casimir parameter € R* U {—n? +n|n € Z*}. In order to construct a convenient
orthogonal basis of{,,, we consider the following elements of the enveloping algebra

ny=X-—-1Y, n_-=X+4+1Y,
which have the property of raising and lowering eigenvalues#. In fact, from
[—i©,n+] = £n4
it follows that, if —i©u = ku, then

—10(nru) = ne(—10u) + [0, ni]u = knru £ nru = (k£ 1)(neu).
If 1 > 0 (i.e. if H, belongs to the complementary or principal series), an orthogonal basis
of H,, will be

k 2 2 k
-y MN—"%0,...,7-"Y0,1N-"0, V0o, N+V0, 1+ V0O, - - -, T+ V0O, - - -

whereug is a©-invariant vector @vg = 0).
If o = —n? + n andH,, belongs to the holomorphic discrete series, an orthogonal basis
of H,, will be

Un,y N+Un, T]+2Un, e ,77+kvn, e
whereO®uv,, = inv,.

The anti-holomorphic case is similar. In fact, there is a complex anti-linear isomorphism
between holomorphic and anti-holomorphic irreducible representations of the discrete series
of identical Casimir parameter. It is therefore not restrictive to explicitly consider only the
holomorphic case.

In all cases such a basis is formed by analytic vectors, since they are by definition eigen-
vectors of the operatd®, hence eigenvectors of the Laplacian= [0 — 2072.
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Rather then dealing with the badis; }, we introduce an adapted orthogonal bdsis}
of H,. Letv be a complex solution of the equation

(23) 1—v? =4pu.
We remark that

e if H, belongs to the principal series, then> 1/4 and therefore is purely imagi-
nary;

e if H, belongs to the complementary series, then|0, 1/4[ andv is real belonging
to] —1,1[\ {0};

e if H, belongs to the discrete series, ther= —n? + n andv = £(2n — 1), n a
positive integer.

The basiguy } is defined as follows:

up = cx(nyug—1), cx=-——— fork >0,
24) 2k—1+4+v
up = cp(N-Urt1), k= ok 14w for k <0,
where the initial definition i,y = vy ( ||uo | = 1), in the caseu > 0 while u,, = v,

([[un| =1),forp=—n?+n.

We remark that, for an irreducible representation of the discrete serieg with-n? +n,
the basis{uy } is well defined only for = 2n — 1.

The basig uy } is an orthogonal, but not orthonormal, basis of eigenvectors of the opera-
tor ©, hence of the Laplacian operatiwr= [0 — 202, In fact, for allk € Z (k > n),

(25) Ouy = tkuy , Auy, = (0 + 2k%)uy, .
The norms of its vectors are given, for alk 0 (or k # n) by the formula:
lur—1|?, if v e, ie.ifu>1/4,
(26) w12 =< gjp—1-v 5 o
ST || wg—1 || ifreR,ieifp<1/4.

In fact, since the adjoin, * = —n_ and
(27) nan-=-0-i0+02%  nn.=-0+i0+062,
we obtain that fok > 0

e 1% = Nl e |12 un—1, nrur—1) = — e | *(n-nyup—1,up—1) =
2k —1—
= [lex IO = i — ©*)up_1,up1) = %_714_; lup— |?

and a similar computation holds far< 0.
We introduce for convenience the sequence
k

2t —1— .
(28) me= [] 27" foranyintegett > i, — [

2t —-14v 2

i=i,+1
(empty products are set equalltohence, ifk = 4,, thenll, ; = 1 in all cases).
By (26) we have

(29) Jug || % = T, k] -

Lesw)
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The behaviour of the norm§ uy || is described by the following Lemma whose proof is
postponed to the Appendix.

LemmaZ2.1.If v € iR, forall k > i, =0,
(30) L x| = 1.

There exist€ > 0 such that, ifv € | — 1,1[ \ {0}, for all £ > i, = 0, we have

1—v 1—v
1 -1 1 V< < 1 v,
@) o (T asn stz o (2 aen
ifv=2n-—1,forall k> ¢>1i, =n,wehave

G (k=-n+1\"" I, k—n+v\ "

1 < L - .
(32) ¢ <E—n+1> _HME_C'(f—n—FV)

The Sobolev norms of the vectors of the orthogonal basi$ are given by the identities
(33) k13 = (I + A) up, ug) = (14 p+ 2k | uy, || 2

By (33)and (29), a vectof = > frur € H, belongs toW?*(H,) (s > 0) iff the
Sobolev norm

1
0 2
(34) | f s = <Z(1+u+2k2)slﬂu,k|!fk|2> <00,
—0oQ
By Lemma 2.1,
(35) e || 2~ (14 [k[)>~R)

It follows that

(36) 1flls= (Z(H |k [)2s ) mﬁ)

—00

N|=

We recall that if/{,, belongs to theprincipal series thenwv is purely imaginary; ifH,,
belongs to theomplementary seriethenv € | —1,1[\ {0}; andv = 2n — 1 if H,, belongs
to thediscrete serie§y = —n? + n, n € Z1).

3. INVARIANT DISTRIBUTIONS
For any unitary representation 65 L(2,R) on a Hilbert spacét, let
I(H):={D e &' (H)| LuD = 0}

be the space of alU-invariant distributions ir€’(#). The analysis off(+) and of its
subspaceg?®(H) of U-invariant distributions of ordex s can be reduced to the case of
irreducible unitary representations. In fact, we have:
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Lemma 3.1. Let H be a direct integral of unitary representatioft, of PSL(2,R) with
respect to a Stieltjes measute. The space$(H), Z°(H) of U-invariant distributions have
direct integral decompositions:

I(H) = /EB I(H) ds()),
T3 (H) = /@ T5(H) ds()).

Proof. The space”>(H), its dual spac€’(H), all Sobolev spaced’*(H) are decompos-
able and the horocycle vector fidlfl as a densely defined essentially skew-adjoint operator
on'H, is also decomposable. Hence the Lemma holds. O

Invariant distributions for irreducible unitary representations are described by the follow-
ing
Theorem 3.2. Let H,, be an irreducible unitary representation 6fSL(2,R) of Casimir
parameteru. Then

e if H, belongs to the principal or complementary series, the s@@&eg,) has dimen-
sion2 and it is generated by two eigenvect(ﬂg[ of the “geodesic vector fieldX

of eigenvalues-£~ and Sobolev orde}%(”) respectively.

e if H,, belongs to the discrete series apd= —n? + n, the spac& (H,,) has dimen-
sionl and itis generated by an eigenvecﬁ@;f of X of eigenvalue-n and Sobolev
ordern.

Theorems 1.1 and 1.4 can be immediately derived from Lemma 3.1 and Theorem 3.2, by
the decompositions (21), (22) of Sobolev spaces into irreducible sub-representations.

3.1. Formal invariant distributions. Any distributionD € £’(H,) is uniquely deter-
mined by its Fourier coefficient$, = D(uy), k € Z (principal and complementary series)
or k > n (discrete series).

SinceLyD = 0 iff

DUf) =0, forall f € C(H,),

adistributionD is U-invariant iff D(Uwy,) = 0, forall k € Z or allk > n. We need therefore
to compute the action df on the vectors of the basig.;}. The resulting formula (37)
below, as well as the similar formula (45) in 83.3 for the action of the ‘geodesic vector
field’, can be found in the literature ofiL(2,R) harmonic analysis (see for instance [4],
formula(4.4)).

Lemma 3.3. Let I, = Z if u parametrises the principal or complementary seried 0=
[n,o0[ C Zif u = —n? + n parametrises the holomorphic discrete series. Then
1 (2k 4+ 1 i(2k — 1 —

(for v = 2n — 1 andk = n the above equation must be readl@s,, = —inu,11 + inuy,).

up—1, forallkel,

Proof. Since
1
Uup = (=Y +O)u, = (0 — 5(77+ —n-))ug
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for the principal ot the complementary series we have

1
Uu;, = Uug = 3 (n+uo — n-uo) =
Codfur ow_r) | i(v+1) i(v+1)
(2 ey
while for the holomorphic discrete series with parameter 2n — 1, n € Z*, we have

C1 C_1

A U—1,

Uu;, = Uu, = (0 — §n+)un = inun — 5 p_— = —iNUp11 + inUy
n+

Thus the Lemma is true in these particular cases. Fokanyi, we have instead

Uy, = tkug — o5k + 577—(Ck77+uk—1)
‘k 7 + ick
= 1RUL — Uu —n— Uk —
k %ni k+1 9 nN-N+ug—1
i . ick , 2
= — Ug41 + thuy + 7(—D +10 + 0 )uk_l .
2041 2
A straightforward computation, based on the valueg;of;, ¢, given in (24) and on
(25), yields (37) for allk > i,. A similar computation shows that, for the principal or the

complementary series, the equation (37) is also valid for &l 0. O

Let L, be the linear difference operator that to a sequehce (dr)ker, assigns the
sequencd., d defined by

i(2k+1+v) i(2k —1—v)
4 4

We remark that, itV = 2n — 1 (discrete series) ankl = n, formula (38) should be read
as

(38)  (Lud)y=-— dp1 + ikdy, — di1, k€L,

(L,,ci)n = —indyy1 +ind, .

Lemma 3.3 immediately implies that the sequedod the Fourier coefficients), = D(ug)
of anU-invariant distributioriD € £'(H,,) must satisfy the difference equation

(39) L,d=0.
It is immediate to check that
(40) df =1, forallkel,

is a solution of the equation (39) for any valuerof

In the case where = 2n — 1 parametrises the discrete series there are no other linearly
independent solutions. In fact the identﬁt&ud)n = —indp4+1 + ind, = 0 impliesd,, 11 =
dn, hence, by (38) and (39);, = d,, forall k € I,,.

If v # 0 parametrises the principal or the complementary series, another linearly inde-
pendent solution can be obtained as follows. lgbe the vectors obtained by replacing the
parameter by —v in the definition (24) of the adapted Fourier basis. The difference equa-
tion for the Fourier coefficients df -invariant distributions with respect to the basgis_}
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becomed._,d = 0. Forv # 0, by writing the solutiond;” = 1 for the basis{«; } in terms
of the basigu }, we obtain as a second solution
R T f
1=

Forv = 0 (u = 1/4), a second solution can be found by directly solving the difference
equation:

||
_ _ 1
(42) dy =0, d :i:1ﬁ fork #0.

We have thus shown that the spadé{,,) C £'(H,) of invariant distributions is at most
two dimensional if{,, belongs to the principal or the complementary series, and it is at most
one-dimensional if{,, belongs to the discrete series.

