MAT4213 - GÉOMÉTRIE DIFFÉRENTIELLE Deuxième semestre — 2020-2021

Fiche 2: Courbes, dérivées covariantes, champs de repères

Courbes planes

1. Soit $\alpha:]a,b [\to \mathbb{R}^2$ une courbe régulière paramétrée par longueur d'arc, que l'on écrira $\alpha(s) = (\alpha_1(s), \alpha_2(s))$. Soit $\mathbf{t} = \alpha':]a,b [\to \mathbb{R}^2$ la courbe **tangente** de α et soit $\mathbf{n}:]a,b [\to \mathbb{R}^2$ la courbe **normale** de α , *i.e.* $\mathbf{n}(s)$ est le seul vecteur unitaire tel que $(\mathbf{t}(s),\mathbf{n}(s))$ est une base orthonormale orientée de \mathbb{R}^2 pour tout $s \in]a,b[$. On rappelle que la **courbure** de α en $s \in]a,b[$ est donné par $\kappa(s) \in \mathbb{R}$ tel que

$$\mathbf{t}'(s) = \kappa(s) \cdot \mathbf{n}(s). \tag{1}$$

- (a) Montrer que la courbure de α en s coïncide avec l'aire (avec signe) du rectangle défini par { $\mathbf{t}(s)$, $\mathbf{t}'(s)$ }. Calculer l'expression explicite de $\kappa(s)$ en fonction de α_1 , α_2 et leurs dérivées.
- (b) Montrer que les vecteurs $\mathbf{t}'(s)$ et $\mathbf{n}'(s)$ sont orthogonaux.
- (c) Montrer que, étant donné r > 0, l'application $t \mapsto |\kappa(s)|$ est constante de valeur 1/r si et seulement si l'image de α est incluse dans un cercle de rayon r.

Noter en particulier que (1) implique que

$$|\kappa(s)| = ||\mathbf{t}'(s)|| = ||\alpha''(s)||,$$

pour tout $s \in]a, b[$.

2. Soit β :] a, b [$\rightarrow \mathbb{R}^2$ une courbe régulière que l'on écrira $\beta(t) = (\beta_1(t), \beta_2(t))$. À partir de la règle de dérivation en chaîne et de l'expression

$$\kappa_{\alpha}(t) = \alpha_1'(t)\alpha_2''(t) - \alpha_2'(t)\alpha_1''(t)$$

pour tout $t \in]c,d[$ de la courbure κ_{α} d'une courbe $\alpha:]c,d[\to \mathbb{R}^2$ paramétrée par longueur d'arc obtenue dans l'exercice précédent, déduire que la courbure κ_{β} de β est

$$\kappa_{\beta}(t) = \frac{\beta_1'(t)\beta_2''(t) - \beta_2'(t)\beta_1''(t)}{[(\beta_1'(t))^2 + (\beta_2'(t))^2]^{3/2}},$$

pour tout $t \in]a, b[$.

3. Soit $\alpha:]a,b[\to \mathbb{R}^2$ une courbe régulière paramétrée par longueur d'arc dont la courbure ne s'annule pas. Étant donné $s_0 \in]a,b[$, on rappelle que le **centre de courbure de** α **en** s_0 est le point

$$x(s_0) = \alpha(s_0) + \frac{1}{\kappa(s_0)} \mathbf{n}(s_0),$$

et le **cercle osculateur à** α **en** s_0 est le cercle de centre $x(s_0)$ et de **rayon de courbure** $\rho(s_0) = 1/|\kappa(s_0)| > 0$. Montrer que la courbe α et le cercle osculateur à α en s_0 admettent la même droite tangente et la même droite normale en $\alpha(s_0)$.

Courbes dans l'espace

4. Les formules de Frenet-Serret. Soit $\alpha:J\to\mathbb{R}^3$ une courbe birégulière de classe C^∞ paramétrée par longueur d'arc, où $J\subseteq\mathbb{R}$ est un intervalle ouvert. Montrer que les identités

$$\mathbf{t}'(s) = \kappa(s)\mathbf{n}(s)$$

$$\mathbf{n}'(s) = -\kappa(s)\mathbf{t}(s) + \tau(s)\mathbf{b}(s)$$

$$\mathbf{b}'(s) = -\tau(s)\mathbf{n}(s)$$
(2)

peuvent se réécrire sous la forme

$$\mathbf{t}'(s) = \omega(s) \wedge \mathbf{t}(s)$$

$$\mathbf{n}'(t) = \omega(s) \wedge \mathbf{n}(s)$$

$$\mathbf{b}'(t) = \omega(s) \wedge \mathbf{b}(s)$$

où
$$\omega(s) = \tau(s)\mathbf{t}(s) + \kappa(s)\mathbf{b}(s)$$
.

