Exercise sheet $\mathbf{n}^{\circ} 6$

Matrix calculus

1. Compute the products $A B$ and $B A$ in case they are defined.
2. $A=(1,2,-1,3), B=(-1,0,2,1)^{t}$
3. $A=\left(\begin{array}{rr}1 & 0 \\ 1 & -1\end{array}\right), B=\left(\begin{array}{rr}-1 & 1 \\ 0 & 0 \\ 1 & -2\end{array}\right)$
4. $A=\left(\begin{array}{llll}1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right), B=\left(\begin{array}{llll}0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
(Hint : Use the product by blocks in this example).
5. Answer the following yes/no questions.
(a) Every diagonal matrix is symmetric.
(b) For every matrix A and every scalar number $c,(c A)^{t}=c A^{t}$.
(c) Every tridiagonal matrix is symmetric.
(d) Given any pair of matrices A and $B,(A B)^{t}=B^{t} A^{t}$.
6. Complete the following sentences so they become true statements.
(a) The rank of the matrix $\left(\begin{array}{ccc}0 & -1 & 2 \\ 0 & 3 & 4\end{array}\right)$ is \qquad -.
(b) If A is a matrix of 3×7, then its rank is greater than or equal to \qquad and less than or equal to \qquad
(c) The rank of a nonzero matrix of size 3×3 and all equal entries is \qquad
(d) If A is a matrix of size 4×8, then its nullity is greater then or equal to \qquad _-.
(e) If A is a nonzero matrix of size 4×3 each of whose columns contains the same constant entry, then the rank of A is \qquad
(f) An example of matrix of rank 2 and nullity 1 is \qquad _.
7. Let $u=(1,2,3)^{t}$ and $v=(a, b, c)^{t}$ be two column vectors. Consider the matrix given by $P=u v^{t}$. What is the rank of P ? Compute $P^{2}, P^{k}, k=3,4, \ldots$. What is the image of P ? And its kernel?
8. Compute the matrix representation of the following linear maps relative to the given bases.
9. $f:\left\{\begin{array}{ccc}\mathbb{R}^{3} & \rightarrow & \mathbb{R}^{3} \\ (x, y, z) & \mapsto & (x+2 y+3 z, 2 y-z, x+z)\end{array}\right.$,
10. the symmetry of the plane \mathbb{R}^{2} given by the mirror reflection through the axis defined by e_{1}, where $\left(e_{1}, e_{2}\right)$ is any basis of \mathbb{R}^{2},
11. the orthogonal projection of \mathbb{R}^{2} onto the axis defined by a nonzero vector e_{1},
12. $f:\left\{\begin{array}{ccc}\mathbb{R}_{2}[X] & \rightarrow & \mathbb{R}_{2}[X] \\ P & \mapsto & 2(X+1) P-\left(X^{2}-1\right) P^{\prime} .\end{array}\right.$
13. Consider the plane \mathbb{R}^{2} endowed of the canonical basis $B=\left(e_{1}, e_{2}\right)$. Let f be the linear map given by $f:\left\{\begin{array}{ccc}\mathbb{R}^{2} & \rightarrow & \mathbb{R}^{2} \\ (u, v) & \mapsto & (2 u,-v)\end{array}\right.$.
14. Compute the matrix representation A of f relative to the basis B.
15. Show that the vectors $e_{1}^{\prime}=(3,1)$ and $e_{2}^{\prime}=(5,2)$ give a new basis B^{\prime} of \mathbb{R}^{2}.
16. Compute the matrix representation A^{\prime} of f relative to the basis B^{\prime} by explicitly calculating $f\left(e_{1}^{\prime}\right)$ and $f\left(e_{2}^{\prime}\right)$.
17. Compute the transition matrices P and Q between the bases B and B^{\prime}.
18. Reobtain A^{\prime} by means of the change of basis formula.
19. Compute the matrices of f^{5} relatives to both bases
(Hint : Note that $A=P A^{\prime} P^{-1}$ implies $A^{n}=P A^{\prime n} P^{-1}$).
20. Consider the space \mathbb{R}^{3} endowed of the canonical basis B.
21. Show that $u_{1}=(2,-1,-2), u_{2}=(1,0,-1)$ and $u_{3}=(-2,1,3)$ form a basis B^{\prime} of \mathbb{R}^{3}.
22. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear map whose matrix relative to the basis B is $A=\left(\begin{array}{rrr}9 & -6 & 10 \\ -5 & 2 & -5 \\ -12 & 6 & -13\end{array}\right)$. Compute the transition matrices between the two bases.
23. Compute the matrix of f relative to the basis B^{\prime}.
24. Consider four square matrices A, B, C and D of size $n \times n$.
25. Show that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
26. Deduce that the equalities $A C+D B=I_{n}$ and $C A+B D=0_{n}$ cannot hold simultaneously.
27. Let u be any linear map from \mathbb{R}^{n} to \mathbb{R}^{n}. Deduce that the trace of the matrix of u relative to any basis B is independent of the chosen basis.
28. Express the quadratic form

$$
Q(x, y, z)=2 x^{2}+y^{2}+z^{2}+2 x y+4 y z-6 x z
$$

as a matrix product en $v^{t} A v$, where $v=(x, y, z)^{t}$ and
(i) A is a lower triangular matrix ;
(ii) A is a symmetric matrix.