3.2. Sobolev order. The linear functional
Dy f=) fru— > fi

is defined, for any > 1, on the set off € H, for which the serie$">° (1 + |k|)! | fx|?
converges. In fact, there exists a constant > 0 such that

o0

1/2
(43) D ()] < Cu <Z(1 + |k])* Ifk|2> :

By (36) we conclude thaDj defines a continuous linear functional &n°(H,) iff s >
1+R(v)

5
If v # 0, the linear functional

Dy f= four— > full,

is defined, for any > 1 — 2R(v), on the set off € H,, for which the series"> (1 +
|k|)! | fx|* converges. In fact, by Lemma 2.1, there exists a consfapt> 0 such that

o0

1/2
(44) 1D, ()] < Cuy (Z(l + k] !fk\2> :

By (36) it follows thaﬂ);r defines a continuous linear functional @i’ (H,, ) iff s > %ﬁ’).
If v =0, itis immediate to check that the linear functional

||

D, :f=) frur— > fi 221.1_1

i=1
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is defined, for any > 1, on the set off € H,, for which the serie$">°_(1 + |k|)! | fx|?

converges. It follows thaD,, defines a continuous linear functional &*(*,,) iff s >
1 1-R(v)

2 2

3.3. Eigenvectors. The generator§D,’, D, } of the spac€ (H,,) of invariant distributions
for the “horocycle vector field” are for ajl # 1/4 distributional eigenvectors for the Lie
derivative operatoL x with respect to the “geodesic vector field”. In other terms, they
are exactly theonical distributiondor the Lie groupPSL(2,R), in the sense of S. Helga-
son [25]. In the special cage= 1/4, the distributioer;r is still an eigenvector (a conical
distribution), butD,, is not. In this case, the matrix of the operath¢ with respect to the

basis{DIL/@ Dy} is a2 x 2 Jordan block.

Lemma 3.4. Let I, = Z if u parametrises the principal or complementary seried 0=
[n, o[ C Zif u = —n? + n parametrises the holomorphic discrete series. Then

2k +1 2k —1—
(45) Xuy, = %uw _ fyuk_l forall & € I,
(forv = 2n — 1, andk = n the above equation must be read¥s,, = nu,11).
Proof. We have[©,Y] = —X andU = -Y + O, henceX = [©,U]. By Lemma 3.3,
sinceOu, = ikuy for all k € I,, an immediate calculation yields the above formula
for Xuy,. O

Lemma 3.5. If u > 0 (principal or complementary series) apd#~ 1/4,

1+v,_ 4
5 D#.

+
(46) LxDif =~

Ifu=1/4@w =0),

Df 1 /1 0\ (Df
(47) EX(’i>:—< )(’i .
D, 2 \1 1)\,
If 4 = —n?+n,n € Z* (discrete series),

l+v oy -
- D, =-nD,.

Proof. The distributionD;} is determined b{D} (uz,) = 1 forall k € I,. Hence, by Lemma
3.4,

LxD) =

4 4

The distributiorfD; is determined, iV # 0, by Dlj(uk) = II,, - Hence, by Lemma 3.4,
forall k € Z,

2k+14+v 2k—-1-v 1+v
(48) LxD; (ur) = —Df (Xug) = — ( - ) =— Df (ug).

_ _ 2k+1+v 2k—1—v
EXD,LL (ug) = _Du (Xuy) = — <4Hu,|k+l| - 4H1/,|k1|> =

2k+1—v 2k—-1+4+v 1—-v
—-( 1 - 1 )HV,|k|—— 5 D, (uk)-
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If v = 0, the distributiorD,; is determined by

k]
_ B 1
(49) D, (ug) =0, D (uy) = ;:1: 5 fork#o.

Hence, for allk € Z,

|[k+1| |k—1|
- 2% + 1 1 2% — 1 1
£xDy (uk) == | — ZQi—l_ 1 Zzi—l -
=1

1= 1=

K|

1 (2k+1 2k—1 1 1 1
__ T _ _ = __DF — =D )
2 < 4 1 );21'—1 5 D (k) = 5Dy ()

Theorem 3.2 is therefore completely proved.

4. THE COHOMOLOGICAL EQUATION

Let H be a unitary representation &fSL(2,R). We prove that, if the Casimir oper-
ator [J on 'H has a ‘spectral gap’ then the only obstructions to the existence of a smooth
solution f € H of the equationJ f = g, for any smooth vectoy € H, are given by
U-invariant distributions.

Theorem 4.1. If there existg.o > 0 such thatr(0J) N0, uo[ = 0, then the following holds.
Let v be defined as in4). Lets > 4 and¢ € R. Then there exists a constafit :=
C(w, s,t) > 0 such that, for ally € W*5(H),
o if eithert < f”T"O andg has no component on the trivial sub-representatiofi{of
or
e ift<s—1andD(g) =0, foral D e I°(H),

then the equatiol’ f = g has a solutionf € W*(H) which satisfies the Sobolev estimate

Ifle<Clglls

A solutionf € Wt(H) of the equatioi/ f = g is unique modulo the trivial sub-representa-
tion if and only ift > — 15k,

Theorem 4.1 immediately implies Theorem 1.2.

4.1. Formal Green operators. Let’/,, be any irreducible unitary representation of Casimir
parametey: and letf, g € £'(H,,) be distributions satisfying the equation

(50) Uf=g.

Let f = >, frur andg = >, gruy be the Fourier expansions of the distributiohsy
with respect to the adapted basis (24)JHf. Let f = (f)ker,» G = (gr)rer, denote the
sequences of the Fourier coefficients foind g. The equation (50) is equivalent to the
difference equation:

~

(51) Lyf =39
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whereL? is the operator transposed bf. More explicitly we have, for alk € I,,,

% 7 2k+1—v . 2k—-1+v
(52) (Lyfk = —Z?fkﬂ + ik fr, — Zf

If v = 2n — 1 (discrete series) and= n, equation (52) should be read as

fr—1= 0k -

. 1
ann - ifn-‘rl = gn-

We remark that whew € iR U |0, 1[ parametrises the principal or the complementary
series we havé, = L_,; this equality holds formally also for the discrete series.

Formal solutions of the homogeneous equatibf = 0 are (formal) vectorsf € H,,
representing invariant distributions with respect to Hg inner product. It follows that,

if D € Z(H,), the sequencé = (f1.)rez, given by
o= D(uk) _ D(ux)
S I R T
is a solution of the homogeneous equatigyy = 0. By (29), (40) and (41), we obtain the

following formulae for a basis of the kernel of the operafgy. For theprincipal or the
complementary series

1 _
(53) Y = Iy = Ty
and, ifv #£ 0,
(54) P =1 forallk ez

If v =0, a second independent solution is
|k|

(2) _ (2) _ 1
(55) =0, f —;2i_1f0rallkeZ\{O}.
Such formulae can also be deduced from (40), (41) by the idefijity L_,.
For thediscrete series

(56) [V =1l forallk e I,

A standard construction based on the solutighs, f(2) yields the Green operator
for L. For theprincipal and complementary serigé v # 0 we have

2 (el k>l
(57) Gy (k,0) =147 (Hu,w ) =
0 k<t

As v — 0 formula (57) converges to the Green operatonfet 0:

. ‘ k
41 <Zl=|1 2i1—1 - El=|1 21‘1—1) k>t
0 k<Yt

(58) Go(l, k) = {

We remark that the Green operator is chosen so that if the seqgeridbe Fourier coef-
ficients of the functiory € H,, has finite support and furthermof®} (9) = D,, (9) = 0,
then the sequencg = G, (g) has also finite support and therefore yields a bona-fide solu-
tion f € C°(H,).
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The Green operator in the case of the (holomorptisrete seriesan be taken as

_2i 1L <k<t
(59) Gk, 0) = 2T v
—2 i <<k

which has the property that if the sequericef the Fourier coefficients of € H, has
finite support and)j[(g) =0, thenf has also finite support and therefore yields a bona-fide
solutionf € C*°(H,).
In all cases it is straightforward to check that the seque6és = G, (k, /) satisfy the
equation
(L Gk = 6o,
hence the Green operators (57), (58) and (59) are well-defined.

4.2. Sobolev estimatesWe prove Sobolev estimates for the Green operétpiin each
irreducible componerit{,. The dependence of the estimates on the Casimir parameter
is studied explicitly, since it will be crucial in the construction of solutions of the equa-
tion U f = g for general unitary representations by ‘gluing’ the solutions obtained in each
irreducible ‘component’ of a direct integral decomposition.

Sharp estimates for th@incipal or thecomplementary seriese based on the following
Lemma proven in the Appendix.

Lemma4.2. There exist&’ > 0 suchthat, it € iRorv € | —1,1[\{0}, forall k > ¢ > 0,

1, I, 1+k
I = 1 = Clvlmax{l, IHM\}(1 +1°g(m))'

Lemma 4.3 (Principal series)For all s > 1/2,t < s — 1, there exist’s ; > 0 such that,
forall v € iR (u > 1/4) and for allg € W*(H,,) we have:

(@ift<—1/20r

(b) it Df (9) =D, (9) =0,
thenG,g € W' (H,) and

)

1Guglle < Cspllglls
Proof. In the first case, the Lemma is equivalent to saying that, 1/2 andt < —1/2,

the operator
u
g= (g)EGZH’—)f ZG kf H k”t,
R T
keZ

is a bounded operator with uniformly bounded norm fré(%) to ¢?(Z). We claim that,

in fact, it is a Hilbert-Schmidt operator with Hilbert-Schmidt nothd,, || ;s bounded uni-
formly with respect tqu > 1/4.

