Exercise sheet n° 6

Matrix calculus

1. Compute the products *AB* and *BA* in case they are defined.

1.
$$A = (1, 2, -1, 3), B = (-1, 0, 2, 1)^t$$

2. $A = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}, B = \begin{pmatrix} -1 & 1 \\ 0 & 0 \\ 1 & -2 \end{pmatrix}$
3. $A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

(Hint : Use the product by blocks in this example).

2. Answer the following yes/no questions.

(a) Every diagonal matrix is symmetric.

(b) For every matrix A and every scalar number c, $(cA)^t = cA^t$.

(c) Every tridiagonal matrix is symmetric.

(d) Given any pair of matrices A and B, $(AB)^t = B^t A^t$.

3. Complete the following sentences so they become true statements.

(a) The rank of the matrix $\begin{pmatrix} 0 & -1 & 2 \\ 0 & 3 & 4 \end{pmatrix}$ is _____.

(b) If A is a matrix of 3×7 , then its rank is greater than or equal to _____ and less than or equal to _____.

(c) The rank of a nonzero matrix of size 3×3 and all equal entries is _____.

(d) If A is a matrix of size 4×8 , then its nullity is greater then or equal to _____.

(e) If A is a nonzero matrix of size 4×3 each of whose columns contains the same constant entry, then the rank of A is _____.

(f) An example of matrix of rank 2 and nullity 1 is _____.

4. Let $u = (1, 2, 3)^t$ and $v = (a, b, c)^t$ be two column vectors. Consider the matrix given by $P = uv^t$. What is the rank of P? Compute P^2 , P^k , k = 3, 4, ... What is the image of P? And its kernel?

5. Compute the matrix representation of the following linear maps relative to the given bases.

- 1. $f: \left\{ \begin{array}{ccc} I\!\!R^3 & \to & I\!\!R^3 \\ (x,y,z) & \mapsto & (x+2y+3z,2y-z,x+z) \end{array} \right. ,$
- 2. the symmetry of the plane \mathbb{R}^2 given by the mirror reflection through the axis defined by e_1 , where (e_1, e_2) is any basis of \mathbb{R}^2 ,

3. the orthogonal projection of \mathbb{R}^2 onto the axis defined by a nonzero vector e_1 ,

4.
$$f: \begin{cases} IR_2[X] \rightarrow IR_2[X] \\ P \mapsto 2(X+1)P - (X^2 - 1)P' \end{cases}$$

6. Consider the plane \mathbb{R}^2 endowed of the canonical basis $B = (e_1, e_2)$. Let f be the linear map given by $f : \begin{cases} \mathbb{R}^2 & \to \mathbb{R}^2 \\ (u, v) & \mapsto (2u, -v) \end{cases}$.

- 1. Compute the matrix representation A of f relative to the basis B.
- 2. Show that the vectors $e'_1 = (3,1)$ and $e'_2 = (5,2)$ give a new basis B' of \mathbb{R}^2 .
- 3. Compute the matrix representation A' of f relative to the basis B' by explicitly calculating $f(e'_1)$ and $f(e'_2)$.
- 4. Compute the transition matrices P and Q between the bases B and B'.
- 5. Reobtain A' by means of the change of basis formula.
- 6. Compute the matrices of f^5 relatives to both bases (**Hint** : Note that $A = PA'P^{-1}$ implies $A^n = PA'^nP^{-1}$).

7.Consider the space \mathbb{R}^3 endowed of the canonical basis B.

