MAT366

Deuxième semestre — 2019-2020

Fiche 5: Intégrales curvilignes

1. Donner la longueur de la courbe $\alpha : \mathbb{R} \to \mathbb{R}^2$ donnée par

$$\alpha(t) = \Big(a\Big(2\cos(t) - \cos(2t)\Big), a\Big(2\sin(t) - \sin(2t)\Big)\Big),$$

où a > 0.

Solution. C'est clair que α est périodique de période 2π , puisque les fonctiones sin et cos son périodiques de période 2π . En outre, on affirme que la la période minimale p>0 de α est 2π . En effet, si P est une période de α , alors P est aussi une période de la fonction $t\mapsto \|\alpha(t)\|^2$ définie sur $\mathbb R$. Comme

$$\|\alpha(t)\|^2 = a(5-4\cos(t)),$$

pour tout $t\in\mathbb{R}$, on voit que P doit être un multiple entier de 2π . Cela implique que la longueur de la courbe définie par α est

$$\ell = \int_{0}^{2\pi} \|\alpha'(t)\| dt = \int_{0}^{2\pi} 2\sqrt{2}a\sqrt{1 - \cos(t)} dt = \int_{0}^{2\pi} 4a|\sin(t/2)| dt = 4^{2}a,$$

où | | est la norme euclidienne et l'on a utilisé les identités

$$cos(2t)cos(t) + sin(2t)sin(t) = cos(t)$$
 et $1 - cos(t) = 2sin^2(t/2)$.

2. Soient a, b > 0. Calculer la longueur de l'arc de la chainette $y = a \cosh(x/a)$ compris entre le sommet (0, a) et le point (b, h), où $h = a \cosh(b/a)$.

Solution. La courbe indiquée est donnée par $\alpha(t)=(t,a\cosh(t/a))$. On voit bien que la longueur demandée est

$$\ell = \int_0^b \|\alpha'(t)\| dt = \int_0^b \sqrt{1 + \sinh^2(t/a)} dt = \int_0^b \cosh(t/a) dt$$
$$= \left[a \sinh(t/a) \right]_0^b = a \sinh(b/a),$$

où | | est la norme euclidienne.

3. Calculer la longueur de la cardioïde décrite en polaires par $r=a(1+\cos(\theta))$, où a>0.

Solution. C'est clair que la courbe indiquée $\alpha: \mathbb{R} \to \mathbb{R}^2$ est donnée par $\alpha(\theta)=(a(1+\cos(\theta))\cos(\theta),a(1+\cos(\theta))\sin(\theta))$. C'est clair que α est périodique de période 2π , puisque les fonctiones sin et cos son périodiques de période 2π . En outre, vu que $(2a,0)=\alpha(0)\neq\alpha(\pi)=(0,0)$, la période minimale de α est 2π . On voit bien que la longueur demandée est

$$\ell = \int_0^{2\pi} \|\alpha'(t)\| dt = \int_0^{2\pi} \sqrt{2}a\sqrt{1 + \cos(t)} dt = \int_0^{2\pi} 2a|\cos(t/2)| dt = 8a,$$

où | | est la norme euclidienne et l'on a utilisé les identités

$$cos(2t)cos(t) + sin(2t)sin(t) = cos(t)$$
 et $1 + cos(t) = 2cos^2(t/2)$.

- **4.** Soient A et B deux points de \mathbb{R}^2 tels que la distance entre A et B est a > 0. Sans perte de généralité on considère que A = (0,0) et B = (a,0). Soit $\varphi : [0,1] \to \mathbb{R}^2$ une courbe paramétrée du plan de classe C^1 telle que $\varphi(0) = A$ et $\varphi(1) = B$. On note ℓ la longueur de la courbe paramétrée par φ .
- (a) Rappeler la formule permettant de calculer ℓ .
- (b) Montrer que $\ell \ge a$. Est-ce étonnant?
- (c) Montrer que $\ell = a$ si et seulement s'il existe une fonction $x : [0,1] \to \mathbb{R}$ monotone telle que $\varphi(t) = (x(t), 0)$, pour tout $t \in [0,1]$.

Solution.

(a) On rappelle que

$$\ell = \int_0^1 \|\varphi'(t)\| dt,$$

où | | est la norme euclidienne.