If v #£0,
|| u || 7 vt 2 (L+p+ 2k
[rem - |G (k, 0)? = | T o
s ,EE:Z luel 2 v é; vkl (14 p+262)
By the estimate (30) in Lemma 2.1 and by Lemma 4.2, we have
11,
(60) |5 = 1] < Cly| [1 + log(1 + [k]) + log(1 +|¢])] -

vkl
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Hence, ifs > 1/2, by the integral inequality,

v,|¢ s log“(1 4
Zy |'k' 214 p+20%)7% < Oy |v |2M[1+log2(1+\k|)],
<k
and, ift < —1/2,
D (4 p+2k%) [T+ 1log?(1+ k)] < Cp (1+ )"+ log> (14 p).
kEZ

It follows that

(61) Gy I s <4C, th_ st -

The estimate (61) is uniform as— 0 (u — 1/4). Hence the estimate in the case= 0
follows immediately. The first case of the Lemma is therefore proved.
Letg € W*(H,), s > 1/2, with D} (g) = D, (9) = 0 and letf := G,g. If v # 0, we

have - -
21 v, 21 i
fo==—) (—=Dg=-——) (Do
v % IL, |k v ; 1L, 1k
It follows that
vl (14 p+ 2k?)t
IfI7 < 2||9H2ZZ| —2
V] AT il (Lt p+202)°

Since, ift < s — 1,

(1
// er 1+log 2(1 4 2?)] dz dy < +o0 ,
x>y

by (60) and by the integral mequallty, there exi6ts> 0 such that
log®(1 + p1)
<Cc'gJ.,—= 7

”f”t—c (1+ )stl”

Hence the second case of the Lemma is proved f#r0.
If v =0, we have

fo=4i Y (dy —dp)ge=—4 > (dj —dy)ge,

LeZ <k LeZ >k

gl <Catllgll?-

where (see (42))
||

1
dy =0, d,;_ZQ — fork #0.

=1

It follows that, ift < s — 1,
[k SCHgIVZZ [1+1log(14+6*)] < Cst g2

keZ |€\>|k|
(]

Lemma 4.4 (Complementary seriesfor all v €]0,1[ (0 < u < 1/4), s > HT” andg €
W#(H,) we have
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(@) ift < -4~ or
(b) ift < —15¥ and D, (g) =0, or
(c) ift <s—1andDj}(g) =D, (9) =0,
thenG,g € W'(H,,). Furthermore there exists a constafif,; > 0 such that the following
estimate holds. Setting
Csrmax{1,[2s — (1 +v)]"Y2[=2t + 1+ v]~"/?} in case (a)
Cotw = St max{1,[2s — (1 + v)]"/2[=2t + 1 — v]"1/2} in case (b)
Cysymax{1,[2s — (1 +v)]~Y/2} in case (c)
we have
Cate_ g
1 -y S

Proof. We claim that, ifs > ”T” andt < 71‘5—”, the operator

9= (9e)eez —>»—>f (ZG k,0) ||UkHt>
keZ

IGuglle <

is a Hilbert-Schmidt operator fron¥(Z) to ¢?(Z) with Hilbert-Schmidt norm

ral Cs t,v
62 Gl/ < "y .
(62) G llms < 2
The claim immediately implies the Lemma in case (a).
We have
el | u |17 vl okl (1+ p+ 2k%)!
1y s = D 1Gu(k, 0)) — B , '
vIilHS k,%e:z v || we || 2 2 k%% v k| Hu,|e| (1+ p+ 202)3

Since0 < p < 1/4, for all t € R there exists a constadt > 0 such that, for alk € Z,

(63) Crl L+ k) < (14 p+2K%) < Cy(1+ |K))*
If v €]0,1[, by Lemma 4.2, for alk, ¢ € Z,
4 Iy Ikl I Lk
(64) 1 <C il
VQ‘H ] | IL, g 1L, " Ty e

X [1+log(1 + |k|) + log(1 + |£])] .

Hence, by the estimate (31) in Lemma 2.1,

—~ Cs (1+ [k))*
1 13s < 2 Z{Z AT og(1 + )]+

25 v
kEZ \€\>|k| 1+ M‘

1_|_ |k:| 2t+1/
+ w%:k' Tz 1+ los(1+ [EDI).

The estimate (62) then follows by the integral inequality.
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Letg € W*(H,), s > 3%, with D (g9) = 0 and letf := G, g. We have

o .
ka%Z(HViM—l)QZZ—% Z m—__ +) g

o<k vk >k 1L, |k i<k

Hence

e By Lo+l

|6|>|k| ek <k

R

It follows by Lemma 2.1 that there exists a consta@t > 0 such that

Cos ) (1 + [k[)2H (14 k]2
117 < g2 Y. e + D ey
2(1—v) o, A 2 (1 [€])

The integral inequality then implies thattikk s — 1,

(L kD, »
Y Ry <[2s — (14 v)]
m; L+ [a)%F

and, ifs > 2 andt < —13%,

(1+[k)* ™ - -
Z}; W < C’syt[Qs - (]. + V)] 1[—2t+ 1-— I/] 1.

The Lemma is therefore proved in case (b).
Letg € W*(H,), s > 3%, with Di (9) = D, (9) = 0 and letf := G,g. We have

2i N~ g 2i N~ g
== o 1)g=-= 1) g,
fe=23 Jge === )9

= Lk =r vk

It follows by (63), (64) and Lemma 2.1 that

vl 2ok (1+ g+ 262)
(65) HthQf |’9||QZZ| *)
keZ |z|>|k| vk Hu,m (1+ p+202)

2 1+ [k))*
D135 Y (st los(1 + D)
keZ \Z|>|k|
The estimate in case (c) then follows by the integral inequality.

Lemma 4.5(Discrete series)Foralln € ZT (v =2n — 1, u = —n? +n),

(@ ifs>1—n,t<min(s —1,n —1)andg € W*(H,) or
(b) if s >n,t <s—1,andg € W*(H,,) satisfyD; (g) = 0 g € W*(H,),
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thenG,g € W'(H,,) and there exists a constaft, ; > 0 such that the following estimates
hold. Let

Csimax{l, (s —n)~"Y2(n —1—1t)"Y2} incase (a) if s > n;
Csrpi= Csymax{l, (n —1—1t)"1/2} in case (a) if s = n;
o Cspmax{1, (s +n—1)"12 (n—s)~'/2}in case (a) if s < n;
Cys¢max{1, (s —n)~ 2} in case (b)
then

Csy,
IIGVQHtSﬁHgII&

Proof. We claim that, ifs > 1 — n and¢ < min(s — 1,n — 1), the operator

gz(g)éelu—ﬂ—> (ZG (k, 0) Ukt)
kel,

el

is a Hilbert-Schmidt operator fron¥(1,,) to ¢?(1,)) with Hilbert-Schmidt norm

-~ CS 1%
(66) 1Gy |l s < =227
1%
We have
— I,k (1+ p+ 2k%)! (14 p + 2k2)t
1Go [I%s = QZ{Z e 5 Z =1
k>n n<t<k e (L4 p+26%)° =% Mok 1+“+2£)
Sincev =2n—1 > 1andu = —n2 + n, there exists a constant, > 0 such that, for
alln € ZT and allk > n,
(67) Cr'v+ (k—n)? <14 p+2k* < C1lv + (k —n))?
and, by the upper bound (32) in Lemma 2.1, forkalt ¢ > n,
11, Ek—n+v\ "
68 2 <O | — .
(68) I, — 1<€—n+u>

Hence, there exists a constant; > 0 such that

I/ 2t v v 2t+v
”G HHS<C 2t—2s— QZ{Z k/ +Z[1+(k/ )} }
>

25 v 2s+v
k>0 0<Z<k E/V k [1 + (E/V)] ’

By the integral inequality, there exists a constarits> 0, C's > 0 such that

) Comax{1, (s —n)~1} if s> n;
-1+ {/v)]™ < 2log(l + k/v If s =mn;
U (00)] P <3 Colog(1+ f

0<e<k Coymax{1, (n — s) ' }(1 + k/v) 25+ if s < n;

hence, ift < min(s — 1,n — 1),
Csmax{l, (s —n)"t(n—1—1t)"1}if s > n;

Z Z I;//:))]]S Csmax{1,(n —t—1)"1} if s =mn;

k>00<t<k = Csmax{1,(n —s)"1(s—1—1)"1} if s <n;
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and, ifs > 1 —n,

SO ()] < Oals b= 1)L (k)]

0>k
hence, ift < s — 1,
k v 2t+u B -
(69) ZZ 21+ E//V ]28+Z,§C3(8—|—n—1) 1(8—1—t) 1
k>0 6>k

It follows that there exists a constafif ; > 0 such that (66) holds and such an upper bound
for the Hilbert-Schmidt norm of the operat6, implies the Lemma in case ().

Letg € W*(H,), s > n, with D}f (g) = 0 and letf := G, g. Forallk > n, let f(), f(?
be defined by

24
£ === 9e;
v
n<t<k
QZ VZ
S gyt
€>k

Sincef = f(® 4+ (%) estimates on the Sobolev normsfé‘l“), % imply corresponding
estimates foif by the triangular inequality.
We have that

,, 1 2k2
15012 < g2 Y e Ut pd 20

k>n 0>k Vk 1+M+2€2)

hence, ifs > n andt < s — 1, by the estimates (67), 68 and (69), there exists a con-
stantCs; > 0 such that

t,
IO )2 < 22 ~lgll?.

i 4\

SinceD,; (g) = 0, ) )

2 1

=2 w="Y
n<e<k >k

It follows that

4 _ _
AP < 5 lall? D2 I+ 267
n<l<k

4 _ -
AP < 5 lgll Y+ 26t

>k
Let
k
st = u2k I,/ ( 1+u+2€2)
n =
2 k(L4 p+ 2k%)
St =2 Z Z = -

k n+v+10=k+1 Vg 1+'u+2€2)
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We then have
1z < (580, +32,) lgl12

The functionZSt),y can be estimated as above. In fact, there exists a cor{siant 0 such
that

2t v
() L < Cy Vztzszzz zsy
k=0 £=0
Since, by the integral inequality 4f > n,
"
S+ (£/v)] 72+ < Crmax{1, (s —n)~'};
=0
and ,
S (kP <o,
k=0
there exists a constaat, ; > 0 such that
w0, <02 max{1, (s —n) "2

The estimate of the functloﬁg t)y, can be carried out as follows. By the lower bound (32)

in Lemma 2.1, there exists a constlmt> 0 such that, i > k,

11, & {—n+1\"

2 L<Cy | —m

m,, ~ <k:—n+1)

It follows that there exists a constafit ; > 0 such that
+ (k)2 (1 +0\"
Eg2t)u< 2t—25—2 Z Z < >
" k=v+1 (= k+11+£/’/ 1+k

Since, fork > v, we havell + (k/v)]* < 2% (k/v)* and since

1+€<1+€/y
14k~ k/v

it follows that

00 o] 2t—v
2 —25— k —2s+v
S 3 S (D)

k=v+1/¢=k+1
By the integral inequality, it > n (hence—2s +v + 1 < 0),

fe'e) 1 k —2s+v+1
> S e-nt (B)
1% 1%
l=k+1
and, ift < s —1,
[e'e] 2t—2s+1
1/k
> <> <(s—1-t)"
14 1%
k=v+1
Hence, there exists a constant; > 0 such that
EQV < CQ (s —n)~ 1,2t-2s
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It follows that
| £ < C2max{1, (s — m) " 22
O

Proof of Theorend.1 Let H be a direct integral of non-trivial unitary representati¢ngs
of PSL(2,R) with respect to a Stieltjes measufe. Every vectorg € W*(H) has a
decomposition

g= /gx ds(A)

with g, € W#(H,). We claim that:

(a) D(g) = 0 for all D € Z°(H) iff, for ds-almost all\ € R, Dy(g) = 0 for all D), €
IS(H)\);

(b) if there exists a constar(s,¢) > 0 such that, fords-almost all\ € R, the equa-
tion U f), = g, has a solutiory, € W'(H,) satisfying auniformSobolev estimate

(70) Al <Csit) [lgalls,
then the equatiotV f = ¢ has a solutiorf € W*(H) with the same Sobolev bound:

[Flle < CCs,t) llglls-

The claim(a) follows immediately from Lemma 3.1.
The claim(b) can be proved as follows. Let

fim [ frdsh).

