MAT4111

Premier semestre — 2020–2021

Fiche 1: Compléments sur les anneaux (1ère partie)

Polynômes en n indéterminées

- **1.** Fonctions polynomiales. Soient k un corps infini et $n \in \mathbb{N}^*$.
- (a) Soient $I_1, ..., I_n$ des parties infinies de k. Montrer que si $P \in k[X_1, ..., X_n]$ vérifie $P(x_1, ..., x_n) = 0$ pour tout $(x_1, ..., x_n) \in \prod_{i=1}^n I_i$, alors P = 0.
- (b) Montrer que k^n n'est pas une réunion finie d'hypersurfaces.
- (c) Soient $A, B \in M_n(k)$ deux matrices de taille n à coefficient dans k. On souhaite montrer que AB et BA ont le même polynôme caractéristique. Étant donné $\ell \in \{0, \dots, n-1\}$, on note f_ℓ le coefficient de X^ℓ dans la différence $(\chi_{AB} \chi_{BA})(X)$, où $A \in M_n(k)$ est fixée. En particulier, f_ℓ est une fonction polynômiale en les coefficients $(b_{i,j})$ de B. On note $F_\ell \in k[X_{ij}: 1 \le i, j \le n]$ son polynôme associé.
 - (i) Montrer que si B est inversible, alors $\chi_{AB} = \chi_{BA}$ et donc $f_{\ell} = 0$.
 - (ii) En déduire la nullité du produit F_{ℓ} det $\in k[X_{ij}: 1 \le i, j \le n]$ pour tout $\ell \in \{0, ..., n-1\}$.
 - (iii) Conclure.
- **2.** Non-intégrité des fonctions polynomiales à coefficients dans un corps fini. Soit k un corps fini de cardinalité q. En particulier k est l'ensemble des racines du polynôme $X^q X$. Soit $\varphi: k[X_1, \ldots, X_n] \to F(k^n, k)$ le morphisme associant à un polynôme la fonction polynomiale correspondante.
- (a) Montrer que $\ker(\varphi) = (X_1^q X_1, \dots, X_n^q X_n)$.
- (b) Montrer que φ est surjective.
- **3.** Ensemble algébrique réduit à un point. Soit A un anneau commutatif. Montrer que pour tout $(a_1, \ldots, a_n) \in A^n$, l'idéal des polynômes de $A[X_1, \ldots, X_n]$ qui s'annulent en (a_1, \ldots, a_n) est $(X_1 a_1, \ldots, X_n a_n)$. Cet idéal est-il maximal?
- **4.** Déterminant circulant. Une permutation $\sigma \in \mathbb{S}_n$ est dite cyclique si elle appartient au sous-groupe engendré par le n-cycle (1, ..., n). Soit $M \in M_n(\mathbb{C}[X_1, ..., X_n])$ telle que $M_{i,j} = X_{\sigma^{i-1}(j)}$ pour tous $i, j \in \{1, ..., n\}$, où $\sigma \in \mathbb{S}_n$ est l'unique permutation cyclique telle que $\sigma(1) = n$. On pose $f = \sum_{\ell=0}^{n-1} X_{\ell+1} T^{\ell} \in \mathbb{C}[X_1, ..., X_n][T]$. On se propose de calculer le déterminant de M.
 - (a) On définit $J \in M_n(k)$ tel que $J_{i,j} = \delta_{i+1,j}$, pour tous $i \in \{1, \dots, n-1\}$ et $j \in \{1, \dots, n\}$, et $J_{n,j} = \delta_{1,j}$, pour tout $j \in \{1, \dots, n\}$. Montrer que M = f(J).
 - (b) Soit $\xi = e^{2i\pi/n}$. Pour $0 \le r \le n-1$, on pose $U_r = \sum_{\ell=0}^{n-1} \xi^{r\ell} e_{1+\ell}$, où e_ℓ est le ℓ -ème vecteur de la base canonique de k^n . Montrer que U_r est un vecteur propre de J associé à la valeur propre ξ^r .
 - (c) En déduire que $\det(M) = \prod_{r=0}^{n-1} f(\xi^r) = \prod_{r=0}^{n-1} \sum_{\ell=0}^{n-1} \xi^{r\ell} X_{\ell+1}$.