Systems of linear equations and determinants

10. Solve the following systems of linear equations by using the Gauss or the Gauss-Jordan method.

$$
\begin{aligned}
& x+y+z=0 \\
& \text { (a) } x+2 y+3 z=2 \\
& x+3 y+4 z=3 \\
& \text { (b) } 3 x+9 y-3 z=27 \\
& -2 x+y-5 z=10 \\
& x+y=1 \\
& \text { (c) } 2 x+y=2 \\
& 3 x+2 y=5 ; \\
& \text { (d) }-2 x_{1}-4 x_{2}+x_{3}=0 \\
& \text { (e) } 2 x_{1}+5 x_{2}+9 x_{3}=1 \\
& -x_{3}+x_{4}=0 ; \\
& x_{1}+2 x_{2}+4 x_{3}=1 ;
\end{aligned}
$$

11. In this exercise all matrices will be square.
12. Given any matrix M, let M^{\prime} be the matrix obtained from M by the row operation $L_{1} \rightarrow 2 L_{1}+L_{2}$. Does the equality $\operatorname{det}(M)=\operatorname{det}\left(M^{\prime}\right)$ hold ?
13. Assume that M and M^{\prime} are two square matrices of the same size and that there exists $x \in \mathbb{R}^{n} \backslash\{0\}$ such that $M x=M^{\prime} x$. Is it true that $\operatorname{det}(M)=\operatorname{det}\left(M^{\prime}\right)$? And $\operatorname{det}\left(M-M^{\prime}\right)=0$?
14. Assume now that $n=3$. Is it true that $\operatorname{det}_{\mathcal{B}}\left(v_{1}, v_{2}, v_{3}\right)=\operatorname{det}_{\mathcal{B}}\left(v_{2}, v_{3}, v_{1}\right)$?
15. Let v be an element of an n-dimensional vector space E. If $\operatorname{det}\left(v_{1}+v, v_{2}, \ldots, v_{n}\right)=$ $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)$, is it true that $v \in \operatorname{vect}\left(v_{2}, . ., v_{n}\right)$?
16. Compute the determinants of the following matrices.

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right) \quad B=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right) \quad C=\left(\begin{array}{ccc}
4 & 1 & 2 \\
-1 & 1 & -1 \\
-2 & -1 & 0
\end{array}\right) \quad D=\left(\begin{array}{ccc}
1 & 1 & -2 \\
0 & 2 & -2 \\
1 & 0 & 0
\end{array}\right) . \\
a=\left|\begin{array}{rrrr}
1 & 2 & 1 & 3 \\
4 & 0 & 3 & 1 \\
-1 & 2 & -3 & 0 \\
1 & 6 & -1 & -1
\end{array}\right|, \quad b=\left|\begin{array}{ccc}
1 & \cos x & \cos 2 x \\
1 & \cos y & \cos 2 y \\
1 & \cos z & \cos 2 z
\end{array}\right| \quad \forall(x, y, z) \in \mathbb{R}^{3},
\end{gathered}
$$

13. We recall the following identity :

$$
\operatorname{det}(u, v, w)=u \cdot(v \wedge w)[=v \cdot(w \wedge u)=w \cdot(u \wedge v)]
$$

1. Give a geometrical interpretation of the quantity $\|v\|\|w\||\sin \theta|$, where θ is the angle between v and w.
2. Deduce that $|\operatorname{det}(u, v, w)|=\operatorname{Vol}(P)$, where P is the parallelepiped generated by u, v and w.
3. Under what conditions has this parallelepiped volume 0 ?
4. Let $A \in \mathcal{M}_{n}(\mathbb{R})$ such that $\operatorname{rank}(A)=1$.
5. We denote by $\left(C_{1}, \ldots, C_{n}\right)$ the columns of A. Show that $\exists C \in \mathbb{R}^{n}, \exists\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in$ \mathbb{R}^{n} tq $\forall i \in\{1, \cdots, n\}, C_{i}=\lambda_{i} C$.
6. By making use of an appropriate change of basis, show that $\operatorname{det}\left(I_{n}+A\right)=1+\operatorname{tr}(A)$.
7. Let $A=\left(\begin{array}{cc}0_{n} & I_{n} \\ -I_{n} & 0_{n}\end{array}\right) \in \mathcal{M}_{2 n}(\mathbb{R})$.
8. Compute $\operatorname{det} A$.
9. Let $S \in M_{2 n}(\mathbb{R})$ such that $S^{T} A S=A$. Show that S is invertible and that S^{T} and S^{-1} are similar.