Since the operatdy is decomposable and

|wwz/nﬁwwmg
sc@ﬁ{/mw&m»=0@wﬂmM<+m,

the vectorf € Wt(SM) yields a well-defined solution of the equatiéhf = g which
satisfies the required Sobolev bound. The claim is therefore completely proved.

The existence part of the Theorem then follows from Lemmata 4.3, 4.4, 4.5 and the direct
integral decompositions (19), (20). In fact, if the Casimir operator has a ‘spectral gap’, the
uniform Sobolev estimates (70) holds for all irreducible unitary sub-representations.

The uniqueness part is proved as follows. A solutfoa W (H) of the equatiot/ f = g
is not unigue modulo the trivial sub-representation iff there exists a non-trivial invariant
distributionD € W(H). By Lemma 3.1 and Theorem 3.2, that is the case i#f — 1.

O

4.3. Converse results.Let H be the Hilbert space of a unitary representation of the group
PSL(2,R). Itisimmediate by the definition of aii-invariant distributiorD € Z°(’H) that,

if g € H is a vector such that the equatibif = g has a solutiorf € W(H) witht > s+1,
thenD(g) = 0. We prove thatD(g) = 0 under weaker regularity assumptions on the
solutionf. In fact, it turns out that, if is not in the kernel ot/ -invariant distributions, then
Theorem 4.1 gives the optimal Sobolev regularity for the solution. Such converse result will
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also be a crucial tool in the proof of lower bounds on the deviations of ergodic averages of
the horocycle flow.

Theorem 4.6. Letg € W*(H), s > 122, and letD € £’(H) be aU-invariant distribution
of Sobolev ordeilSp < s. If the equationU f = g has a solutionf € W (H) with ¢ >
Sp — 1, thenD(g) = 0.

Theorem 4.6 implies Theorem 1.3, for all finite area hyperbolic surfaces.
The proof of Theorem 4.6 can be reduced, by direct decomposition into irreducible sub-
representations, to the following Lemmata.

Lemma 4.7 (Principal series)Letrv € iR (u > 1/4). Letg € W*(H,), s > 1/2, be
any vector such that the cohomological equatldii = g has a solutionf € W*'(H,,).
Ift > —1/2, thenD} (9) = D, (g9) = 0.

Lemma 4.8 (Complementary series}etr € ]0,1[ (0 < p < 1/4). Letg € W*(H,),
5 > HT” be any vector such that the cohomological equalih= ¢ has a solutionf €
WH(H).

(1) If t > -1~ thenD; () = 0;

(2) if t > —15%, thenD;; (9) = D,, (9) = 0.

Lemma 4.9(Discrete Series)Lety =2n —1(p = —n? +n),n € Z*. Letg € W*(H,),
s > n, be any vector such that the cohomological equalibh = ¢ has a solutionf €
WHH,). Ift > n—1,thenD} (g) = 0.

We remark that the proof of Lemmata 4.7, 4.8 and 4.9 can be reduced to the case that
the Fourier serieg of g € H,, with respect to the basig.; } hasfinite support In fact, for

anyg € W9(H,), s > 1+§§(”), there exists a vectdr € H,,, with Fourier series of finite

support, such thaD(h) = D(g), for all D € 7°(H,). By Theorem 3.2, the sequenae

can be determined as a solution of a linear system of two equations, in the case of the
principal or the complementary series, or of a single equation, in the case of the discrete
series. By Theorem 4.1, the equatiGif = h — g has a solution which belongs ¥*(7,,)

forallt < s — 1. Hence, for any < s — 1, the equatiorU f = h has a solution which
belongs toW*(H,,) iff the equationU f = g does. It is therefore sufficient to consider the
case of a vectog € H,, with Fourier series of finite support.

Proof of Lemmat.7. Letr # 0. If f is a distributional solution of the equatiéhf = g, the
sequencef of its Fourier coefficients satisfies the linear second order difference equation
(52). The general solution can be written as

I, |

IL, 1k

(2)

(1) fio= S - gt e+ eafi?

1<k

wheref,gl) = H;llkl’ f,f) =1, forall k € Z, andcy, co € C. If § has finite support, there
existsk~ € Z~ such that, foralk < k&~ < 0,

fr= C1f;£1) + CQf]EQ) .
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It follows that, if f € W'(H,),t > —1/2, thenc; = ¢o = 0. In fact, if [c1]| # |e2],
since|ll, | = 1, forall k < k7, [fx| > [[e1] — |e2l| > 0. If [c1] = |ez], lete; = ecy
andIl, ;| = e%. Then|fi| > |c2|[e’®=%) + 1|. By the definition offl,, |y, if v = is # 0,
we have

_ S
Op =—2) tan 1(22,_1).

i=1
Let I ¢ S! be a closed subinterval such thtat- 7 ¢ I. The set{k < k7|0, € I}

contains infinitely many intervalg:;” ,k:;r] C Z~ such that there exists a constant- 1
with [k /k:]ﬂ > cforall j € N. Sincel is closed, there exists a constaht> 0 such
that|f —m — ¢'| > dforall ¢’ € I. Hence, ifk € [k}, k], sinceb), € I, [e"?~0%) +1| >

d > 0, for all j € N. In both cases it follows that, if; # 0 or co # 0, then

hencef ¢ W'(H,,) for anyt > —1/2.
If c; = co = 0 andg has finite support, there exists € Z* such that, for alk > k™ >
0,

21 -
fio == (DR (L} + Dk (9) -
The above argument implies that fifc W*(H,,) with t > —1/2, thenD}t (g) = D, (g9) =

0.
Letv = 0. The general solution of the difference equation (52) is

fk_4zz , —d) gg—i—clfk +cf

k<t

Wheref,gl) =1,forallk € Z, c1, o € Cand

|K|

_ 2 1
dk:f]g)zzm_l.

=1

If g has finite support, there exists € Z~ such that, for alk < k= < 0,
fr = leél) + CQf;E2)

Sincef,gz) is unbounded, it is immediate that, ffe W*(H,) with ¢t > —1/2, then¢; =
¢y = 0. Hence there exists™ € Z1 such that, for alk > k™,

fx =4i (D, (9) — Dyt (9)dy,)

and again, sincd, = f,?) is unbounded, iff € W*(H,) witht > —1/2, thenD/f (g) =
D, (g9) =0. O

Proof of Lemmat.8. The sequencé of the Fourier coefficients can be written as in (71).
If g has finite support, there exists € Z~ such that, for alk < £~ < 0,

k= lelgl) + C2f;£ =1L} AREE
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By the estimates (31) in Lemma 2.1 and by (36), it follows thaif ¢ > _HTV1 thenc; = 0;
(2) if ¢t > —I_TV, thenc; = ¢ = 0.
If g has finite support, there exists € Z* such that, for alk > k* > 0,

21 _ _
fo == (DR} + D (9)) +eaf + eaf.

Again by Lemma 2.1, it follows thatl) if ¢ > —”T”, sincec; = 0, thenD, (g) = 0; (2)

if t > —15%, sincec; = ¢, = 0, thenD (9) = D, (g) = 0. O

Proof of Lemmat.9. The sequencg of the Fourier coefficients of the solutighsatisfies
the linear difference equation (52) on the et [n, +o00] C Z. Since the space of solutions
of the corresponding homogeneous equation is one-dimensional, the general solution can be

written as
% (& = Iy (1)
fk:*; Zgz+ Z geﬁ +efy

—n t=k+1 VIR

wherec; € C andf,gl) = H;,{}, forall k > n.
If § has finite support, there exists > n such that, for alk > kT,

21
fi=="Df9) +af?.

Let f € W'(H,). By the estimates (32) in Lemma 2.1, it follows that, ¥ —n, thenc; =
0and, ift >n —1,thenc; =0 andD:(g) =0. O

5. DEVIATION OF ERGODIC AVERAGES

5.1. Spectral decomposition of horocycle orbits.SinceZ*(SM) c W—%(SM) is closed,
there is an orthogonal splitting

(72) W=5(SM) =Z°(SM) @t T5(SM)* .

Although the spac&*(SM) is {#;* }-invariant, the action of the geodesic one-parameter
group {¢;*} on W#*(SM) is not unitary and the orthogonal splitting (72) ot {¢;* }-
invariant.

According to Theorems 1.1 and 1.4, the one-parameter gfofig has a (generalized)
spectral representation on the sp@aéeS M ). Infact, for alls > 0, there is & ¢;* }-invariant
orthogonal splitting

(73) I5(SM) =I5 &t I¢
and the spectrum af;X is discrete on the subspatg := Z; N 7°(SM) and Lebesgue of
finite multiplicity with spectral radius equal to*/2 onZg, forallt € R.

LetB C Z, be abasis of (generalized) eigenvectors{fof } | Z, such tha3n (Id911/4)
is a basis of eigenvectors f@p;* } | (Zq ©Z,,4) and, if1/4 € oy, the set3; ;, := BNI; 4
is a basis which bring$;* } | Z1,4 into its Jordan normal form. For ar € B\ By,

of Sobolev orderSp > 0, there exists\p € C with ®(Ap) = —Sp < 0 such that, for
allt e R,

(74) X (D) = Pt D
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if 1/4 € oy, the subset; ;4 C B is the union of a finite number of paif*, D~} such
that the distribution®=* ¢ Bli/4 =BN Ili/4 have the same Sobolev order equal t@ and
formula (7) holds:

m @) (4 )E)

The set3® := BN Z; is a basis of (generalized) eigenvectors for the actiofiggf}
onZj. By Theorem 1.1 and (9), for adl > 1, there is a decomposition

(76) B =) B.u |J Bn.