- 1. Show that $u_1 = (2, -1, -2), u_2 = (1, 0, -1)$ and $u_3 = (-2, 1, 3)$ form a basis B' of \mathbb{R}^3 .
- 2. Let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear map whose matrix relative to the basis B is $A = \begin{pmatrix} 9 & -6 & 10 \\ -5 & 2 & -5 \\ -12 & 6 & -13 \end{pmatrix}$. Compute the transition matrices between the two bases.
- 3. Compute the matrix of f relative to the basis B'.
- 8. Consider four square matrices A, B, C and D of size $n \times n$.
 - 1. Show that tr(AB) = tr(BA).
 - 2. Deduce that the equalities $AC + DB = I_n$ and $CA + BD = 0_n$ cannot hold simultaneously.
 - 3. Let u be any linear map from \mathbb{R}^n to \mathbb{R}^n . Deduce that the trace of the matrix of u relative to any basis B is independent of the chosen basis.

9. Express the quadratic form

$$Q(x, y, z) = 2x^{2} + y^{2} + z^{2} + 2xy + 4yz - 6xz$$

as a matrix product en $v^t A v$, where $v = (x, y, z)^t$ and

- (i) A is a lower triangular matrix;
- (ii) A is a symmetric matrix.

Systems of linear equations and determinants

10. Solve the following systems of linear equations by using the Gauss or the Gauss-Jordan method.

11. In this exercise all matrices will be square.

- 1. Given any matrix M, let M' be the matrix obtained from M by the row operation $L_1 \rightarrow 2L_1 + L_2$. Does the equality $\det(M) = \det(M')$ hold?
- 2. Assume that M and M' are two square matrices of the same size and that there exists $x \in \mathbb{R}^n \setminus \{0\}$ such that Mx = M'x. Is it true that $\det(M) = \det(M')$? And $\det(M M') = 0$?
- 3. Assume now that n = 3. Is it true that $\det_{\mathcal{B}}(v_1, v_2, v_3) = \det_{\mathcal{B}}(v_2, v_3, v_1)$?
- 4. Let v be an element of an n-dimensional vector space E. If $det(v_1 + v, v_2, ..., v_n) = det(v_1, ..., v_n)$, is it true that $v \in vect(v_2, ..., v_n)$?

12. Compute the determinants of the following matrices.

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & -4 \\ 4 & 1 & -4 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \quad C = \begin{pmatrix} 4 & 1 & 2 \\ -1 & 1 & -1 \\ -2 & -1 & 0 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 2 & -2 \\ 1 & 0 & 0 \end{pmatrix}.$$

$$a = \begin{vmatrix} 1 & 2 & 1 & 3 \\ 4 & 0 & 3 & 1 \\ -1 & 2 & -3 & 0 \\ 1 & 6 & -1 & -1 \end{vmatrix} , \qquad b = \begin{vmatrix} 1 & \cos x & \cos 2x \\ 1 & \cos y & \cos 2y \\ 1 & \cos z & \cos 2z \end{vmatrix} \quad \forall (x, y, z) \in \mathbb{R}^3,$$

13. We recall the following identity :

$$\det(u, v, w) = u \cdot (v \wedge w) [= v \cdot (w \wedge u) = w \cdot (u \wedge v)].$$

- 1. Give a geometrical interpretation of the quantity $||v|| ||w|| |\sin \theta|$, where θ is the angle between v and w.
- 2. Deduce that $|\det(u, v, w)| = \operatorname{Vol}(P)$, where P is the parallelepiped generated by u, v and w.
- 3. Under what conditions has this parallelepiped volume 0?

14. Let $A \in \mathcal{M}_n(\mathbb{R})$ such that $\operatorname{rank}(A) = 1$.

- 1. We denote by (C_1, \ldots, C_n) the columns of A. Show that $\exists C \in \mathbb{R}^n, \exists (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ tq $\forall i \in \{1, \cdots, n\}, C_i = \lambda_i C.$
- 2. By making use of an appropriate change of basis, show that $\det(I_n + A) = 1 + \operatorname{tr}(A)$.

15. Let
$$A = \begin{pmatrix} 0_n & I_n \\ -I_n & 0_n \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R}).$$

- 1. Compute $\det A$.
- 2. Let $S \in M_{2n}(\mathbb{R})$ such that $S^T A S = A$. Show that S is invertible and that S^T and S^{-1} are similar.