Séries formelles

5. Éléments inversibles. Soit A un anneau commutatif. On note A[[X]] l'anneau des séries formelles à coefficients dans A, c'est-à-dire l'ensemble des expressions de la forme $\sum_{\ell \geq 0} a_\ell X^\ell$ avec $(a_\ell)_{\ell \in \mathbb{N}} \in A^\mathbb{N}$, muni de l'addition terme à terme et de la multiplication de Cauchy définie par

$$\left(\sum_{\ell\geq 0} a_{\ell} X^{\ell}\right) \left(\sum_{\ell\geq 0} b_{\ell} X^{\ell}\right) = \left(\sum_{\ell\geq 0} \left(\sum_{j=0}^{\ell} a_{j} b_{\ell-j}\right) X^{\ell}\right).$$

- (a) Montrer qu'une série formelle $\sum_{\ell \geq 0} a_\ell X^\ell$ est inversible si et seulement si a_0 est inversible dans A.
- (b) Montrer que A[[X]] est un anneau local si et seulement si A est un anneau local (en particulier K[[X]] est local pour tout corps K).
- **6.** Valuation, division euclidienne et conséquences. Soit K un corps. La valuation d'une série formelle non nulle $a=\sum_{\ell\geq 0}a_\ell X^\ell\in K[[X]]$ est définie par

$$v(a) = \min\{\ell \in \mathbb{N} : a_{\ell} \neq 0\}.$$

On pose $v(0) = +\infty$

- (a) Montrer que pour tout $a, b \in K[[X]]$ on a $v(a + b) \ge \min(v(a), v(b))$ et v(ab) = v(a) + v(b), et que a est inversible si et seulement si v(a) = 0.
- (b) Soient $a = \sum_{\ell \geq 0} a_\ell X^\ell$ et $b = \sum_{\ell \geq 0} b_\ell X^\ell$ deux séries formelles de K[[X]], avec $b \neq 0$. Montrer qu'il existe $q, r \in K[[X]]$ tels que a = bq + r avec v(r) < v(b) ou r = 0. Indication : on pourra prendre $r = \sum_{\ell = 0}^{v(b) 1} a_\ell X^\ell$.
- (c) Montrer que K[[X]] est principal.
- (*d*) Montrer que tout idéal non nul de K[[X]] est de la forme (X^n) pour un certain entier n.

Polynômes symétriques et relations entre les racines et les coefficients

- 7. Polynômes alternés et symétriques.
- (a) Soit $P \in \mathbb{Z}[X_1, ..., X_n]$ tel que pour tout couple (i, j) avec i < j on ait

$$P(X_1,...,X_i,...,X_{i-1},X_i,X_{i+1},...,X_n) = 0.$$

Montrer que $\prod_{i < j} (X_i - X_i)$ divise P.

- (b) Soit $P \in \mathbb{Z}[X, Y]$ symétrique tel que (X Y)|P. Montrer que $(X Y)^2|P$.
- **8.** Polynômes symétriques homogènes. Soit A un anneau commutatif intègre. Exprimer $\sum_{i\neq j} X_i^2 X_j$ et $\sum_{i< j} (X_i X_j)^2$ dans $A[X_1,\ldots,X_n]$ avec n=3 ou n=4, comme polynômes en les polynômes symétriques élémentaires.
- 9. Soit A un anneau commutatif intègre et

$$I = \{(i, j, k) \in [1, n]^3 : i \neq j, i \neq k, j \neq k\}.$$

Exprimer $\sum_{(i,j,k)\in I} X_i X_j X_k^2$ comme polynôme en les polynômes symétriques élémentaires.

- **10.** Formules de Newton. Soit A un anneau commutatif intègre de caractéristique plus grande que n. Pour tout $\ell \in \mathbb{N}^*$, on note $S_\ell = \sum_{i=1}^n X_i^\ell$ la ℓ -ème somme de Newton dans $A[X_1,\ldots,X_n]$, et pour $\ell \in \{1,\ldots,n\}$, σ_ℓ le ℓ -ème polynôme symétrique élémentaire en X_1,\ldots,X_n . Soit $P(T) = \prod_{i=1}^n (1-TX_i) \in A[X_1,\ldots,X_n][T]$.
- (a) Montrer que

$$P(T) = 1 + \sum_{\ell=1}^{n} (-1)^{\ell} \sigma_{\ell} T^{\ell}$$
 et $-T \frac{P'(T)}{P(T)} = \sum_{i=1}^{n} \frac{TX_{i}}{1 - TX_{i}} = \sum_{\ell \in \mathbb{N}^{*}} S_{\ell} T^{\ell}$.