HETPp 1<n<s
The operator;* | Z has Lebesgue spectrum of finite multiplicity supported on the circle of
radiuse—*/2 in the complex plane, for all € R. Its norm satisfies the following bound.

Lemma 5.1. There exists a constant; := Ci(s) > 0 such that, for alt € R,
(77) 16 | Tl —s < Cr(1+ e e

Proof. By 883.1 and 3.3, ift{,, is the Hilbert space of an irreducible representation of the
principal series, thefi*(H,,) has dimensio2 and it is generated by two complex conjugate
invariant distribution@j. By Lemma 3.5, the distributio@fj is an eigenvector of the op-
eratorp;* with eigenvalue the complex number(=¥)t/2 wherev is the purely imaginary
parameter defined by (23). The distortion of the bd#), D, } is uniformly bounded as
the parameter varies over subsets of the real line bounded away ftgm(which corre-
sponds to the imaginary parametebeing bounded away fro). Let di be the sequences
of the Fourier coefficients of the distributiof@k, with respect to the basis (24) &f,. By
the definition ofdff in 83.1, an explicit calculation of the derivative of the coefficiefjfsof
the distributionD,; yields
+ —

lim Gy — = 14 ”

v—0  2u 2 dv
Since the Fourier basis (24) depends continuously on the parameteiR U] — 1, 1], the
basis{RD,;, 3D, /2v} of I°(H,) has bounded distorsion, as— 1/4 (v — 0). The
2 x 2 matrix of the operaton;* with respect to this basis can be explicitly computed by
Lemma 3.5. It follows that there exists a const@ht> 0 such that, for allx > 1/4, the
norm of the operatop;X onZ*(H,,) is bounded byC; (1 + [¢|)e~*/2. Since the spac&}
decomposes as a direct integral of the spac¢$t,,) over the intervall/4, +-oc[ and the
operatorp;X is also decomposable, the desired estimates follows.

—dq .

v=0

([
According to (72) and (73), every € W~5(SM) can be written as

(78) v=Y_ eco()D+C(H) +R()
DeBs

with C(v) € Zg andR(y) € Z°(SM)*. The real numbeerp () will be called theD-
componenbf v alongD € B* and the distributior?(+y) the ({U-invariant)continuous com-
ponentof v. We recall that the continuous component vanishes foy &l W ~=°(SM) if
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M is compact. The following Lemma tells us that bounds on the norms of distributions in
W=5(SM) are equivalents to bounds on their coefficients.

Lemma 5.2. There exists a constant, := C5(s) > 0 such that

79 G2 < D) leoWIP + IC) 125 + 1RO 2, < C5 v 112,
DeBs

Proof. The splittings (72) and (73) are orthogonal with respect to the Hilbert structure of
W=5(SM). The basig3* is not orthogonal, however we claim that its distortion is uniformly
bounded. In fact, vectors of the basis supported on different irreducible representations are
orthogonal; if’D:{, D,, € B* are normalised eigenvectors supported on the same irreducible
representation of Casimir paramejerc R* (principal or complementary series), a cal-
culation shows that the functiofD;f, D,;)_, is continuous on the interval /4, 4+-oo], it
converges td asy — +oo and tol asp — 1/4. SinceZ; is contained in the pure point
component of the the spectral representation of the Casimir operator, the angle t@gween
andD,, has a strictly positive uniform lower bound asc oy, O

5.1.1. Horocycle orbits.Forz € SM andT € R™, let~, r be the probability measure
uniformly distributed on the horocycle orbit of lengihstarting atz. More precisely, for
any continuous functioyf on SM, we define

T
verlh =7 [ SOV @)a

By the Sobolev embedding Theorem (see [1]), for> 3/2, the measures, r are
continuous functionals o *(SM) (which depend weakly-continuously an € SM
andT € R™). Thus the splitting (78) can be applied to horocycle orbits. We set

C'D(‘T, T) = C’D(,‘YI7T)7 C(x7 T) = C(,‘YLT) ) R(.’L’, T) = R(’Yl‘,T) .
so that

(80) Yer = Y cp(z,T)D+C(z,T) + R(z,T).
DeBs

The proofs of Theorems 1.5 and 1.7 will reduce to estimates on the norms of the three parts
of this splitting. We start by showing in next section that since the parts of this splitting in-
variant by the horocycle flow, namely ,,_z: cp(x,T)D andC(x,T'), vanish on cobound-

aries, the remainder paR(x,T') must be of the order of /T"; furthermore the individual
coefficientsep (x, T') and the continuous componehtz, 7') cannot be too small.

The uniform norm of functions on a compact manifold can be bounded in terms of a
Sobolev norm by the Sobolev embedding theorem. In the case of a non-compact hyperbolic
surfacesM of finite area, since the injectivity radius is not bounded away from zero, the
Sobolev embedding theorem holds only locally. We therefore prove a version of the Sobolev
embedding theorem on compact subsets of the unit tangent bddAdlewith an explicit
bound on the constant.

We fix once for all a pointg € SM and letdy : SM — R be the distance function from
xo. Constants in the following statements will implicitly depend (in a inessential way) on
this choice.
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Lemma 5.3. There exists a constaiit; := C5(x¢, M) such that for any functiod’ €
W?2(SM), we have thaf” is continuous and

|[F(2)] < O3 @2 | F |5

Proof. Recall that ifG is a locally17? function on Poincaré’s pland thenG is continuous
and there exist€’(¢) > 0 such that

G <) [ (16 + 1P + |AG) dy
B(x,e
foranyz € H ([22] page 63).

Forz in SM denote byp(x) the radius of injectivity ofSM atz.

Lete < 7 and set4, the open set of points € SM wherep(xz) > e. By choosinge
sufficiently small we can assume that compleméfitonsists ofc connected components
V; each contained it$ 4;, the tangent unit bundle of disjoint open cusps~ S! x R*
whose boundary horocycle has length

By the Sobolev embedding theorem mentioned above there éXists> 0 such that for
anyx € Ag we have

F@P <) [ (FP+ P +]aFP) dy
B(x,e€)
Forz ¢ Vz let d be the distance aof from 9A4;. It's easy to see thatce = < p(z) <
4ee~?. Let F denote the lift of ¥ to Poincare’s half-planél and letz be a pointSH
projecting tox. Then, by the same embedding theorem,

@) < 0@ [ (FF+ PR + AP dy

T,€

and, since, the balB(z,¢) C SH covers the balB(x,¢) C SM at most[e?/2] + 1 times,
we get

F@)? < ¢“C(e) /B L UFP S 1ar P AR dy.

The proof is finished by observing théf is bounded oM, anddy(z) < d+ C'(¢). O

Lemma 5.3 allows us to derive the following upper bound for the uniform norm of com-
ponents and remainder terms of horocycle arcs.

Corollary 5.4. For all s > 2, there exists a constaily := Cy(s,z¢) > 0 such that, if the
horocycle arcy, + C B(zo,d), then

(81) Y lep(@ TP + €z, T) |2, + | R, T) |2, < CFe .
DeBs

Proof. Lets > 2. By Lemma 5.3, for any functioff € W*(SM), we have:

e (F)] < max{| f(2)| : = € B(xo,d)} < C3e? | f1| .
The estimate (81) then follows immediately from Lemma 5.2. O
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5.2. Coboundaries. Let {¢; } be a measure preserving ergodic flow on a probability space.
We recall that a functiop is acoboundaryfor {¢; } if it is a derivative of a functiory along

this flow. The Gottschalk-Hedlund Theorem, or rather its proof, yields upper bounds for the
uniform or theL? norm of ergodic averages of a coboundariy terms of the uniform, or
respectively, the.? norm of its primitive f. A key consequence is that the uniform bound
for the remainder terrR (z, T') proved in Corollary 5.4 can be significantly improved.

Lemma 5.5. Letxy € SM. For everys > 3, there exists a constant; := C5(s, x¢) such
that if the end-points of, 1 are in B(z, d), then

(82) IR, 7)o < 52 e

Proof. LetZ :=Z°(SM). The orthogonal splitting (72) induces a dual orthogonal splitting
(83) W*(SM) = Ann(Z) ® Ann(Z1).

Hence, any functiog € W#(SM) has a unique (orthogonal) decompositipa- g; + go,
whereg; € Ann(Z) andg, € Ann(Z+). SinceR(z,T) € I+, the functiong, € Ann(Z+)
andg; € Ann(Z), we have:

(84) R(l’, T)(g) = R(l’, T)(gl + 92) = R($, T)(gl) = ')/:E,T(gl) :

The functiong; is a coboundary for the horocycle flow. In fact, it belongs to the kernel
of all U-invariant distributions of ordex s; hence, by Theorem 1.2, there exists a func-
tion f; € W{(SM), with2 <t < s—1,suchthat/f; = gy and || f1 ]|+ < Cll g1l s-
Letd > 0 be such that, ¢%(z) € B(zo,d). By the Sobolev embedding Theorem, the
function f; is continuous and by Lemma 5.3

85)  max{|fi(z)| : @ € Blwo,d)} < C3e? || [+ < Cie? |l g1
By the Gottschalk-Hedlund argument and the inequality (85),

1 2C"
(86) e r(gu)] = Flfio &7 (x) = fi(z)] < 73€d/2 g1 lls-
Since the dual splitting (83) is orthogonal, by the estimates (84) and (86), we get
od/2

2C"
Rz T) (9] <205 — g1 lls < e lg .

The lemma is therefore proved. O

A similar argument proves the followink? bound.

Lemma 5.6. For everys > 1, there exists a constarit; := Cg(s), such that, for all
functionsg € W*(SM),

®7) IRCT)) o< S gl

Proof. According to (84), sincg; = U f; is a coboundary ang* is volume preserving, by
Theorem 1.3 and the orthogonality of the splitting (83), we have

C
IRCT)) o = (o) o < L illo <

C
lalls<=lgls-
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The following lemma is a widely knowih? version for ergodic measurable flows. It will
be a crucial tools in the proof of the? lower bounds of Theorems 1.5 and 1.7.

Lemma 5.7(Gottschalk-Hedlund Lemmajf an L2-functionF is a solution of the equation

9) (%5%) -e.
t=0

then the one-parameter family of functiofG } rcr defined by

T
Gr(-) = /O G (¢u(-)) dt

is equibounded i.2 by 2 || F'||. Conversely if the familyG7}7r>0, is equibounded, then
the equation§8) has anL? solution.