5. Soit $\alpha: J \to \mathbb{R}^3$ une courbe birégulière paramétrée par longueur d'arc, où $J \subseteq \mathbb{R}$ est un intervalle ouvert, et soit $\kappa: J \to \mathbb{R}$ sa courbure. Montrer que la torsion de α en $s \in J$ est

$$\tau(s) = \frac{\left\langle \alpha'(s) \wedge \alpha''(s), \alpha'''(s) \right\rangle}{\kappa^2(s)}.$$

6. Soit $\alpha: J \to \mathbb{R}^3$ une courbe birégulière de classe C^{∞} , où $J \subseteq \mathbb{R}$ est un intervalle ouvert, et soit $s: J \to \mathbb{R}$ la fonction

$$s(t) = \int_{t_0}^{t} \|\alpha'(u)\| du$$

pour tout $t \in J$, où $t_0 \in J$ est un point fixe. Soit J' = s(J), $t: J' \to J$ l'application réciproque de s et $\beta = \alpha \circ t: J' \to \mathbb{R}^3$. On note

$$\frac{d\alpha}{dt}(t) = \alpha'(t), \frac{d^2\alpha}{dt^2}(t) = \alpha''(t) \text{ et } \frac{d^3\alpha}{dt^3}(t) = \alpha'''(t).$$

(a) Montrer que

$$\frac{dt}{ds}(s) = \frac{1}{\left\|\alpha'(t(s))\right\|} \text{ et } \frac{d^2t}{ds^2}(s) = -\frac{\left\langle\alpha'(t(s)), \alpha''(t(s))\right\rangle}{\left\|\alpha'(t(s))\right\|^4},$$

pour tout $s \in J'$.

(b) Montrer que la courbure de α en $t \in J$ est

$$\kappa_{\alpha}(t) = \frac{\left\|\alpha'(t) \wedge \alpha''(t)\right\|}{\left\|\alpha'(t)\right\|^{3}}.$$

(c) Montrer que la torsion de α en $t \in J$ est

$$\tau_{\alpha}(t) = \frac{\left\langle \alpha'(t) \wedge \alpha''(t), \alpha'''(t) \right\rangle}{\left\| \alpha'(t) \wedge \alpha''(t) \right\|^{2}}.$$

- 7. Déterminer le domaine de définition maximal des expressions suivantes pour qu'elles donnent des courbes birégulières dans l'espace et calculer la courbure et la torsion respectives :
- (a) $\alpha(u) = (u, u^2, u^3);$
- (b) $\alpha(u) = (u, (1+u)/u, (1-u^2)/u);$
- (c) $\alpha(u) = (u, f(u), g(u))$, où f et g sont deux fonctions de classe C^3 définies sur un intervalle $J \subseteq \mathbb{R}$;
- (d) $\alpha(u) = (a(u \sin(u)), a(u \cos(u)), bu), \text{ avec } a, b \in \mathbb{R} \setminus \{0\};$
- (e) $\alpha(u) = (a(3u u^3), 3au^2, a(3u + u^3)), \text{ avec } a \in \mathbb{R} \setminus \{0\}.$
- **8.** Une courbe birégulière $\alpha: J \to \mathbb{R}^3$, où $J \subseteq \mathbb{R}$ est un intervalle ouvert, est appelée une **hélice** s'il existe $v \in \mathbb{R}^3$ non nul tel que l'application $t \mapsto \langle v, \mathbf{t}(t) \rangle$ définie sur J soit constante.
- (a) On suppose que $\tau(t) \neq 0$ pour tout $t \in J$. Montrer que les conditions suivantes sont équivalentes :
 - (H.1) la courbe α est une hélice;
 - (H.2) la fonction $t \mapsto \kappa(t)/\tau(t)$ définie sur J est constante;
 - (H.3) il existe un plan $\Pi \subseteq \mathbb{R}^3$ tel que les droites normales de α , *i.e.* les droites de la forme $\{\alpha(t) + \mathbf{n}(t)s : s \in \mathbb{R}\}$, soient parallèles à Π ;
 - (H.4) il existe un vecteur non nul $w \in \mathbb{R}^3$ tel que l'application $t \mapsto \langle w, \mathbf{b}(t) \rangle$ définie sur J est constante.
- (b) Soient $a,b,c\in\mathbb{R}$ tels que $c^2=a^2+b^2$ et $a,c\neq 0$. Montrer que la courbe $\alpha:\mathbb{R}\to\mathbb{R}^3$ donnée par

$$\alpha(s) = (a\cos(s/c), a\sin(s/c), bs/c)$$

pour tout $s \in \mathbb{R}$ est une hélice paramétrée par longueur d'arc. Montrer en plus que $\kappa(s)/\tau(s) = |a|/b$, pour tout $s \in \mathbb{R}$, si $b \neq 0$.

