ÉCOLE NORMALE SUPÉRIEURE DE LYON. L3 ANALYSE COMPLEXE 2013-2014. DEVOIR DE CONTROLE CONTINU DU 02 DÉCEMBRE 2013.

Les réponses données doivent être soigneusement justifiées. Le problème comporte 3 parties fortement dépendantes entre elles et utilise le théorème de changement de variable pour les intégrales doubles et la formule de Green-Riemann dont on rappelle l'énoncé:

Théorème 1. Soit $K \subset \mathbb{C}$ un compact régulier et $\alpha = Pdx + Qdy$ une forme différentielle de classe C^1 définie sur un voisinage de K. Alors:

$$\iint_K \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \int_{\partial K} \alpha.$$

Notations

Si $z_0 \in \mathbb{C}$ et $0 \le r < R \le +\infty$ on note:

$$D(z_0, R) := \{ z \in \mathbb{C} \mid |z - z_0| < R \},$$

$$\bar{D}(z_0, R) := \{ z \in \mathbb{C} \mid |z - z_0| \le R \},$$

$$A(r, R) := \{ z \in \mathbb{C} \mid r < |z| < R \}.$$

Pour une partie K de \mathbb{C} on note $K^c = \mathbb{C} \setminus K$. En particulier $\bar{D}(0,r)^c = A(r,+\infty)$ est l'extérieur du disque $\{|z| \leq r\}$.

Partie 1

- (1) Redémontrer à l'aide du théorème 1 le théorème de Cauchy qu'une fonction holomorphe f de classe C^1 et définie sur un voisinage d'un compact régulier K vérifie $\int_{\partial K} f(z) dz = 0$.
- (2) Soit U un ouvert de \mathbb{C} et $f:U\to\mathbb{C}$ une application holomorphe injective. Montrer que l'image de U est un ouvert dont l'aire $\mathcal{A}:=\mathcal{A}(f(U))$ est donnée par:

$$\mathcal{A} = \iint_{U} |f'(x+iy)|^2 dx dy.$$

- (3) Soit $f \in \mathcal{O}(A(r,R))$ injective. Exprimer $\mathcal{A}(f(A(r,R)))$ en fonction des coefficients du développement de f en série de Laurent.
- (4) Soit K un compact régulier. Montrer que:

$$\mathcal{A}(K \setminus \partial K) = \int_{\partial K} x dy = -\int_{\partial K} y dx = \int_{\partial K} \frac{i}{2} z d\bar{z} = -\int_{\partial K} \frac{i}{2} \bar{z} dz$$

Partie 2

On appelle \mathcal{U} l'ensemble des fonctions holomorphes f injectives sur $\bar{D}(0,1)^c$ telles que $f(z) = z + B + g(z^{-1})$ où $B \in \mathbb{C}$ et $g \in \mathcal{O}(D(0,1))$ vérifie g(0) = 0.

On note $\mathcal{U}' \subset \mathcal{U}$ l'ensemble des $f \in \mathcal{U}$ telles que $0 \notin f(\bar{D}(0,1)^c)$.

- (1) Soit $f \in \mathcal{O}(\bar{D}(0,r)^c)$ telle que f est injective et $f(z) = P(z) + g(z^{-1})$ où $P \in \mathbb{C}[z]$ est un polynôme et g est une fonction holomorphe sur $D(0,\frac{1}{r})$ telle que g(0) = 0.
 - (a) Montrer que P est une fonction affine et donc que $P(z) = cz + c_0$.

- 2
- (b) Montrer que pour $+\infty > R > r$, $K_R := f(\bar{D}(0,R)^c)^c$ est un compact régulier dont on déterminera le bord.
- (c) Notons $g(z) = \sum_{k=1}^{+\infty} c_k z^k$. Montrer que l'aire de K_R est donnée par:

$$\mathcal{A}(K_R) = \pi(|c|^2 R^2 - \sum_{k=1}^{\infty} \frac{k|c_k|^2}{R^{2k}}).$$

On supposera désormais r=1 et c=1, c'est à dire $f\in\mathcal{U}.$

- (2) Montrer que $\sum_{k=1}^{\infty} k|c_k|^2 \le 1$.
- (3) Montrer que $|c_1| \le 1$ et étudier le cas d'égalité. Montrer que dans ce cas $f(\bar{D}(0,1)^c)^c$ est un segment de longueur 4.
- (4) Montrer que

$$\forall z \in \bar{D}(0,1)^c \quad |f'(z)| \le \frac{1}{1 - \frac{1}{|z|^2}}.$$

Indication: après majoration brutale de |f'(z)| où f'(z) est représentée comme une somme de série entière de la variable 1/z, on cherchera comment utiliser (2).

- (5) Dans quel cas l'inégalité (4) est-elle une égalité en $z=\rho\epsilon$ avec $|\epsilon|=1$ et $\rho>1$? Déterminer alors $f(\bar{D}(0,1)^c)^c$.
- (6) Montrer que si f_1 et f_2 sont deux fonctions dans \mathcal{U} telles que $f_1(\bar{D}(0,1)^c) = f_2(\bar{D}(0,1)^c)$ on a $f_1 = f_2$.

Indication: il pourra être utile de considérer la fonction $\frac{1}{f(z^{-1})}$.

- (7) En déduire que, pour $f \in \mathcal{U}$, si $f(\bar{D}(0,1)^c)$ est symétrique par rapport à un point du plan complexe, ce point a pour affixe le nombre complexe B.
- (8) Montrer que pour tout $f \in \mathcal{U}'$ il existe une unique fonction f^* dans \mathcal{U}' telle que $f^*(z)^2 = f(z^2)$. On notera symboliquement $f^*(z) = \sqrt{f(z^2)}$.
- (9) En appliquant (6) à f^* montrer que si $f \in \mathcal{U}'$ on a $|B| \leq 2$.
- (10) Montrer que pour tout $f \in \mathcal{U}$ si $Q \in \partial f(\bar{D}(0,1)^c) = \overline{f(\bar{D}(0,1)^c)} \cap \overline{f(\bar{D}(0,1)^c)^c}$ on a $|B-Q| \leq 2$.

Partie 3

On appelle \mathcal{U}^* l'ensemble des fonctions holomorphes f injectives sur $\bar{D}(0,1)$ telles que f'(0) = 1.

- (1) Montrer que si $f \in \mathcal{U}^*$ et $f(z) = z + a_2 z^2 + \dots$ on a $|a_2| \le 2$.
- (2) Montrer que dans la question précédente l'égalité est atteinte pour les seules fonctions de la forme $f(z) = \frac{z}{(1+e^{i\theta}z)^2}$ avec $\theta \in \mathbb{R}$.
- (3) Montrer que si $f \in \mathcal{U}^*$, f(D(0,1)) contient le disque de centre 0 et de rayon 1/4 (Théorème de distortion de Koebe).

Indication: si $z_0 \not\in f(D(0,1))$ on pourra considérer la fonction $e(z) = \frac{f(z)}{1 - \frac{f(z)}{z_0}}$.