Proof. If there exists a solutio” of the equation (88), then

T
/0 G (¢4(x)) dt = F (dp(z)) — F(2);
hence
T
||/0 G (e())dt]lo <2 Flo.

Conversely, if the family of function§G}r>o is equibounded irL?, then the family of
functions{ Fr}r>¢ defined by

T t
Pr()= =7 [ [ 6@ ) dsar

is equibounded 2. Since{¢;} is ergodic, by Von Neumann? ergodic Theorem, the
functionG has zero average and any weak lifiic L2 of {Fr} is a (weak)L? solution of
the equation (88). O

We have the following.? bounds for the components of horocycle arcs:

Lemma 5.8. For everyD € B* there exists a constadty > 0 such that, for alll” > 0, the
D-componentp(x, T') of v, r satisfies the.? upper bound

(89) lep(T) o< Cp .
If D € Z'(SM), theD-componentp(x, T) satisfy theL? lower bound

(90) sup T'|ep(+,T) || o = +o0 .
TeR+

If the continuous spectrum is not empty, we also have

(91) sup T'[|C(-,T) [| —s,0 = 400
TeR+t

for the continuous compone@itz, ') of v, 7.
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Proof. Let D € B*. There exists a unique functign € Ann(Z*(SM)*+) ¢ W*(SM)
such thatD(g) = 1, D'(g) = 0, for all D’ € B° with D' # D and allD’ € 7. By the
splitting (80), for all(z, T) € SM x R*,

Ya,r(9) = cp(z,T).
It follows that, since the horocycle flow is volume preserving,

T
I o< I [ o (o @)atllo < lallo-

If the distributionD € B* has Sobolev orde$ < 1, sinceD(g) # 0, by Theorem 1.3 the
equationlU f = g has no solutiory € L?(SM). By the Gottschalk-Hedlund Lemma 5.7, it
follows that the family of functions

T
Tep(e,T) = Trar(s) = /0 g (¥ () dt

is not equibounded il (SM). Hence (90) is proved.

The proof of (91) is completely analogous. Suppose that the continuous spectrum is not
empty and ley € W*(SM) be a function belonging to AnfZ*(SM)+) N Ann(Z3) and
such thatD(g) # 0 for someD € Z3. Since anyD € Z3 has Sobolev order equal 192,
by Theorem 1.3, the equatidif = g has no solutionf € L?(SM). Then, as before,
by the Gottschalk-Hedlund Lemma 5.7, the family of functigfdsC(-, T)(g) }rer is not
equibounded ir.2(SM). In fact,

T
TC@,T)(g) = Tyar(g) = /0 g (67 (2)) dt .

Since
1CCT)g) o < 1CCT) [ =s0 lglls

the family of functions{T'||C(-,T) || —s,0}rer is not equibounded i.?(SM), proving
(91). O

5.3. lterative estimates. By the commutation relations (14), the geodesic figw" } ex-
pands the orbits of unstable horocycle flgw} } by a factore! and it contracts the orbits of
stable horocycle flow¢!'} by a factore=*:

(92) ¢ o =l _iog, ¢ ool =Yoo
It follows that, in the distributional sense,
(93) &7 (Yar) = VX, (2),et T -

Were the splitting (72), hence the splitting (80), invariant under the action geodesic flow,
Theorems 1.5 and 1.7 would follow immediately. In fact, by the eigenvalue identities (74)
onZ$ and by the bound on the norm ¢f onZ given by Lemma 5.1, the invariance of the
splitting (80) would entail that, for ald € B°\ B, 4 and for the continuous component,

C'D(¢)—(t(x)7 et) = C’D(:Dv 1) eADt )

1C(¢% (), e) | =5 < Ca(L+ [t]) e /2| Cla, 1) || -
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and, if1/4 € oy, by identity (75) for all pairgD*, D~} C By 4,

cp+ (97 (2), €") = [ep+(x,1) — gcpf (z,1)] e t/?

Cp- (Qb)—(t(x)vet) = Cp- (x’ 1) e_t/2 )

allowing us to conclude.

The aim of this section is to prove that, in spite of the lack of invariance of the split-
ting (80), the projections onth) andD < B of the geodesic push-forwards of the remainder
termR(z,T") are negligible.

Letx € SM, T > 0. It will be convenient to discretise the geodesic flow titrie 1 and
to consider the push-forwards of the arcr by q%, whereh € [1,2] and/ € N. Then the
distribution (measure);; (v.,r) has a splitting

(94)

(95) S (Vo) = > ep(@, T,0D + C(x,T,0) + R(z,T,1).
DeBs

We will prove pointwise and.? bounds on the sequences of functiens-, 7', ¢), C(-, T, ¢)
andR -, T, ¢). By the identity (93) and the definition (80), we have:

C’D(.%', T7 E) =Cp (d))ffh(w)a eﬁh T) 5
(96) C(z,T,0) = c( X, (z), et T) ,
R(z,T,0) =R (gb)f@h(x), elh T) .

Uniform bounds and.? bounds on the functionsp(-, T\, ¢), C(-,T,¢) andR(-, T, ¢) are
clearly equivalent to uniform and? bounds oncp (-, e T), C(-, e T) and R (-, e T)
respectively. Let

TD(:Ea Ta E) =Cp (gbi)z(R(:E’ Ta 6)) eR )

®7) Re(2,T,0) :=C (¢5 R(x, T, ¢)) € T¢ .

By the identitygbé“)h = ¢y o ¢y, since the distribution® € B*\ B, , are eigenvectors
of the geodesic flow{¢;* } (see (74)) and the spadg is {¢;* }-invariant, we obtain by
projecting onD-components and on the continuous component:

ep(x, T, 0+ 1) = cp(x, T, 0) " + rp(x,T,0);

(%8) i
C(Z’,T,E + 1) = ¢h C(:B>Ta E) + RC(x7T7 E) .

If 1/4 € oy, for all pairs{D*, D~} C B;,, we obtain by (75):

(99) ¢p+ (x’T’K + 1) = [CD+ (:E»T? 6) - ch— (vaa Z)] e h/? + Tp+ (xaTv 6) ;

ep— (2, T, 0+1) = cp-(2,T,0) e ? + rp—(x,T,0).

Bounds on the solutions of the difference equations (98) and (99) can be derived from the
following trivial lemma.
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Lemmab5.9. Let® € £(E) be a bounded linear operator on a normed sp#td_et{ R, },
¢ € N, be a sequence of elementsiof The solution{z,} of the following difference
equation ink,
(100) Top1 = ®(zg) + Ry, LEN,
has the form
-1 '
(101) re =0 (x0) + Y IR,
=0
By Lemma 5.9, the proof of Theorems 1.5 and 1.7 is essentially reduced to estimates
on the ‘remainder terms'p(x, T, ¢) andR¢(z, T, ¢). Such estimates can be derived from
Lemma 5.5. Letrg € SM be a reference point as in Lemma 5.5 andilet SM — R be

the distance function from,. For eachiz,T) € SM x R and eact € N, letd(z, T, ¢)
be the the maximum distance of the endpoints of the horocycléﬁ%(%m) from xq:

(102) d(z, T, £) := max{do (cz»)fgh(m)) .do (gz»)_ffh o ¢l (m)) 1.

Lemma 5.10. There exists a constadt; := C7(s) such that, for all(z,T) € SM x R*
andall/ € N,

2
103 3 (e TOP + [Re(@ D012, < () expld(e1,0) - 20},
DeBs

Proof. Let Cx (s) := maxue(1 9 || 95 || —s. Then, by the definition (97) and Lemma 5.2,
we have

7 rp(@, .0 + | Re(z, T.0) |2, < C3C% IR, T,0) |12,
DeBs

ButR(z, T, ¢) is the “R” component of an arc of horocycle of lengtf T whose endpoints
are at a distancé(z, T, /) from the reference point, (cf. (96), (93), (102)). Thus by
Lemma5.5| R(x,T,¢) || _s < Cs5e®T0/2 [ethT and the lemma follows. O

The difference equations (98) and (99) also yield estimates fakthmrms of the func-
tionsep (-, T, ¢)and || C(-,T,¢) || —s onSM. However, in the case of the continuous compo-
nent, suchl.2 bounds are not effective because of the lackdestimates on the remainder
term || R¢(-, T, ¢) || —s. For theD-components we can prove the following:

Lemma 5.11. For eachD € B¢, there exists a constanily := Cg(D, s) > 0 such that, for
allT>0andall/ € N,

C
(104) I T 0 N0 < 25 e
Proof. Let g := gp € W*(SM) be the unique function such th&(g) = 1, D'(g) = 0
forall D’ € B%, D' # D, andg € Ann(Zg) N Ann(Z3(SM)*L). Letgy, = ¢%,(g9). By
definition of the remainder term we hawg(z, T, ¢) = R(z, T, ¢)(gn). Again by definition
(see (96)) we hav®&(z, T, () = R (¢~,,(z),e"T) and we obtain, using Lemma 5.6:

Ce

Cs o
Tefh

)
HTD(WT’K) HO = ”R(-,T,E)(gh) ||0 < T

thHfs <
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with Cg := Cg MaXpe[1,2] | gn || s- =

5.4. Bounds on the components: the cuspidal casén the cuspidal case, the precision of

our asymptotics of geodesic push-forwards of a horocycle arc depends on the rate of escape
into the cusps of its endpoints. Lé§ : SM — R* be the distance function from a fixed
pointzy € SM. For any givers € [0,1] andA > 0 let

Vaei={z € SM|dy (67 (z)) < A+olt|, forall ¢<0}.
Vo= Vao

The setsl, do not depend on the choice of the paigt € SM and they are measurable
as they can be written as countable unions of closed sets (hence, thBy sets). Since
the geodesic flow has unit spe&d = SM. On the other hand, by the logarithmic law of
geodesicsy, has full measure for any > 0 [56].

Lemma 5.12. Lets > 3. For everyD € B of order Sp > 0, there exists a uniformly
bounded sequence of positive bounded funct{dts(z, T, ¢) }ycz+, (2, T) € Vi, x RT,
such that the following estimates hold. For every horocycle~arg having endpoints:,
¢l (x) € Va, and for alll € Z+ we have, ifD € B° \ B,

1/47
Kp(z,T,0) e~ Snth , if Sp<1-— % ,
(105) lep(x, T, 0)| < { Kp(x,T, ) Le 50t ifSp=1-9%,
Kp(z,T,0) e~ =2 i Sp>1-9.
If 1/4 € opp andD € B, we have
Kp(x, T, 0) Le /2 ifo<1,
106 T, 0)| < ;
(106) len(z. T.£)] {Kp(x,T, D@2 g =1,

There exists a positive constakit := K¢ (A, 0, s,T), such that the following estimates
hold. For every horocycle arg,,  as above and for all € Z*, we have
Kele /2 ifo<l,
Ko 2 e th/2 ifo=1.