Dérivées covariantes et champs de repères

- **9.** Soit v = (1, -1, 2) et p = (1, 3, -1). Calculer $\nabla_v W$ où
- (a) $W = x^2 \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$
- (b) $W = x \frac{\partial}{\partial x} + x^2 \frac{\partial}{\partial y} z^2 \frac{\partial}{\partial z}$.
- **10.** Soit $V = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial z}$ et $W = \cos(x) \frac{\partial}{\partial x} + \sin(x) \frac{\partial}{\partial y}$. Calculer
- (a) $\nabla_V W$;
- (b) $\nabla_V(z^2W)$;
- (c) $\nabla_V(\nabla_V W)$;
- (d) $\nabla_V V$;
- (e) $\nabla_W V$;

- (f) $\nabla_V(xV-zW)$.
- 11. Soit $X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$. Montrer que pour tout champ de vecteurs V sur \mathbb{R}^3 , on a

$$\nabla_V X = V$$
.

- **12.** Montrer que si W est un champ de vecteurs différentiable avec ||W|| constant alors $\nabla_V W$ est orthogonal à W pour tout champ de vecteurs V.
- **13.** Étant donnés deux champs de vecteurs différentiables X,Y sur \mathbb{R}^3 , on définit le champ de vecteurs

$$[X,Y] = \nabla_X Y - \nabla_Y X$$

appelé le **crochet** des champs X et Y. Montrer les identités :

- (a) [X,Y][f] = X[Y[f]] Y[X[f]], pour $f: \mathbb{R}^3 \to \mathbb{R}$ fonction de classe C^2 ;
- (*b*) [X,Y] = -[Y,X];
- (c) [X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=0, si X,Y,Z sont de classe C^2 ;
- (*d*) [fX, gY] = fX[g]Y gY[f]X + fg[X,Y], pour $f, g : \mathbb{R}^3 \to \mathbb{R}$ fonctions différentiables.
- **14.** Soit $f: \mathbb{R}^3 \to \mathbb{R}$. On définit trois champs de vecteurs

$$\begin{split} E_1 &= \frac{1}{\sqrt{2}} \bigg(\sin(f) \frac{\partial}{\partial x} + \frac{\partial}{\partial y} - \cos(f) \frac{\partial}{\partial z} \bigg), \\ E_2 &= \frac{1}{\sqrt{2}} \bigg(\sin(f) \frac{\partial}{\partial x} - \frac{\partial}{\partial y} - \cos(f) \frac{\partial}{\partial z} \bigg), \\ E_3 &= \cos(f) \frac{\partial}{\partial x} + \sin(f) \frac{\partial}{\partial z}. \end{split}$$

- (a) Montrer que (E_1, E_2, E_3) est un champ de repères (orthonormés).
- (b) Calculer ses formes de connexions.
- **15.** Compléter le champ de vecteurs suivant en un champ de repères (E_1, E_2, E_3) de \mathbb{R}^3 :

$$E_1 = \cos(x)\frac{\partial}{\partial x} + \sin(x)\cos(z)\frac{\partial}{\partial y} + \sin(x)\sin(z)\frac{\partial}{\partial z},$$

puis calculer ses formes de connexions.

- 16. Soit (E_1, E_2, E_3) le champ de repères cylindrique défini sur \mathbb{R}^3 privé de l'axe z.
- (a) Écrire (E_1, E_2, E_3) dans les coordonnées (x, y, z).
- (b) Calculer ses formes de connexions.
- (c) Calculer les formes $(\Theta_1, \Theta_2, \Theta_3)$ duales de (E_1, E_2, E_3) .
- (d) Vérifier les équations structurelles de Cartan

$$d\Theta_i = \sum_{j=1}^3 \omega_{ij} \wedge \Theta_j, \quad d\omega_{ij} = \sum_{k=1}^3 \omega_{ik} \wedge \omega_{kj}$$

17. Mêmes questions que l'exercice précédent avec le champ de repères sphérique.

- **18.** Soit $\gamma: I \to \mathbb{R}^3$ une courbe birégulière définie sur une intervalle ouvert I paramétrée par longueur d'arc et soit et (E_1, E_2, E_3) un champ de repères sur \mathbb{R}^3 qui prolonge le repère de Frénet $(\mathbf{t}, \mathbf{n}, \mathbf{b})$ de γ .
- (a) Montrer que les formes de connexion de (E_1, E_2, E_3) vérifient :

$$\omega_{12}(\mathbf{t}) = \kappa$$
, $\omega_{13}(\mathbf{t}) = 0$, $\omega_{23}(\mathbf{t}) = \tau$.

(b) Déduire les formules de Frénet des équations de connexion.