(b) On écrit $\varphi(t) = (x(t), y(t))$. Alors $\|\varphi'(t)\| = \sqrt{x'(t)^2 + y'(t)^2} \ge \sqrt{x'(t)^2} = |x'(t)|$. Cela implique que

$$\ell = \int_0^1 \|\varphi'(t)\| dt \ge \int_0^1 |x'(t)| dt \ge \left| \int_0^1 x'(t) dt \right| = |x(1) - x(0)| = a.$$

(c) On suppose qu'il existe une fonction $x:[0,1] \to \mathbb{R}$ monotone telle que $\varphi(t)=(x(t),0)$, pour tout $t \in [0,1]$. Comme x(1)=a>x(0)=0, x est croissante et sa dérivée est donc non négative. Alors,

$$\ell = \int_0^1 \|\varphi'(t)\| dt = \int_0^1 |x'(t)| dt = \int_0^1 x'(t) dt = x(1) - x(0) = a.$$

Réciproquement, on suppose que $\ell=a$. Cela implique que

$$\int_0^1 \left(\|\varphi'(t)\| - |x'(t)| \right) dt = 0.$$

Comme $t \mapsto ||\varphi'(t)|| - |x'(t)|$ est une fonction continue, non négative et son intégrale est nulle, on conclut qu'elle est la fonction nulle. Cela implique que $\gamma'(t) = 0$, pour

tout $t \in]0,1[$. Comme y(0) = 0, on conclut que y(t) = 0, pour tout $t \in [0,1]$, *i.e.* $\varphi(t) = (x(t),0)$, pour tout $t \in [0,1]$. En outre, la condition $\ell = a$ implique que

$$\int_0^1 |x'(t)| dt \ge \left| \int_0^1 x'(t) dt \right|,$$

ce qui dit en particulier que la dérivée de x est toujours non négative sur]0,1[ou toujours non positive sur]0,1[. Comme x(1)=a>0=x(0), on conclut que x est croissante.

5. On va s'intéresser aux courbes de longueur minimale tracées sur la sphère

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\} \subseteq \mathbb{R}^3$$

de rayon 1 et de centre O = (0,0,0). On appelle *grand cercle* de la sphère toute intersection de la sphère avec un plan passant par O.

Soient A et B deux points de S^2 . Sans perte de généralité, on considère que A = (0,0,1) et $B = (\sin(\psi_0),0,\cos(\psi_0))$, avec $0 \le \psi_0 \le \pi$.

On considère une courbe tracée sur la sphère $M:[0,1] \to S^2$ donnée par $t \mapsto (\cos(\theta(t))\sin(\psi(t)),\sin(\theta(t))\sin(\psi(t)),\cos(\psi(t))$ telle que les fonctions θ et ψ soient de classe C^1 , $\theta(0)=0$, $\psi(0)=0$, $\theta(1)=0$ et $\psi(1)=\psi_0$. On a donc M(0)=A et M(1)=B. On note ℓ la longueur de la courbe paramétrée précédente.

(a) Montrer que

$$\ell = \int_0^1 \sqrt{\left(\theta'(t)\right)^2 \sin^2\left(\psi(t)\right) + \left(\psi'(t)\right)^2} dt.$$

- (*b*) En déduire que la longueur de ℓ est plus grande que la longueur de l'arc de cercle du grand cercle tracé sur la sphère reliant A à B.
- (c) En déduire que pour tous points *A*, *B* sur la sphère, le chemin sur la sphère le plus court reliant *A* à *B* est donné par l'arc de cercle reliant *A* à *B* d'un grand cercle de la sphère.

Solution.

- (a) La formule de la longueur ℓ est un calcul directe.
- (b) C'est clair que

$$\ell = \int_0^1 \sqrt{\left(\theta'(t)\right)^2 \sin^2\left(\psi(t)\right) + \left(\psi'(t)\right)^2} dt \ge \int_0^1 \sqrt{\left(\psi'(t)\right)^2} dt = \psi_0,$$

qui est la longueur de l'arc de cercle du grand cercle tracé sur la sphère reliant A à B.

(c) On remarque que, étant donnés deux points *A* et *B* sur la sphère, on peut toujours faire une rotation du repère de coordonnées pour tomber sur la situation décrite dans l'énoncé pour *A* et *B*. La question est alors une conséquence directe de l'item précédent.