In addition, there exists a positive constdiit:= K (A, o, T, s) such that, for ally, 7 with
endpoints belonging to the sef, , and for all ¢ € Z™,

(107) 1C(2, T, 0 [ s < {

(108) > Kp(z,T,0) + K¢ < K*.
DeBs

Proof. For allD ¢ B, 4, by the first difference equation in formula (98) and by Lemma 5.9
with E := C and® the multiplication operator by?" € C, we obtain

(109) |CD(vaa €)| < ‘CD(x>Ta 0)| e_SfDeh + ZD(xaTv f)’
with

T
L

Sp(x,T,0) ==Y |rp(x,T,j)|e”5PhE==1
J

Il
=)
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We must therefore bound the termis(z, T,0)| and e5?"Sp(z, T, ) by Kp(x, T, 1),
Kp(z,T,0)0 or Kp(z, T, )eP~1+2) according to the different values 8p, for some
uniformly bounded sequence of functiop&p(x, T', ¢) }yez+ oNVa , x R,

It follows from Corollary 5.4, taking into account the fact that the endpoints,of
belong to the selts , C B(xzo, A), that there exists a continuous functiop: Rt x Rt —
R* (which can be chosen constanflif has a positive injectivity radius) such that

(110) > len(@, T,0)]” < C(A, T) ;
DeBs

thus the termcep (z, T, 0)| in formula (109) satisfies estimates finer than (105) and (108).
Using again the fact that the endpoints 9fr belong to the set’, , and the esti-

mate (103), a calculation based on the Cauchy-Schwartz inequality yields the following

bounds on the remainder teriis,(z, 7', ¢) for D ¢ B, ;4. ForallS > 0, A > 0,0 € [0,1],

there exists a constaat := C’(A, o, S, s) > 0 such that

C/

. g
Z Y2 (z,T,0) 257 < T2 IfS<1f§;
D:Sp<S
C' 2 , o
(111) >, Sp@ T < T, f5=1-7;
D:Sp=S
!
> Sh,T.0) < % e 2m)h it > 1 — g
D:Sp>S

It follows from (110) and (111) that, for eadh € 5%, the sequence of positive functions
(112)

lep(@,T,0)| + Ep(z, T, £)e Pt if Sp<1-5,
Kp(z,T,0) := { (lep(z,T,0)| + Sp(x, T, £)e P ) ¢ if Sp=1-9,
lep(z,T,0)| + p(z, T, £)eSpth ) e~ (So=1+5)th if Sp>1-72.

is uniformly bounded for alty, 7 with endpoints belonging to the sk, ,. In view of the
bound (109), this proves the estimate (105) for eBcl B3, /,. In addition, since the set
of real numberq Sp | D € B¢} is finite, the inequalities (110) and (111) imply that, for all
7. With endpoints belonging to the s& , and for all¢ € Z™,

(113) > Ep(x,T.0) <",
'DEBS\Bl/4

for some constant”’ := C"(A,0,T,s) > 0, thereby proving the upper bound (108) over
all D-components wittD € B°\ B 4.
The proofs of the upper bounds for all paf®*, D~} C By, (if 1/4 € 0y) and
for the continuous component are similar. In the first case, by formula (99) we can apply
Lemma 5.9 with = R? and

o 1 —h/2
(114) P = M2 (0 . ) .
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By formula (101), we obtain

Lh
(115) ’CD+ (JZ, T> £)| < |CD+ (l’, Tv 0) - ? Cp- (l’, Tv 0)| e—ﬁh/? + ZD+ (.’L’, Ta 6) )
|C’D* (:U, T7 €)| < |CD* (xv T7 0)‘ 676h/2 + ZD* (I7 T: E) )

with

/-1 (E I 1)h '
E'DJF (l‘? T7 6) = ‘TD+ (117, T7 ]) - + pD- (I7 T7 ])’ 67h(£7‘771)/2 )

=0

(116) -

Sp-(2,T,0) ==Y |rp-(x,T, j)| e "D/,
j=0
Since the endpoints of the horocycle ager belong to the sét, ,,, by the estimates (110)
and (103), the sequence of positive functions
(117)
Kops (3,T,0) i (|CD+ — %CD—K.T,T, 0) + YXp+(x,T,0) eéh/Q) 1 ifo<l1,
T (lept = L ep-|(2,T,0) + Ep+(z,T,€) e/?) (72, ifo=1.

is uniformly bounded by a constaﬁt‘g = Kg(A, o,s,T) > 0.
fD=D" ¢ 5’1‘/4, it follows from the second lines in (115) and (116) that the sequence
of positive functionsk'p(z, T', £), defined as in (112) witlfp = 1/2 < 1 — g, is uniformly
bounded by a constakfp := Kp(A,o,s,T) > 0.
SinceB, 4 is always a finite set, by the extimate (113) there exists a conétiaht:=
C®)(A, s, T) > 0 such that, for ally, 7 with endpoints belonging to the s&f, and for all
LeZt,

(118) > Kp(z,T.0) < ).
DeBs

For the continuous component, we apply Lemma 5.9, Witk 75 and® = gb})f, to the
second difference equation in formula (98). We obtain

(119) 1C(z, T, 0) || =5 < || ®° ]| —s [ C(2, T, 0) || -5 + Se(,T,0)
with
/—1 ‘
Se(@, T,0) = |97 Re(x, T, j) || -
j=0

By Lemma 5.1 the norm of the operatof on Zg is bounded byCh (1 + [t[)e~*/2. Tak-
ing into account the fact that the endpointsyefr belong to the set4 , we find: (1) by
Lemmata 5.2 and 5.3 we obtain that there exists a conététht= C*) (A, s, T') such that
| C(x,T,0) || _s < C™; (2) using the estimate (103) fofRc¢(z, T, ) || —s we find that the
sequence of positive functions defined by:

1C(,T,0)|| -5 + Se(x, T,0)e™/2)e=1,  ifo<l,

(120) KC(IL’,T, ﬁ) = .
| C(z,T,0) || _s + Se(x,T,0)eh?) =2, ifo=1.
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is uniformly bounded by a constaki; := K¢(A,0,s,T) > 0. O

Remark 1. In the caser = 1, the set, = SM and the results of Lemma 5.12 hold for all
(x,T) € SM x R™. In addition, for every bounded subgétc SM, there exists a constant
A := Ap > 0 such thatF" C V4. In fact, one can takél p := max{dist(z, z¢) |z € F'},
for a fixedxy € SM.

For theD-components we also have the followifid upper and lower bounds:

Lemma 5.13. Lets > 3. For eachD € B°, there exists a consta#t’, = K'(D, s), such
thatforall¢ € Z+:

Kp e, it D¢ B, & Sp<1;
(121) lep(, T 0) [0 < { Kpte=oth,if DeBf, or Sp=1;
Kpe ™, if DeB* & Sp>1.

If Sp < 1, there exist¥(}, := K"(D,s) > 0,Tp :=T(D,s) > 0andlp := {(D,s) €
7t (¢p = 1if D ¢ Bf,,) such that, for alll’ > Tp and all¢ > (p:

1/4
K1 e=Spth it D¢B,:
122 LT 0 o> 1/4}
(122) lenl T8 o = {nge—wh it Db,

Proof. The proof of L? upper bounds is similar to that of the pointwise upper bounds in
Lemma 5.12. In casP ¢ B, 4, it is based on the difference equation forcomponents in
formula (98), on the upper bounds (89) of Lemma 5.8, on Lemma 5.11 and on Lemma 5.9
for the normed spac& := L?(SM) and the operato® € L(E) of multiplication by
e’h ¢ C. In caseD ¢ B4, it is based on the vector-valued difference equation (99) and
on Lemma 5.9 for the normed spaEe= L?(SM) x L?(SM) and the operatob € L(E)
given by the natural action of the Jordan matrix (114)Hn

The proof of the lower bound (122) is as follows. In cd3ez B, 4, by the difference
equation forD-components in formula (98) and by Lemma 5.9, we have:

len(T,0) o2 llep( T,0) [oe™*P™ — Sp(T, ()

with

~

—1
Sp(T,0) =Y | rp(,T,j) || ge52¢=I=h,
j

i
=)

If {DF, D~} C By4, by the vector-valued difference equation (99) and by Lemma 5.9,
we have

th _
(123) |l ep+ (T, 0) o > || 5 ep-(-,T,0) — ep+ (T,0) [ o e % = Spi (T, 0)

H Cp- ('7T7 E) H 0= H Cp- ('7T’ O) H 0 e_fh/Q - ED— (T) E) )
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with

T
L

(t—j—1)h
2

Spe(T,8) =) |lrp+(-T,j) - ro- (T, 7) | ge P=7-1/2
(124)

Sp-(T,0) :

NT.
|
- o

| rp- (T, 7) || g e ME—=D/2,

<
Il

From the upper bound (104) fdrrp (-, T, j) || o of Lemma 5.11, we obtain that, for each
D € B® with Sp < 1, there exists a constaét:= C (D, s) > 0 such that, for all € Z*,

C _—Splh H + .
e if D¢gB

125 Sp(T,0) < {1 1747
(125) o(l;6) < {gfge—ghﬂ if DeBy,.

The conditionSp < 1 implies also, by Lemma 5.8, that there exiis := T'(D, s) > 1
such that, for alll’ > Tp and all¢ € ZT,

c
lep(-,T,0) |0 > 2= .

T
The L? lower bounds hence follow from the lower bounds (123) andfor ¢ 6;74 from
the L? upper bound for th&®*-component proved in Lemma 5.8. O

For allt > 0, the push-forward probability measusg (.. ) is the uniformly distributed
probability measure on a stable horocycle arc of lerigth= e’ T'. The following quanti-
tative equidistribution result holds. L&t (SM) C Z°(SM) be the subspace of invariant
distributions orthogonal to the volume form.