- (b) En déduire les identités de Newton:
 - (i) si $1 \le \ell \le n$, alors $S_{\ell} + \sum_{i=1}^{\ell-1} (-1)^i \sigma_i S_{\ell-i} + (-1)^{\ell} \ell \sigma_{\ell} = 0$, (ii) si $\ell \ge n$, alors $S_{\ell} + \sum_{i=1}^{n} (-1)^i \sigma_i S_{\ell-i} = 0$.
- (c) En déduire que $A[X_1, ..., X_n]^{\mathbb{S}_n} = A[S_1, ..., S_n]$.
- (d) On va considérer l'application suivante. Soient $A, B \in M_n(\mathbb{C})$. Montrer que A et B ont le même polynôme caractéristique si et seulement si pour tout $\ell \in \{1, ..., n\}, \operatorname{tr}(A^{\ell}) = \operatorname{tr}(B^{\ell}).$
- (e) En déduire que A est nilpotente si et seulement si pour tout $\ell \in \{1, ..., n\}$,
- 11. Discriminant d'une équation cubique. Soient K un corps et $(\alpha_i)_{1 \le i \le 3}$ les racines du polynôme cubique $X^3 + pX + q \in K[X]$. Déterminer en fonction de p et q
- (a) $\sum_{i=1}^{3} \alpha_i^6$, (b) Le discriminant $\Delta = \prod_{i < j} (\alpha_i \alpha_j)^2$.
- **12.** Orbite et stabilisateur. Soit A un anneau commutatif intègre et $N \geq 4$ entier. Déterminer l'orbite et le stabilisateur des polynômes suivants dans $A[X_1,...,X_N]$ sous l'action de $\mathbb{S}_N : X_1 X_2, X_2 X_3 X_4, X_1 X_2 + X_3 X_4$.
- **13.** Signature d'une permutation. Soit $n \ge 2$. On rappelle que la signature $\epsilon(\sigma)$ de la permutation $\sigma \in \mathbb{S}_n$ est la parité de son nombre d'inversions, *i.e.*

$$\epsilon(\sigma) = \prod_{1 \le i < j \le n} \frac{\sigma(j) - \sigma(i)}{j - i}.$$

On note $\delta = \prod_{1 \le i < j \le n} (X_j - X_i) \in \mathbb{Z}[X_1, \dots, X_n].$

- (a) Soit $\sigma \in \mathbb{S}_n$, déterminer $\sigma \cdot \delta$.
- (b) En déduire que la signature est un morphisme de groupes $\mathbb{S}_n \to \{\pm 1\}$. En particulier, la parité du nombre de transpositions dans toute décomposition de σ donnée ne dépend pas de la décomposition.
- 14. Opérations sur les entiers algébriques. On appelle entier algébrique un nombre complexe qui est racine d'un polynôme unitaire à coefficients entiers. On note A l'ensemble des entiers algébriques, on va montrer dans cet exercice que c'est un anneau.
 - (a) Montrer que $\mathbb{Q} \cap \mathbb{A} = \mathbb{Z}$.
 - (b) Soient $P,Q \in \mathbb{Z}[X]$ deux polynômes unitaires de degré n et m respectivement et de racines complexes $(a_i)_{1 \le i \le n}$ et $(b_j)_{1 \le j \le m}$. On pose

$$S = \prod_{\stackrel{1 \le i \le n}{1 \le j \le m}} (X - a_i - b_j) \quad \text{et} \quad T = \prod_{\stackrel{1 \le i \le n}{1 \le j \le m}} (X - a_i b_j).$$

Montrer que le polynôme symétrique

$$\tilde{S}(B_1,\ldots,B_m) = \prod_{j=1}^m P(X - B_j)$$

est à coefficients dans $\mathbb{Z}[X].$ En déduire que $S\in\mathbb{Z}[X].$

- (c) Soit $\tilde{P} \in \mathbb{Z}[X,Y]$ l'homogénéisé de P. Montrer que $T = \prod_{j=1}^m \tilde{P}(X,b_j)$. Avec un raisonnement similaire à celui de la question précédente, montrer que $T \in \mathbb{Z}[X]$.
- (d) En déduire que \mathbb{A} est un sous-anneau de \mathbb{C} .
- (e) Déterminer un polynôme unitaire à coefficients dans $\mathbb{Z}[X]$ dont $\sqrt{3} + \sqrt{7}$ est racine.