Theorem 5.14.Let s > 3. Then there exists a constafity := Cy(A, 0, s,T) such that
for any horocycle arey, r with endpoints belonging to the sgj ,, for anyt > 1 and for
all f € Ws(SM), we have

(126) & (vor)(f) = |, favol+ S eh(a, T, t) D(f) T, P +

_1 o _
+ C3 (2, T, 1) ()T, 2 log® Ty + RE(z, T,t)(f) T2 log™ T; .

with ¢, (2, T, t) € C, C*(x,T,t) € Zg andR*(x, T, t) € W—*(SM) satisfying the follow-
ing upper bounds:

Z |CSD($7T7t)|2 < CQ,
DeB

NIQ

-1’_7
1C°(z, T, ) || - < Co,
IRz, T, ) [| s < Cy.

In the above asymptotics, the exponeptis 1 if 0 < 1 and equal if o = 1; the expo-
nent3, is 0 if everyD € B° has Sobolev ordefp # 1 — § and equalsl otherwise.
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In addition, for every invariant distributio> € 8_1[5, there exists a constaiitp :=
C(D,s) > 0 such that, ifl" > 0 is sufficiently large, then for all > 0,

051 < H CD('vT’t) H 0<Cp.

Proof. Lett > 1. There existh € [1,2] and?¢ € Z* such thatt = ¢h. The distribu-

tion ¢;X (v.r) € W=*(SM) can be split as in (95), hence the expansion (126) follows.
The pointwise upper bounds on the coefficients can be derived from Lemma 5.12 for the
D-components and the-component and, by its definition in (96), from Lemma 5.5 for the
remainder ternR(x, T\, ¢) of the splitting (95). We remark that the term with coefficient
R5(z,T,t)(f) in (126) includes the contributions of dll-components witlD ¢ 5'~% as

well as the contribution of the remainder te@®{x, 7', ¢) of the splitting (95). Finally, the

L? bounds for theD-components follow from Lemma 5.13. In fact, all such estimates are
uniform with respect té € [1, 2]. O

Theorem 1.7 follows from Theorem 5.14 (fer= 1) and from Remark 1.

In the particular case that,  is supported on a closed cuspidal horocycle, our methods
yield a simple proof of a weaker version of a result of P. Sarnak [51]. Sarnak’s proof is based
on Eisenstein series (Rankin-Selberg method).

Proposition 5.15. Let s > 2 and letw, r be a closed cuspidal horocycle. Then there exist

coefficients:3, € Cfor D ¢ Blf and a distribution-valued functio@®(¢) € Z¢, uniformly
bounded with respect > 0, such that the following asymptotics holds. Foréalt 0,

(127) ¢ (ea)(f) = | fdvol+ > DT +

SM /2

DeBY

+ C()(F)T, * log T

Proof. A uniformly distributed probability measure supported on a closed cuspidal horo-
cycle is aU-invariant distribution. In fact by the Sobolev embedding theorem, if 2,
thenv,r € Z°(SM). Hence, in the splitting ofy, r according to (80), the remainder
termR(x,T) = 0. The result then follows immediately from the description of the spec-
tral representation of the one-parameter gréap } on the spac&®(SM) given by Theo-

rem 1.4 and Lemma 5.1. O

5.5. Bounds on the components: the compact casén the compact case, the spectrum
of the Laplacian is purely discrete and therefore the splitting (80) of a horocycle, arc
becomes:

Yo, T = Z ep(x, T)D + R(x,T).
DeBs
Lemma 5.12 can be strengthened as follows:
Lemma 5.16. Let s > 3 and let7y > 1. There exists a sequence of bounded positive

functions{Kp(z,T)}peps, (z,T) € SM x R*, such that, for any horocycle arg, -
with T > T, we have
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Kp(z, T)T~5P, if DgBl/4 & Sp<1;

(128) ep(@.T)| < Kp(x, T)T~57 log T if D631/4 (= Sp=1/2);
T | Kp(x,T)T 110gT if DeB* & Sp=1;
Kp(z,T)T if DeB & Sp>2.

In addition, there existd( := K(s,TO) > 0 such that, for all(z,T) € SM x RT,
T > T,
(129) > Kp(z,T) < K*.
DeBs

On the other hand, for eacP € B! ¢ B, there existk, := K'(D,s) > 0 and T}, :=
T'(D, s) > 0 such that, for alll’ > T7,,

K/, T—5p if D¢B,;
(130) lep( T o= 7. s ’ i
KL T%Plog T, if DebBy,-

Proof. Let Ty > 0. For allT > €Ty, there exist € [1,2] and/ € ZT such thafl’ = ¢ Ty,
By the first identity in (96), it follows that

C'D(:E7T) =CD (ngg(ﬂf)»TOag) ;
lep(T) 1o = [lep (- To,€) Jlo -
SinceM is compact, the unit tangent bundlé/ is compact and has finite diameter. Hence,
by Lemma 5.5 and by the argument of Lemma 5.12, there is a corfstan® and, for each
D € B?, there exists a positive functioRp(z,T), (x,T) € SM x RT, such that the

estimates in (105), (106) and (108) hold with= 0. The desired uniform upper bounds
then follow. TheL? lower bounds follow immediately from Lemma 5.13. O

(131)

Theorem 1.5 follows immediately from lemma 5.5 and lemma 5.16.

Lemma 5.16 implies the following pointwise lower bound on the deviation of ergodic
averages.

Corollary 5.17. If D € B' C B, there exist constant&’, := K"(D,s) > 0, ap =
a(D,s) > 0andT} := T"(D, s) > 0 such that the following holds. For &l > T7/ there
exists a setd C SM of measure at leastp > 0 such that, for allke € Ap,

K} T=57, if DB
KpT~%PlogT,  if DeBy,.

Hence, the lower bound 82 holds for almost alk: € SM and for infinitely many” > 0.

1/4?

(132) lep(z,T)| = {

Proof. Let D € B'. SinceSp < 1, by Lemma 5.16, there exist constarifs > K, >0
such that, for alt: € SM and allT’ > T}, we have

Kp
ep(a, T)] <

7 leoC Do

Fix any constank € |0, 1[ and let
Ap :={x € SM | |ep(z,T)| > K ||ep(-,T) || o} -
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Then, forT > T/,, we have

Kp
(133) <K+<K> |AT|) len(-T) |2 > / ep(a, )P dvol +
SM\Ar
T / ep(a, T)Pdvol = [[ep(-T) |12
A

It follows that the measure of the sdt- is uniformly bounded below for all' > 77, by a
positive constant. In fact, we have

Ag| > (1 - K?) (2;)

The desired pointwise lower bounds hold.4s by its definition and by thé? lower bounds
in Lemma 5.16.

By a standard Borel-Cantelli argument, the gdebf x € SM such thatr € Ap for
infinitely manyT > Ty, has positive measure. By the ergodicity of the horocycle flow, the
setA has full measure.

O

We conclude by proving that the Central Limit Theorem does not hold for horocycle flows
on compact hyperbolic surfaces.

Proof of Corollary1.6. Let D € B! C B*. LetSp € 0, 1] be its Sobolev order. Let €
W#(SM), s > 3, be any zero average function such tB4tf) # 0 and f belongs to the
kernel of allU-invariant distributions of the basls® of Sobolev ordelS < Sp.

By Theorem 1.5, there exisfs > 0 such that, fofl" > 0 sufficiently large, the functions

T
— Uy
Fr .—/0 f(or () dt

are uniformly bounded above Wy || Frr || o. It follows that the probability distributiopr of
Fr/ || Fr|| o is supported within the interv@- K, K|. By Theorem 1.3 and Corollary 5.17,
there exists an interval around zero whose complementhaseasure larger thamp > 0,
for all sufficiently largel” > 0. O

6. APPENDIX

Proof of Lemm&.1 The case of the principal series € iR) is immediate.
In the case of the complementary series, & |0, 1] we write, fork > 1,

k .
_ 1+v 21— 1+v
=1, =
vk ok <1—y>i1_[22¢—1—y

(empty products are set equallp We have

k

k
14+v 2v
=S log(14+—2 ).
H22—1 ;Og<+2i—1—y>

1=2
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We then estimate the logarithms by the inequalities
x
7 <log(1 <z, forzeR".
1+gg_og( +x) <z x
Finally we estimate from above and below the resulting series by the integral inequality.
In the case of the discrete series=£ 2n — 1), we remark that, for alk > n,

k

I 2i—1—v b i—n (k—n)!(2n —1)!
I’ —_ '
o 21y DL it -1 (k+n-—1)!

By the Stirling’s formula,
!

(k=n+ D! H(k—n+ D (kg 2
k+n—1)'"" (k+n—-1)kr1\ktn-1)
wherex means that, for some constarit> 1 independent of. andk, the ratio of the left

side to the right side is bounded above®@yand below byC~! for all n > 1 andk > n.
Hence,

k— 1 k—n+1
(134) L4 ~ e v <k+n+1> (k+n—1)""3(k-—n+1)"2 =
—
_ k+n—1
etiEty) ey

Sincek > ¢ and the functior(1 + m)i is decreasing on the interval> —1,

(+n -1\ v—1 _tnpa]? !
135) (oo Al <
(139) (E—n-i—l) [( Ry 1} =

v—1 k—n+1
<la+ v—1 )k;f{l _ k4+n-—1
k—n+1 k—n+1

{—n+1 £4+n—1
. ( v_1 ktizlul_ k+n—1 k+n—1
k+n-—1 k—n+1
Sincek > ¢, the function
k—n+x
f—n+x

is non-increasing ok . Hence
k4+n-—1 _k—n+1/< k—n+1
l+n—-1 (—n+v  L-—n+1

It follows that

—ypl _1 —v
H””“gc k—n+v 2 (k—n+1 2§C’ k—n+v
IL, , {—n+v {—n—+1 {—n+v
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k—n+1\""
>o (== .
2C <€—n+1>

Proof of Lemmat.2 Since|Il, ;| > |II, x| forall & > ¢ > 0, if |v| > 1/2 the estimate is
immediate by the triangular inequality. #fe ‘R or v €] — 1/2,1/2[, we have

k . k .
d IT, d 2i—1+v 2(2i — 1)
71 y — 71 _— = —_— .
dv <Hy,k> woe 11 55— Z,Ze;l @i-1p—p
By the integral inequality,

=041
d HV,Z HV,Z d HV,Z Hl/,( 1+k
- | = |=7=Il-log | < Cl—|log | —— |-
dv H,,’k Hu,k dv Hl,,k sz,k 1+7

Hence, if|v| < 1/2 the estimate follows from the intermediate value theorem. O

and

N

Wy o o (E=nt1 AN TR
IL,, — f—n+1 {—n+v

O
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